Abstract

We propose a microsphere-lens coupler that can successfully constrain the beam with near-field details to achieve ${\sim}{100}\;{\rm nm}$ lateral resolution accuracy. In theory, we use the finite-difference time-domain method to analyze the properties of the “photonic nanojet.” The optimal focusing ability scope can be obtained by adjusting the focusing parameters, such as refractive index, paraxial optical intensity attenuation ratio, sizes of microspheres, and so forth. In experiment, the “non-brush scrubbing” cleaning technology is adopted to optimize the experimental results. Aiming to self-assemble properties of dielectric spheres, we introduce the deagglomeration method to produce homogeneous liquid. Meanwhile, by tiling a 5 µm-diameter microsphere-lens on a specimen, a traditional optical microscope can realize 100 nm lateral superresolution microimaging, which lays a certain foundation for further development of superresolution microimaging.

© 2020 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription