Abstract

We explore the role of the linearly polarized probe beam in the radio-frequency atomic magnetometer. Two regimes of coupling of the linearly polarized light to the atomic ensemble, near and off-resonant, are demonstrated and discussed. Our studies cover three types of interaction between the atomic spin system and the linearly polarized beam, i.e., absorptive production of spin polarization, dispersive spin state readout, and nonlinear spin couplings. The work is performed with the outlook of optimization and simplification of magnetometer operation. Operation of a magnetometer with a single beam, generating and probing the atomic orientation, is presented. This single-beam configuration, which combines optical pumping, nonlinear spin couplings, and spin-exchange collisions, creates the option for a portable device with simple instrumentation.

© 2020 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription