Abstract

The development of light-sheet fluorescence microscopy has been a revolution for developmental biology as it allows long-term imaging during embryonic development. An important reason behind the quick adoption has been the availability of open hardware alternatives. In this work, we present a robust and compact version of a light-sheet fluorescence microscope that is easy to assemble and requires little to no maintenance. An important aspect of the design is that the illumination unit consists of reflective elements, thereby reducing chromatic aberrations an order of magnitude as compared to refractive counterparts.

© 2020 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Light-sheet microscopy: a tutorial

Omar E. Olarte, Jordi Andilla, Emilio J. Gualda, and Pablo Loza-Alvarez
Adv. Opt. Photon. 10(1) 111-179 (2018)

Compact plane illumination plugin device to enable light sheet fluorescence imaging of multi-cellular organisms on an inverted wide-field microscope

Zeyi Guan, Juhyun Lee, Hao Jiang, Siyan Dong, Nelson Jen, Tzung Hsiai, Chih-Ming Ho, and Peng Fei
Biomed. Opt. Express 7(1) 194-208 (2016)

Improving axial resolution of Bessel beam light-sheet fluorescence microscopy by photobleaching imprinting

Bo Xiong, Xiaofei Han, Jiamin Wu, Hao Xie, and Qionghai Dai
Opt. Express 28(7) 9464-9476 (2020)

References

  • View by:
  • |
  • |
  • |

  1. J. Jonkman and C. M. Brown, “Any way you slice it—a comparison of confocal microscopy techniques,” J. Biomol. Technol. 26, 54–65 (2015).
    [Crossref]
  2. C. L. Smithpeter, A. K. Dunn, A. J. Welch, and R. Richards-Kortum, “Penetration depth limits of in vivo confocal reflectance imaging,” in Conf. Proc.–Lasers Electro-Optics Soc. Annu. Meet. (1997), Vol. 11, p. 42.
  3. M. Jemielita, M. J. Taormina, A. DeLaurier, C. B. Kimmel, and R. Parthasarathy, “Comparing phototoxicity during the development of a zebrafish craniofacial bone using confocal and light sheet fluorescence microscopy techniques,” J. Biophotonics 6, 920–928 (2013).
    [Crossref]
  4. H. Siedentopf and R. Zsigmondy, “Uber sichtbarmachung und größenbestimmung ultramikoskopischer teilchen, mit besonderer anwendung auf goldrubingläser,” Ann. der Phys. 315, 1–39 (1902).
    [Crossref]
  5. J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305, 1007–1009 (2004).
    [Crossref]
  6. P. G. Pitrone, J. Schindelin, L. Stuyvenberg, S. Preibisch, M. Weber, K. W. Eliceiri, J. Huisken, and P. Tomancak, “OpenSPIM: an open-access light-sheet microscopy platform,” Nat. Methods 10, 598–599 (2013).
    [Crossref]
  7. W. Jahr, B. Schmid, M. Weber, and J. Huisken, “eduSPIM: light sheet microscopy in the museum,” PLoS ONE 11, 1–12 (2016).
    [Crossref]
  8. L. A. Royer, W. C. Lemon, R. K. Chhetri, and P. J. Keller, “A practical guide to adaptive light-sheet microscopy,” Nat. Protoc. 13, 2462–2500 (2018).
    [Crossref]
  9. J. Huisken and D. Y. R. Stainier, “Selective plane illumination microscopy techniques in developmental biology,” Development 136, 1963–1975 (2009).
    [Crossref]
  10. P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. K. Stelzer, “Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy,” Science 322, 1065–1069 (2008).
    [Crossref]
  11. I. Newton, “A letter of Mr. Isaac Newton, Professor of the Mathematicks in the University of Cambridge; containing his new theory about light and colors: sent by the author to the publisher from Cambridge, Febr. 6. 1671/72; in order to be communicated to the R. Society,” Philos. Trans. R. Soc. London 6, 3075–3087 (2014).
    [Crossref]
  12. J. G. Ritter, R. Veith, J.-P. Siebrasse, and U. Kubitscheck, “High-contrast single-particle tracking by selective focal plane illumination microscopy,” Opt. Express 16, 7142–7152 (2008).
    [Crossref]
  13. H.-U. Dodt, U. Leischner, A. Schierloh, N. Jährling, C. P. Mauch, K. Deininger, J. M. Deussing, M. Eder, W. Zieglgänsberger, and K. Becker, “Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain,” Nat. Methods 4, 331–336 (2007).
    [Crossref]
  14. L. Gao, L. Shao, B.-C. Chen, and E. Betzig, “3D live fluorescence imaging of cellular dynamics using Bessel beam plane illumination microscopy,” Nat. Protoc. 9, 1083–1101 (2014).
    [Crossref]
  15. S. Preibisch, S. Saalfeld, J. Schindelin, and P. Tomancak, “Software for bead-based registration of selective plane illumination microscopy data,” Nat. Methods 7, 418–419 (2010).
    [Crossref]
  16. http://lec.df.uba.ar/soma/ .
  17. https://github.com/lantzproject .
  18. A. Kaufmann, M. Mickoleit, M. Weber, and J. Huisken, “Multilayer mounting enables long-term imaging of zebrafish development in a light sheet microscope,” Development 139, 3242–3247 (2012).
    [Crossref]
  19. P. Theer, C. Mongis, and M. Knop, “PSFj: Know your fluorescence microscope,” Nat. Methods 11, 981–982 (2014).
    [Crossref]
  20. L. Stegemann, K. C. Schuermann, C. A. Strassert, and H. E. Grecco, “Photofunctional surfaces for quantitative fluorescence microscopy: monitoring the effects of photogenerated reactive oxygen species at single cell level with spatiotemporal resolution,” ACS Appl. Mater. Interfaces 7, 5944–5949 (2015).
    [Crossref]
  21. A. A. Corbat, K. C. Schuermann, P. Liguzinski, Y. Radon, P. I. H. Bastiaens, P. J. Verveer, and H. E. Grecco, “Co-imaging extrinsic, intrinsic and effector caspase activity by fluorescence anisotropy microscopy,” Redox Biol. 19, 210–217 (2018).
    [Crossref]
  22. F. De Chaumont, S. Dallongeville, N. Chenouard, N. Hervé, S. Pop, T. Provoost, V. Meas-Yedid, P. Pankajakshan, T. Lecomte, Y. Le Montagner, T. Lagache, A. Dufour, and J. C. Olivo-Marin, “Icy: an open bioimage informatics platform for extended reproducible research,” Nat. Methods 9, 690–696 (2012).
    [Crossref]

2018 (2)

L. A. Royer, W. C. Lemon, R. K. Chhetri, and P. J. Keller, “A practical guide to adaptive light-sheet microscopy,” Nat. Protoc. 13, 2462–2500 (2018).
[Crossref]

A. A. Corbat, K. C. Schuermann, P. Liguzinski, Y. Radon, P. I. H. Bastiaens, P. J. Verveer, and H. E. Grecco, “Co-imaging extrinsic, intrinsic and effector caspase activity by fluorescence anisotropy microscopy,” Redox Biol. 19, 210–217 (2018).
[Crossref]

2016 (1)

W. Jahr, B. Schmid, M. Weber, and J. Huisken, “eduSPIM: light sheet microscopy in the museum,” PLoS ONE 11, 1–12 (2016).
[Crossref]

2015 (2)

L. Stegemann, K. C. Schuermann, C. A. Strassert, and H. E. Grecco, “Photofunctional surfaces for quantitative fluorescence microscopy: monitoring the effects of photogenerated reactive oxygen species at single cell level with spatiotemporal resolution,” ACS Appl. Mater. Interfaces 7, 5944–5949 (2015).
[Crossref]

J. Jonkman and C. M. Brown, “Any way you slice it—a comparison of confocal microscopy techniques,” J. Biomol. Technol. 26, 54–65 (2015).
[Crossref]

2014 (3)

I. Newton, “A letter of Mr. Isaac Newton, Professor of the Mathematicks in the University of Cambridge; containing his new theory about light and colors: sent by the author to the publisher from Cambridge, Febr. 6. 1671/72; in order to be communicated to the R. Society,” Philos. Trans. R. Soc. London 6, 3075–3087 (2014).
[Crossref]

P. Theer, C. Mongis, and M. Knop, “PSFj: Know your fluorescence microscope,” Nat. Methods 11, 981–982 (2014).
[Crossref]

L. Gao, L. Shao, B.-C. Chen, and E. Betzig, “3D live fluorescence imaging of cellular dynamics using Bessel beam plane illumination microscopy,” Nat. Protoc. 9, 1083–1101 (2014).
[Crossref]

2013 (2)

M. Jemielita, M. J. Taormina, A. DeLaurier, C. B. Kimmel, and R. Parthasarathy, “Comparing phototoxicity during the development of a zebrafish craniofacial bone using confocal and light sheet fluorescence microscopy techniques,” J. Biophotonics 6, 920–928 (2013).
[Crossref]

P. G. Pitrone, J. Schindelin, L. Stuyvenberg, S. Preibisch, M. Weber, K. W. Eliceiri, J. Huisken, and P. Tomancak, “OpenSPIM: an open-access light-sheet microscopy platform,” Nat. Methods 10, 598–599 (2013).
[Crossref]

2012 (2)

A. Kaufmann, M. Mickoleit, M. Weber, and J. Huisken, “Multilayer mounting enables long-term imaging of zebrafish development in a light sheet microscope,” Development 139, 3242–3247 (2012).
[Crossref]

F. De Chaumont, S. Dallongeville, N. Chenouard, N. Hervé, S. Pop, T. Provoost, V. Meas-Yedid, P. Pankajakshan, T. Lecomte, Y. Le Montagner, T. Lagache, A. Dufour, and J. C. Olivo-Marin, “Icy: an open bioimage informatics platform for extended reproducible research,” Nat. Methods 9, 690–696 (2012).
[Crossref]

2010 (1)

S. Preibisch, S. Saalfeld, J. Schindelin, and P. Tomancak, “Software for bead-based registration of selective plane illumination microscopy data,” Nat. Methods 7, 418–419 (2010).
[Crossref]

2009 (1)

J. Huisken and D. Y. R. Stainier, “Selective plane illumination microscopy techniques in developmental biology,” Development 136, 1963–1975 (2009).
[Crossref]

2008 (2)

P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. K. Stelzer, “Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy,” Science 322, 1065–1069 (2008).
[Crossref]

J. G. Ritter, R. Veith, J.-P. Siebrasse, and U. Kubitscheck, “High-contrast single-particle tracking by selective focal plane illumination microscopy,” Opt. Express 16, 7142–7152 (2008).
[Crossref]

2007 (1)

H.-U. Dodt, U. Leischner, A. Schierloh, N. Jährling, C. P. Mauch, K. Deininger, J. M. Deussing, M. Eder, W. Zieglgänsberger, and K. Becker, “Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain,” Nat. Methods 4, 331–336 (2007).
[Crossref]

2004 (1)

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305, 1007–1009 (2004).
[Crossref]

1902 (1)

H. Siedentopf and R. Zsigmondy, “Uber sichtbarmachung und größenbestimmung ultramikoskopischer teilchen, mit besonderer anwendung auf goldrubingläser,” Ann. der Phys. 315, 1–39 (1902).
[Crossref]

Bastiaens, P. I. H.

A. A. Corbat, K. C. Schuermann, P. Liguzinski, Y. Radon, P. I. H. Bastiaens, P. J. Verveer, and H. E. Grecco, “Co-imaging extrinsic, intrinsic and effector caspase activity by fluorescence anisotropy microscopy,” Redox Biol. 19, 210–217 (2018).
[Crossref]

Becker, K.

H.-U. Dodt, U. Leischner, A. Schierloh, N. Jährling, C. P. Mauch, K. Deininger, J. M. Deussing, M. Eder, W. Zieglgänsberger, and K. Becker, “Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain,” Nat. Methods 4, 331–336 (2007).
[Crossref]

Betzig, E.

L. Gao, L. Shao, B.-C. Chen, and E. Betzig, “3D live fluorescence imaging of cellular dynamics using Bessel beam plane illumination microscopy,” Nat. Protoc. 9, 1083–1101 (2014).
[Crossref]

Brown, C. M.

J. Jonkman and C. M. Brown, “Any way you slice it—a comparison of confocal microscopy techniques,” J. Biomol. Technol. 26, 54–65 (2015).
[Crossref]

Chen, B.-C.

L. Gao, L. Shao, B.-C. Chen, and E. Betzig, “3D live fluorescence imaging of cellular dynamics using Bessel beam plane illumination microscopy,” Nat. Protoc. 9, 1083–1101 (2014).
[Crossref]

Chenouard, N.

F. De Chaumont, S. Dallongeville, N. Chenouard, N. Hervé, S. Pop, T. Provoost, V. Meas-Yedid, P. Pankajakshan, T. Lecomte, Y. Le Montagner, T. Lagache, A. Dufour, and J. C. Olivo-Marin, “Icy: an open bioimage informatics platform for extended reproducible research,” Nat. Methods 9, 690–696 (2012).
[Crossref]

Chhetri, R. K.

L. A. Royer, W. C. Lemon, R. K. Chhetri, and P. J. Keller, “A practical guide to adaptive light-sheet microscopy,” Nat. Protoc. 13, 2462–2500 (2018).
[Crossref]

Corbat, A. A.

A. A. Corbat, K. C. Schuermann, P. Liguzinski, Y. Radon, P. I. H. Bastiaens, P. J. Verveer, and H. E. Grecco, “Co-imaging extrinsic, intrinsic and effector caspase activity by fluorescence anisotropy microscopy,” Redox Biol. 19, 210–217 (2018).
[Crossref]

Dallongeville, S.

F. De Chaumont, S. Dallongeville, N. Chenouard, N. Hervé, S. Pop, T. Provoost, V. Meas-Yedid, P. Pankajakshan, T. Lecomte, Y. Le Montagner, T. Lagache, A. Dufour, and J. C. Olivo-Marin, “Icy: an open bioimage informatics platform for extended reproducible research,” Nat. Methods 9, 690–696 (2012).
[Crossref]

De Chaumont, F.

F. De Chaumont, S. Dallongeville, N. Chenouard, N. Hervé, S. Pop, T. Provoost, V. Meas-Yedid, P. Pankajakshan, T. Lecomte, Y. Le Montagner, T. Lagache, A. Dufour, and J. C. Olivo-Marin, “Icy: an open bioimage informatics platform for extended reproducible research,” Nat. Methods 9, 690–696 (2012).
[Crossref]

Deininger, K.

H.-U. Dodt, U. Leischner, A. Schierloh, N. Jährling, C. P. Mauch, K. Deininger, J. M. Deussing, M. Eder, W. Zieglgänsberger, and K. Becker, “Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain,” Nat. Methods 4, 331–336 (2007).
[Crossref]

Del Bene, F.

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305, 1007–1009 (2004).
[Crossref]

DeLaurier, A.

M. Jemielita, M. J. Taormina, A. DeLaurier, C. B. Kimmel, and R. Parthasarathy, “Comparing phototoxicity during the development of a zebrafish craniofacial bone using confocal and light sheet fluorescence microscopy techniques,” J. Biophotonics 6, 920–928 (2013).
[Crossref]

Deussing, J. M.

H.-U. Dodt, U. Leischner, A. Schierloh, N. Jährling, C. P. Mauch, K. Deininger, J. M. Deussing, M. Eder, W. Zieglgänsberger, and K. Becker, “Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain,” Nat. Methods 4, 331–336 (2007).
[Crossref]

Dodt, H.-U.

H.-U. Dodt, U. Leischner, A. Schierloh, N. Jährling, C. P. Mauch, K. Deininger, J. M. Deussing, M. Eder, W. Zieglgänsberger, and K. Becker, “Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain,” Nat. Methods 4, 331–336 (2007).
[Crossref]

Dufour, A.

F. De Chaumont, S. Dallongeville, N. Chenouard, N. Hervé, S. Pop, T. Provoost, V. Meas-Yedid, P. Pankajakshan, T. Lecomte, Y. Le Montagner, T. Lagache, A. Dufour, and J. C. Olivo-Marin, “Icy: an open bioimage informatics platform for extended reproducible research,” Nat. Methods 9, 690–696 (2012).
[Crossref]

Dunn, A. K.

C. L. Smithpeter, A. K. Dunn, A. J. Welch, and R. Richards-Kortum, “Penetration depth limits of in vivo confocal reflectance imaging,” in Conf. Proc.–Lasers Electro-Optics Soc. Annu. Meet. (1997), Vol. 11, p. 42.

Eder, M.

H.-U. Dodt, U. Leischner, A. Schierloh, N. Jährling, C. P. Mauch, K. Deininger, J. M. Deussing, M. Eder, W. Zieglgänsberger, and K. Becker, “Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain,” Nat. Methods 4, 331–336 (2007).
[Crossref]

Eliceiri, K. W.

P. G. Pitrone, J. Schindelin, L. Stuyvenberg, S. Preibisch, M. Weber, K. W. Eliceiri, J. Huisken, and P. Tomancak, “OpenSPIM: an open-access light-sheet microscopy platform,” Nat. Methods 10, 598–599 (2013).
[Crossref]

Gao, L.

L. Gao, L. Shao, B.-C. Chen, and E. Betzig, “3D live fluorescence imaging of cellular dynamics using Bessel beam plane illumination microscopy,” Nat. Protoc. 9, 1083–1101 (2014).
[Crossref]

Grecco, H. E.

A. A. Corbat, K. C. Schuermann, P. Liguzinski, Y. Radon, P. I. H. Bastiaens, P. J. Verveer, and H. E. Grecco, “Co-imaging extrinsic, intrinsic and effector caspase activity by fluorescence anisotropy microscopy,” Redox Biol. 19, 210–217 (2018).
[Crossref]

L. Stegemann, K. C. Schuermann, C. A. Strassert, and H. E. Grecco, “Photofunctional surfaces for quantitative fluorescence microscopy: monitoring the effects of photogenerated reactive oxygen species at single cell level with spatiotemporal resolution,” ACS Appl. Mater. Interfaces 7, 5944–5949 (2015).
[Crossref]

Hervé, N.

F. De Chaumont, S. Dallongeville, N. Chenouard, N. Hervé, S. Pop, T. Provoost, V. Meas-Yedid, P. Pankajakshan, T. Lecomte, Y. Le Montagner, T. Lagache, A. Dufour, and J. C. Olivo-Marin, “Icy: an open bioimage informatics platform for extended reproducible research,” Nat. Methods 9, 690–696 (2012).
[Crossref]

Huisken, J.

W. Jahr, B. Schmid, M. Weber, and J. Huisken, “eduSPIM: light sheet microscopy in the museum,” PLoS ONE 11, 1–12 (2016).
[Crossref]

P. G. Pitrone, J. Schindelin, L. Stuyvenberg, S. Preibisch, M. Weber, K. W. Eliceiri, J. Huisken, and P. Tomancak, “OpenSPIM: an open-access light-sheet microscopy platform,” Nat. Methods 10, 598–599 (2013).
[Crossref]

A. Kaufmann, M. Mickoleit, M. Weber, and J. Huisken, “Multilayer mounting enables long-term imaging of zebrafish development in a light sheet microscope,” Development 139, 3242–3247 (2012).
[Crossref]

J. Huisken and D. Y. R. Stainier, “Selective plane illumination microscopy techniques in developmental biology,” Development 136, 1963–1975 (2009).
[Crossref]

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305, 1007–1009 (2004).
[Crossref]

Jahr, W.

W. Jahr, B. Schmid, M. Weber, and J. Huisken, “eduSPIM: light sheet microscopy in the museum,” PLoS ONE 11, 1–12 (2016).
[Crossref]

Jährling, N.

H.-U. Dodt, U. Leischner, A. Schierloh, N. Jährling, C. P. Mauch, K. Deininger, J. M. Deussing, M. Eder, W. Zieglgänsberger, and K. Becker, “Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain,” Nat. Methods 4, 331–336 (2007).
[Crossref]

Jemielita, M.

M. Jemielita, M. J. Taormina, A. DeLaurier, C. B. Kimmel, and R. Parthasarathy, “Comparing phototoxicity during the development of a zebrafish craniofacial bone using confocal and light sheet fluorescence microscopy techniques,” J. Biophotonics 6, 920–928 (2013).
[Crossref]

Jonkman, J.

J. Jonkman and C. M. Brown, “Any way you slice it—a comparison of confocal microscopy techniques,” J. Biomol. Technol. 26, 54–65 (2015).
[Crossref]

Kaufmann, A.

A. Kaufmann, M. Mickoleit, M. Weber, and J. Huisken, “Multilayer mounting enables long-term imaging of zebrafish development in a light sheet microscope,” Development 139, 3242–3247 (2012).
[Crossref]

Keller, P. J.

L. A. Royer, W. C. Lemon, R. K. Chhetri, and P. J. Keller, “A practical guide to adaptive light-sheet microscopy,” Nat. Protoc. 13, 2462–2500 (2018).
[Crossref]

P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. K. Stelzer, “Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy,” Science 322, 1065–1069 (2008).
[Crossref]

Kimmel, C. B.

M. Jemielita, M. J. Taormina, A. DeLaurier, C. B. Kimmel, and R. Parthasarathy, “Comparing phototoxicity during the development of a zebrafish craniofacial bone using confocal and light sheet fluorescence microscopy techniques,” J. Biophotonics 6, 920–928 (2013).
[Crossref]

Knop, M.

P. Theer, C. Mongis, and M. Knop, “PSFj: Know your fluorescence microscope,” Nat. Methods 11, 981–982 (2014).
[Crossref]

Kubitscheck, U.

Lagache, T.

F. De Chaumont, S. Dallongeville, N. Chenouard, N. Hervé, S. Pop, T. Provoost, V. Meas-Yedid, P. Pankajakshan, T. Lecomte, Y. Le Montagner, T. Lagache, A. Dufour, and J. C. Olivo-Marin, “Icy: an open bioimage informatics platform for extended reproducible research,” Nat. Methods 9, 690–696 (2012).
[Crossref]

Le Montagner, Y.

F. De Chaumont, S. Dallongeville, N. Chenouard, N. Hervé, S. Pop, T. Provoost, V. Meas-Yedid, P. Pankajakshan, T. Lecomte, Y. Le Montagner, T. Lagache, A. Dufour, and J. C. Olivo-Marin, “Icy: an open bioimage informatics platform for extended reproducible research,” Nat. Methods 9, 690–696 (2012).
[Crossref]

Lecomte, T.

F. De Chaumont, S. Dallongeville, N. Chenouard, N. Hervé, S. Pop, T. Provoost, V. Meas-Yedid, P. Pankajakshan, T. Lecomte, Y. Le Montagner, T. Lagache, A. Dufour, and J. C. Olivo-Marin, “Icy: an open bioimage informatics platform for extended reproducible research,” Nat. Methods 9, 690–696 (2012).
[Crossref]

Leischner, U.

H.-U. Dodt, U. Leischner, A. Schierloh, N. Jährling, C. P. Mauch, K. Deininger, J. M. Deussing, M. Eder, W. Zieglgänsberger, and K. Becker, “Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain,” Nat. Methods 4, 331–336 (2007).
[Crossref]

Lemon, W. C.

L. A. Royer, W. C. Lemon, R. K. Chhetri, and P. J. Keller, “A practical guide to adaptive light-sheet microscopy,” Nat. Protoc. 13, 2462–2500 (2018).
[Crossref]

Liguzinski, P.

A. A. Corbat, K. C. Schuermann, P. Liguzinski, Y. Radon, P. I. H. Bastiaens, P. J. Verveer, and H. E. Grecco, “Co-imaging extrinsic, intrinsic and effector caspase activity by fluorescence anisotropy microscopy,” Redox Biol. 19, 210–217 (2018).
[Crossref]

Mauch, C. P.

H.-U. Dodt, U. Leischner, A. Schierloh, N. Jährling, C. P. Mauch, K. Deininger, J. M. Deussing, M. Eder, W. Zieglgänsberger, and K. Becker, “Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain,” Nat. Methods 4, 331–336 (2007).
[Crossref]

Meas-Yedid, V.

F. De Chaumont, S. Dallongeville, N. Chenouard, N. Hervé, S. Pop, T. Provoost, V. Meas-Yedid, P. Pankajakshan, T. Lecomte, Y. Le Montagner, T. Lagache, A. Dufour, and J. C. Olivo-Marin, “Icy: an open bioimage informatics platform for extended reproducible research,” Nat. Methods 9, 690–696 (2012).
[Crossref]

Mickoleit, M.

A. Kaufmann, M. Mickoleit, M. Weber, and J. Huisken, “Multilayer mounting enables long-term imaging of zebrafish development in a light sheet microscope,” Development 139, 3242–3247 (2012).
[Crossref]

Mongis, C.

P. Theer, C. Mongis, and M. Knop, “PSFj: Know your fluorescence microscope,” Nat. Methods 11, 981–982 (2014).
[Crossref]

Newton, I.

I. Newton, “A letter of Mr. Isaac Newton, Professor of the Mathematicks in the University of Cambridge; containing his new theory about light and colors: sent by the author to the publisher from Cambridge, Febr. 6. 1671/72; in order to be communicated to the R. Society,” Philos. Trans. R. Soc. London 6, 3075–3087 (2014).
[Crossref]

Olivo-Marin, J. C.

F. De Chaumont, S. Dallongeville, N. Chenouard, N. Hervé, S. Pop, T. Provoost, V. Meas-Yedid, P. Pankajakshan, T. Lecomte, Y. Le Montagner, T. Lagache, A. Dufour, and J. C. Olivo-Marin, “Icy: an open bioimage informatics platform for extended reproducible research,” Nat. Methods 9, 690–696 (2012).
[Crossref]

Pankajakshan, P.

F. De Chaumont, S. Dallongeville, N. Chenouard, N. Hervé, S. Pop, T. Provoost, V. Meas-Yedid, P. Pankajakshan, T. Lecomte, Y. Le Montagner, T. Lagache, A. Dufour, and J. C. Olivo-Marin, “Icy: an open bioimage informatics platform for extended reproducible research,” Nat. Methods 9, 690–696 (2012).
[Crossref]

Parthasarathy, R.

M. Jemielita, M. J. Taormina, A. DeLaurier, C. B. Kimmel, and R. Parthasarathy, “Comparing phototoxicity during the development of a zebrafish craniofacial bone using confocal and light sheet fluorescence microscopy techniques,” J. Biophotonics 6, 920–928 (2013).
[Crossref]

Pitrone, P. G.

P. G. Pitrone, J. Schindelin, L. Stuyvenberg, S. Preibisch, M. Weber, K. W. Eliceiri, J. Huisken, and P. Tomancak, “OpenSPIM: an open-access light-sheet microscopy platform,” Nat. Methods 10, 598–599 (2013).
[Crossref]

Pop, S.

F. De Chaumont, S. Dallongeville, N. Chenouard, N. Hervé, S. Pop, T. Provoost, V. Meas-Yedid, P. Pankajakshan, T. Lecomte, Y. Le Montagner, T. Lagache, A. Dufour, and J. C. Olivo-Marin, “Icy: an open bioimage informatics platform for extended reproducible research,” Nat. Methods 9, 690–696 (2012).
[Crossref]

Preibisch, S.

P. G. Pitrone, J. Schindelin, L. Stuyvenberg, S. Preibisch, M. Weber, K. W. Eliceiri, J. Huisken, and P. Tomancak, “OpenSPIM: an open-access light-sheet microscopy platform,” Nat. Methods 10, 598–599 (2013).
[Crossref]

S. Preibisch, S. Saalfeld, J. Schindelin, and P. Tomancak, “Software for bead-based registration of selective plane illumination microscopy data,” Nat. Methods 7, 418–419 (2010).
[Crossref]

Provoost, T.

F. De Chaumont, S. Dallongeville, N. Chenouard, N. Hervé, S. Pop, T. Provoost, V. Meas-Yedid, P. Pankajakshan, T. Lecomte, Y. Le Montagner, T. Lagache, A. Dufour, and J. C. Olivo-Marin, “Icy: an open bioimage informatics platform for extended reproducible research,” Nat. Methods 9, 690–696 (2012).
[Crossref]

Radon, Y.

A. A. Corbat, K. C. Schuermann, P. Liguzinski, Y. Radon, P. I. H. Bastiaens, P. J. Verveer, and H. E. Grecco, “Co-imaging extrinsic, intrinsic and effector caspase activity by fluorescence anisotropy microscopy,” Redox Biol. 19, 210–217 (2018).
[Crossref]

Richards-Kortum, R.

C. L. Smithpeter, A. K. Dunn, A. J. Welch, and R. Richards-Kortum, “Penetration depth limits of in vivo confocal reflectance imaging,” in Conf. Proc.–Lasers Electro-Optics Soc. Annu. Meet. (1997), Vol. 11, p. 42.

Ritter, J. G.

Royer, L. A.

L. A. Royer, W. C. Lemon, R. K. Chhetri, and P. J. Keller, “A practical guide to adaptive light-sheet microscopy,” Nat. Protoc. 13, 2462–2500 (2018).
[Crossref]

Saalfeld, S.

S. Preibisch, S. Saalfeld, J. Schindelin, and P. Tomancak, “Software for bead-based registration of selective plane illumination microscopy data,” Nat. Methods 7, 418–419 (2010).
[Crossref]

Schierloh, A.

H.-U. Dodt, U. Leischner, A. Schierloh, N. Jährling, C. P. Mauch, K. Deininger, J. M. Deussing, M. Eder, W. Zieglgänsberger, and K. Becker, “Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain,” Nat. Methods 4, 331–336 (2007).
[Crossref]

Schindelin, J.

P. G. Pitrone, J. Schindelin, L. Stuyvenberg, S. Preibisch, M. Weber, K. W. Eliceiri, J. Huisken, and P. Tomancak, “OpenSPIM: an open-access light-sheet microscopy platform,” Nat. Methods 10, 598–599 (2013).
[Crossref]

S. Preibisch, S. Saalfeld, J. Schindelin, and P. Tomancak, “Software for bead-based registration of selective plane illumination microscopy data,” Nat. Methods 7, 418–419 (2010).
[Crossref]

Schmid, B.

W. Jahr, B. Schmid, M. Weber, and J. Huisken, “eduSPIM: light sheet microscopy in the museum,” PLoS ONE 11, 1–12 (2016).
[Crossref]

Schmidt, A. D.

P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. K. Stelzer, “Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy,” Science 322, 1065–1069 (2008).
[Crossref]

Schuermann, K. C.

A. A. Corbat, K. C. Schuermann, P. Liguzinski, Y. Radon, P. I. H. Bastiaens, P. J. Verveer, and H. E. Grecco, “Co-imaging extrinsic, intrinsic and effector caspase activity by fluorescence anisotropy microscopy,” Redox Biol. 19, 210–217 (2018).
[Crossref]

L. Stegemann, K. C. Schuermann, C. A. Strassert, and H. E. Grecco, “Photofunctional surfaces for quantitative fluorescence microscopy: monitoring the effects of photogenerated reactive oxygen species at single cell level with spatiotemporal resolution,” ACS Appl. Mater. Interfaces 7, 5944–5949 (2015).
[Crossref]

Shao, L.

L. Gao, L. Shao, B.-C. Chen, and E. Betzig, “3D live fluorescence imaging of cellular dynamics using Bessel beam plane illumination microscopy,” Nat. Protoc. 9, 1083–1101 (2014).
[Crossref]

Siebrasse, J.-P.

Siedentopf, H.

H. Siedentopf and R. Zsigmondy, “Uber sichtbarmachung und größenbestimmung ultramikoskopischer teilchen, mit besonderer anwendung auf goldrubingläser,” Ann. der Phys. 315, 1–39 (1902).
[Crossref]

Smithpeter, C. L.

C. L. Smithpeter, A. K. Dunn, A. J. Welch, and R. Richards-Kortum, “Penetration depth limits of in vivo confocal reflectance imaging,” in Conf. Proc.–Lasers Electro-Optics Soc. Annu. Meet. (1997), Vol. 11, p. 42.

Stainier, D. Y. R.

J. Huisken and D. Y. R. Stainier, “Selective plane illumination microscopy techniques in developmental biology,” Development 136, 1963–1975 (2009).
[Crossref]

Stegemann, L.

L. Stegemann, K. C. Schuermann, C. A. Strassert, and H. E. Grecco, “Photofunctional surfaces for quantitative fluorescence microscopy: monitoring the effects of photogenerated reactive oxygen species at single cell level with spatiotemporal resolution,” ACS Appl. Mater. Interfaces 7, 5944–5949 (2015).
[Crossref]

Stelzer, E. H. K.

P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. K. Stelzer, “Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy,” Science 322, 1065–1069 (2008).
[Crossref]

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305, 1007–1009 (2004).
[Crossref]

Strassert, C. A.

L. Stegemann, K. C. Schuermann, C. A. Strassert, and H. E. Grecco, “Photofunctional surfaces for quantitative fluorescence microscopy: monitoring the effects of photogenerated reactive oxygen species at single cell level with spatiotemporal resolution,” ACS Appl. Mater. Interfaces 7, 5944–5949 (2015).
[Crossref]

Stuyvenberg, L.

P. G. Pitrone, J. Schindelin, L. Stuyvenberg, S. Preibisch, M. Weber, K. W. Eliceiri, J. Huisken, and P. Tomancak, “OpenSPIM: an open-access light-sheet microscopy platform,” Nat. Methods 10, 598–599 (2013).
[Crossref]

Swoger, J.

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305, 1007–1009 (2004).
[Crossref]

Taormina, M. J.

M. Jemielita, M. J. Taormina, A. DeLaurier, C. B. Kimmel, and R. Parthasarathy, “Comparing phototoxicity during the development of a zebrafish craniofacial bone using confocal and light sheet fluorescence microscopy techniques,” J. Biophotonics 6, 920–928 (2013).
[Crossref]

Theer, P.

P. Theer, C. Mongis, and M. Knop, “PSFj: Know your fluorescence microscope,” Nat. Methods 11, 981–982 (2014).
[Crossref]

Tomancak, P.

P. G. Pitrone, J. Schindelin, L. Stuyvenberg, S. Preibisch, M. Weber, K. W. Eliceiri, J. Huisken, and P. Tomancak, “OpenSPIM: an open-access light-sheet microscopy platform,” Nat. Methods 10, 598–599 (2013).
[Crossref]

S. Preibisch, S. Saalfeld, J. Schindelin, and P. Tomancak, “Software for bead-based registration of selective plane illumination microscopy data,” Nat. Methods 7, 418–419 (2010).
[Crossref]

Veith, R.

Verveer, P. J.

A. A. Corbat, K. C. Schuermann, P. Liguzinski, Y. Radon, P. I. H. Bastiaens, P. J. Verveer, and H. E. Grecco, “Co-imaging extrinsic, intrinsic and effector caspase activity by fluorescence anisotropy microscopy,” Redox Biol. 19, 210–217 (2018).
[Crossref]

Weber, M.

W. Jahr, B. Schmid, M. Weber, and J. Huisken, “eduSPIM: light sheet microscopy in the museum,” PLoS ONE 11, 1–12 (2016).
[Crossref]

P. G. Pitrone, J. Schindelin, L. Stuyvenberg, S. Preibisch, M. Weber, K. W. Eliceiri, J. Huisken, and P. Tomancak, “OpenSPIM: an open-access light-sheet microscopy platform,” Nat. Methods 10, 598–599 (2013).
[Crossref]

A. Kaufmann, M. Mickoleit, M. Weber, and J. Huisken, “Multilayer mounting enables long-term imaging of zebrafish development in a light sheet microscope,” Development 139, 3242–3247 (2012).
[Crossref]

Welch, A. J.

C. L. Smithpeter, A. K. Dunn, A. J. Welch, and R. Richards-Kortum, “Penetration depth limits of in vivo confocal reflectance imaging,” in Conf. Proc.–Lasers Electro-Optics Soc. Annu. Meet. (1997), Vol. 11, p. 42.

Wittbrodt, J.

P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. K. Stelzer, “Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy,” Science 322, 1065–1069 (2008).
[Crossref]

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305, 1007–1009 (2004).
[Crossref]

Zieglgänsberger, W.

H.-U. Dodt, U. Leischner, A. Schierloh, N. Jährling, C. P. Mauch, K. Deininger, J. M. Deussing, M. Eder, W. Zieglgänsberger, and K. Becker, “Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain,” Nat. Methods 4, 331–336 (2007).
[Crossref]

Zsigmondy, R.

H. Siedentopf and R. Zsigmondy, “Uber sichtbarmachung und größenbestimmung ultramikoskopischer teilchen, mit besonderer anwendung auf goldrubingläser,” Ann. der Phys. 315, 1–39 (1902).
[Crossref]

ACS Appl. Mater. Interfaces (1)

L. Stegemann, K. C. Schuermann, C. A. Strassert, and H. E. Grecco, “Photofunctional surfaces for quantitative fluorescence microscopy: monitoring the effects of photogenerated reactive oxygen species at single cell level with spatiotemporal resolution,” ACS Appl. Mater. Interfaces 7, 5944–5949 (2015).
[Crossref]

Ann. der Phys. (1)

H. Siedentopf and R. Zsigmondy, “Uber sichtbarmachung und größenbestimmung ultramikoskopischer teilchen, mit besonderer anwendung auf goldrubingläser,” Ann. der Phys. 315, 1–39 (1902).
[Crossref]

Development (2)

J. Huisken and D. Y. R. Stainier, “Selective plane illumination microscopy techniques in developmental biology,” Development 136, 1963–1975 (2009).
[Crossref]

A. Kaufmann, M. Mickoleit, M. Weber, and J. Huisken, “Multilayer mounting enables long-term imaging of zebrafish development in a light sheet microscope,” Development 139, 3242–3247 (2012).
[Crossref]

J. Biomol. Technol. (1)

J. Jonkman and C. M. Brown, “Any way you slice it—a comparison of confocal microscopy techniques,” J. Biomol. Technol. 26, 54–65 (2015).
[Crossref]

J. Biophotonics (1)

M. Jemielita, M. J. Taormina, A. DeLaurier, C. B. Kimmel, and R. Parthasarathy, “Comparing phototoxicity during the development of a zebrafish craniofacial bone using confocal and light sheet fluorescence microscopy techniques,” J. Biophotonics 6, 920–928 (2013).
[Crossref]

Nat. Methods (5)

P. G. Pitrone, J. Schindelin, L. Stuyvenberg, S. Preibisch, M. Weber, K. W. Eliceiri, J. Huisken, and P. Tomancak, “OpenSPIM: an open-access light-sheet microscopy platform,” Nat. Methods 10, 598–599 (2013).
[Crossref]

P. Theer, C. Mongis, and M. Knop, “PSFj: Know your fluorescence microscope,” Nat. Methods 11, 981–982 (2014).
[Crossref]

S. Preibisch, S. Saalfeld, J. Schindelin, and P. Tomancak, “Software for bead-based registration of selective plane illumination microscopy data,” Nat. Methods 7, 418–419 (2010).
[Crossref]

H.-U. Dodt, U. Leischner, A. Schierloh, N. Jährling, C. P. Mauch, K. Deininger, J. M. Deussing, M. Eder, W. Zieglgänsberger, and K. Becker, “Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain,” Nat. Methods 4, 331–336 (2007).
[Crossref]

F. De Chaumont, S. Dallongeville, N. Chenouard, N. Hervé, S. Pop, T. Provoost, V. Meas-Yedid, P. Pankajakshan, T. Lecomte, Y. Le Montagner, T. Lagache, A. Dufour, and J. C. Olivo-Marin, “Icy: an open bioimage informatics platform for extended reproducible research,” Nat. Methods 9, 690–696 (2012).
[Crossref]

Nat. Protoc. (2)

L. Gao, L. Shao, B.-C. Chen, and E. Betzig, “3D live fluorescence imaging of cellular dynamics using Bessel beam plane illumination microscopy,” Nat. Protoc. 9, 1083–1101 (2014).
[Crossref]

L. A. Royer, W. C. Lemon, R. K. Chhetri, and P. J. Keller, “A practical guide to adaptive light-sheet microscopy,” Nat. Protoc. 13, 2462–2500 (2018).
[Crossref]

Opt. Express (1)

Philos. Trans. R. Soc. London (1)

I. Newton, “A letter of Mr. Isaac Newton, Professor of the Mathematicks in the University of Cambridge; containing his new theory about light and colors: sent by the author to the publisher from Cambridge, Febr. 6. 1671/72; in order to be communicated to the R. Society,” Philos. Trans. R. Soc. London 6, 3075–3087 (2014).
[Crossref]

PLoS ONE (1)

W. Jahr, B. Schmid, M. Weber, and J. Huisken, “eduSPIM: light sheet microscopy in the museum,” PLoS ONE 11, 1–12 (2016).
[Crossref]

Redox Biol. (1)

A. A. Corbat, K. C. Schuermann, P. Liguzinski, Y. Radon, P. I. H. Bastiaens, P. J. Verveer, and H. E. Grecco, “Co-imaging extrinsic, intrinsic and effector caspase activity by fluorescence anisotropy microscopy,” Redox Biol. 19, 210–217 (2018).
[Crossref]

Science (2)

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305, 1007–1009 (2004).
[Crossref]

P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. K. Stelzer, “Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy,” Science 322, 1065–1069 (2008).
[Crossref]

Other (3)

http://lec.df.uba.ar/soma/ .

https://github.com/lantzproject .

C. L. Smithpeter, A. K. Dunn, A. J. Welch, and R. Richards-Kortum, “Penetration depth limits of in vivo confocal reflectance imaging,” in Conf. Proc.–Lasers Electro-Optics Soc. Annu. Meet. (1997), Vol. 11, p. 42.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1. Diagram of the compact light-sheet microscope. (a) Three lasers are coupled into a single-mode optical fiber. The illumination stage consists of a reflective collimator RC followed by a reflective illumination unit RIU detailed in (b). In the detection stage, a detection objective DO is followed by an emission filter EM, a tube lens TL, and an sCMOS camera. (b) Top: detail of the reflective illumination unit. A reflective collimator RC generates a collimated Gaussian beam that is reflected by a cylindrical mirror CM. The cylindrical mirror generates a horizontal sheet of light propagating in the $x$-direction that is focused on the $y$-direction and collimated in the $z$-direction. The light-sheet is focused on the back focal plane of the illumination objective IO, which changes the plane of focus from $x {-} y$ to $x {-} z$. Samples are later positioned in the light-sheet waist and scanned through it. Bottom: illustrations of the changes in the shape of the beam when going through the different optical components of the microscope, in the $x {-} y$, $x {-} z$ and $y {-} z$ planes at different relevant points in the RIU. It is worth noting that in the $y$-direction the cylindrical mirror focuses the beam at the back focal plane of the objective (C), which then, in turn, is collimated by it to reach the sample (D). In the $z$-direction, the opposite occurs: the cylindrical mirror does not focus the beam from the collimator (A versus B and C) which is then focused by the objective in the sample (D). (c) 3D render showing the reflective collimator, corner cylindrical mirror, illumination and detection objectives, and imaging chamber. (d) Picture of compactLSFM. The fiber-coupled RIU (left) is fixed to the imaging chamber with metallic rods. To the front, 90° from the illumination objective is the detection objective. The sample holder is maintained vertically, in the axis of a stepper motor, to allow sample rotation. (The $x {-} y {-} z$ motorized stage, filter wheel, tube lens, and camera, which are standard, are not shown.)
Fig. 2.
Fig. 2. Characterization of chromatic aberrations. (a) Diagram of the workflow for measuring the microscope’s axial shift. Stacks of multi-color fluorescent beads are acquired across the $z$-direction. Three-dimensional Gaussian functions are fitted to individual beads using PSFj and the centers of the beads (${x_c}$, ${y_c}$, ${z_c}$) are extracted. The shift between different channels in the axial coordinate of the center of the bead ${z_c}$ is a measure of the microscope’s axial chromatic aberrations. (b) Example of a single ${z}$-slice of multi-color fluorescent beads acquired with the compact light-sheet microscope. Scale bar: 50 µm. (c) Close-up of the image of a single bead across ${z}$. Scale bar: 5 µm. (d) Box plot of the axial shift between different channels corresponding to blue (473 nm), green (532 nm), and red (633 nm) illumination wavelengths. This measurement was repeated for a refractive setup of similar conditions, showing that in the reflective microscope chromatic aberrations are significantly lower. The horizontal lines correspond to the median values of each distribution, and the points corresponding to quartiles 1–3 (25th to 75th percentile) are plotted inside the box. The whiskers represent the maximum and minimum values, without considering outliers. The number of beads ${N}$ analyzed for the reflective setup was ${N}\; = \;{91}$ for the blue–green channels, ${N}\; = \;{56}$ for the green–red channels, and ${N}\; = \;{171}$ for the blue–red channels. For the classical refractive setup, ${N}\; = \;{193}$ beads were analyzed for the green–blue channels, ${N}\; = \;{207}$ for the green–red channels, and ${N}\; = \;{184}$ for the blue–red channels. ${P}$-values from Kolmogorov–Smirnov statistical tests are less than 0.01 for all cases.
Fig. 3.
Fig. 3. Application example. (a) Drosophila embryo imaged from the dorsal and ventral sides with our compact light-sheet microscope. Maximum intensity projections of 3D stacks are shown. The embryo expresses a FRET sensor driven by Tubulin. The exposure time used was 20 ms. (b) 3D reconstruction of a stage 13 Drosophila embryo expressing His-RFP. The bigger amnioserosa cells can be seen on the left side of the image, and the already developed segments on the right side. The exposure time was 50 ms. (c) Developing His-RFP Drosophila embryo imaged from a dorsolateral view. The exposure time used was 50 ms. The first frame is at stage 11, with the germ band fully extended. 4.5 h later the germ band has retracted and amnioserosa is exposed. At 7.8 h after the first frame the embryo is undergoing dorsal closure, and at 10.5 h dorsal closure has fully concluded. (d) Detail of slices at different depths of the region highlighted by the region of interest in (c). The axial distance between the slices shown is 12 µm. Scale bar in all panels: 100 µm.

Metrics