Abstract

A high-energy, high-beam-quality, and pulse-width-tunable Nd:YAG laser system, pumped by vertical cavity surface emitting laser arrays and laser diodes, is demonstrated and applied to a velocity interferometry system for any reflector (VISAR) application in a high power laser facility. A multistage multipass amplification structure is used to fully extract the amplifier energy and obtain a high-energy pulse. The temporal waveform is compensated to provide a square waveform, with a flatness less than 8% (peak-to-peak value). The peak power is greater than 100 kW with a frequency-doubling efficiency of 25% for a 50 ns pulse width. The laser operates as a single shot with 1–5 Hz repetition frequency and 0.7% rms energy stability.

© 2020 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription