Abstract

In this work we first solve the radiative heat transfer problem in one dimension to perform a comparative analysis of the time-averaged performance of the partially transparent radiative windows and radiative coolers. In doing so, we clearly distinguish the design goals for the partially transparent windows and radiative coolers and provide optimal choice for the material parameters to realize these goals. Thus, radiative coolers are normally non-transparent in the visible, and the main goal is to design a cooler with the temperature of its dark side as low as possible relative to that of the atmosphere. For the radiative windows, however, their surfaces are necessarily partially transparent in the visible. In the cooling mode, the main question is rather about the maximal visible light transmission through the window at which the temperature on the window somber side does not exceed that of the atmosphere. We then demonstrate that transmission of the visible light through smart windows can be significantly increased (by as much as a factor of 2) without additional heating of the windows. This is accomplished via coupling the windows to the radiative coolers using transparent cooling liquid that flows inside of the window and radiative cooler structures. We also demonstrate that efficient heat exchange between radiative coolers and smart windows can be realized using small coolant velocities (sub-1 mm/s for ${\sim}{1}\;{\rm m}$ large windows) or even using a purely passive gravitationally driven coolant flows between a hot smart window and a cold radiative cooler mounted on top of the window with only a minimal temperature differential (sub-1K) between the two. We believe that our simple models complemented with an in-depth comparative analysis of the standalone and coupled smart windows and radiative coolers can be of interest to a broad scientific community pursuing research in these disciplines.

© 2020 Optical Society of America

Full Article  |  PDF Article

Corrections

Erjun Zhang, Yang Cao, Christoph Caloz, and Maksim Skorobogatiy, "Improving thermo-optic properties of smart windows via coupling to radiative coolers: publisher’s note," Appl. Opt. 59, 4198-4198 (2020)
https://www.osapublishing.org/ao/abstract.cfm?uri=ao-59-13-4198

6 April 2020: Corrections were made to Eqs. (3), (4), (9), (14), (16) and to an inline formula in Sec. 4.B.


OSA Recommended Articles
Effective, angle-independent radiative cooler based on one-dimensional photonic crystal

Huaxin Yuan, Chenying Yang, Xiaowen Zheng, Wen Mu, Zhen Wang, Wenjia Yuan, Yueguang Zhang, Chaonan Chen, Xu Liu, and Weidong Shen
Opt. Express 26(21) 27885-27893 (2018)

Spectrally selective filter design for passive radiative cooling

Muhammed Ali Kecebas, M. Pinar Menguc, Ali Kosar, and Kursat Sendur
J. Opt. Soc. Am. B 37(4) 1173-1182 (2020)

Ultra-broadband all-dielectric metamaterial thermal emitter for passive radiative cooling

Aru Kong, Boyuan Cai, Peng Shi, and Xiao-cong Yuan
Opt. Express 27(21) 30102-30115 (2019)

References

  • View by:
  • |
  • |
  • |

  1. S. Sorrell, “Reducing energy demand: a review of issues, challenges and approaches,” Renew. Sustain. Energy Rev. 47, 74–82 (2015).
    [Crossref]
  2. A. R. Kumar, K. Vijyakumar, and P. Sinivasan, “A review on passive cooling practices in residential buildings,” Int. J. Math. Sci. Eng. Appl. 3, 1–5 (2014).
  3. M. M. Hossain and M. Gu, “Radiative cooling: principles, progress, and potentials,” Adv. Sci. 3, 1500360 (2016).
    [Crossref]
  4. S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17, 83–89 (1975).
    [Crossref]
  5. B. Zhao, M. Hu, X. Ao, N. Chen, and G. Pei, “Radiative cooling: A review of fundamentals, materials, applications, and prospects,” Appl. Energy 236, 489–513 (2019).
    [Crossref]
  6. M. Santamouris, “Cooling the buildings–past, present and future,” Energy Build. 128, 617–638 (2016).
    [Crossref]
  7. M. N. Bahadori, “Passive cooling systems in Iranian architecture,” Sci. Am. 238, 144–155 (1978).
    [Crossref]
  8. C. Granqvist and A. Hjortsberg, “Radiative cooling to low temperatures: General considerations and application to selectively emitting SiO films,” J. Appl. Phys. 52, 4205–4220 (1981).
    [Crossref]
  9. P. Berdahl and R. Fromberg, “The thermal radiance of clear skies,” Sol. Energy 29, 299–314 (1982).
    [Crossref]
  10. T. Suichi, A. Ishikawa, Y. Hayashi, and K. Tsuruta, “Performance limit of daytime radiative cooling in warm humid environment,” AIP Adv. 8, 055124 (2018).
    [Crossref]
  11. S. Long, H. Zhou, S. Bao, Y. Xin, X. Cao, and P. Jin, “Thermochromic multilayer films of WO3/VO2/WO3 sandwich structure with enhanced luminous transmittance and durability,” RSC Adv. 6, 106435 (2016).
    [Crossref]
  12. N. DeForest, A. Shehabi, G. Garcia, J. Greenblatt, E. Masanet, E. S. Lee, S. Selkowitz, and D. J. Milliron, “Regional performance targets for transparent near-infrared switching electrochromic window glazings,” Build. Environ. 61, 160–168 (2013).
    [Crossref]
  13. A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515, 540–544 (2014).
    [Crossref]
  14. P. F. Tavares, A. R. Gaspar, A. G. Martins, and F. Frontini, “Evaluation of electrochromic windows impact in the energy performance of buildings in Mediterranean climates,” Energy Policy 67, 68–81 (2014).
    [Crossref]
  15. E. L. Runnerstrom, A. Llordés, S. D. Lounis, and D. J. Milliron, “Nanostructured electrochromic smart windows: traditional materials and NIR-selective plasmonic nanocrystals,” Chem. Commun. 50, 10555–10572 (2014).
    [Crossref]
  16. P. Bamfield, Chromic Phenomena: Technological Applications of Colour Chemistry (RSC, 2010).
  17. E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13, 1457–1461 (2013).
    [Crossref]
  18. T. P. Mann, “Metamaterial window glass for adaptable energy efficiency,” Master's thesis (University of Texas at Austin, 2014).
  19. S. Shin, S. Hong, and R. Chen, “Hollow photonic structures of transparent conducting oxide with selective and tunable absorptance,” Appl. Therm. Eng. 145, 416–422 (2018).
    [Crossref]
  20. H. Ye, X. Meng, L. Long, and B. Xu, “The route to a perfect window,” Renew. Energy 55, 448–455 (2013).
    [Crossref]
  21. Z. Chen, L. Zhu, A. Raman, and S. Fan, “Radiative cooling to deep sub-freezing temperatures through a 24-h day–night cycle,” Nat. Commun. 7, 13729 (2016).
    [Crossref]
  22. P. Berdahl, “Radiative cooling with MgO and/or LiF layers,” Appl. Opt. 23, 370–372 (1984).
    [Crossref]
  23. A. R. Gentle and G. B. Smith, “Radiative heat pumping from the earth using surface phonon resonant nanoparticles,” Nano Lett. 10, 373–379 (2010).
    [Crossref]
  24. J. Yang, Z. Xu, H. Ye, X. Xu, X. Wu, and J. Wang, “Performance analyses of building energy on phase transition processes of vo2 windows with an improved model,” Appl. Energy 159, 502–508 (2015).
    [Crossref]
  25. C. Granqvist, “Chromogenic materials for transmittance control of large-area windows,” Crit. Rev. Solid State 16, 291–308 (1990).
    [Crossref]
  26. C. G. Granqvist, S. Green, G. A. Niklasson, N. R. Mlyuka, S. Von Kraemer, and P. Georén, “Advances in chromogenic materials and devices,” Thin Solid Films 518, 3046–3053 (2010).
    [Crossref]
  27. C. G. Granqvist, G. A. Niklasson, and A. Azens, “Electrochromics: fundamentals and energy-related applications of oxide-based devices,” Appl. Phys. A 89, 29–35 (2007).
    [Crossref]
  28. L. Long and H. Ye, “Dual-intelligent windows regulating both solar and long-wave radiations dynamically,” Sol. Energy Mater. Sol. Cells 169, 145–150 (2017).
    [Crossref]
  29. H. Hillmer, B. Al-Qargholi, M. M. Khan, N. Worapattrakul, H. Wilke, C. Woidt, and A. Tatzel, “Optical mems-based micromirror arrays for active light steering in smart windows,” Jpn. J. Appl. Phys. 57, 08PA07 (2018).
    [Crossref]
  30. B. A. Korgel, “Materials science: composite for smarter windows,” Nature 500, 278–279 (2013).
    [Crossref]
  31. A. Llordés, G. Garcia, J. Gazquez, and D. J. Milliron, “Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites,” Nature 500, 323–326 (2013).
    [Crossref]
  32. L. Long and H. Ye, “How to be smart and energy efficient: A general discussion on thermochromic windows,” Sci. Rep. 4, 6427 (2014).
    [Crossref]
  33. H. Ye, X. Meng, and B. Xu, “Theoretical discussions of perfect window, ideal near infrared solar spectrum regulating window and current thermochromic window,” Energy Build. 49, 164–172 (2012).
    [Crossref]
  34. M. E. Warwick and R. Binions, “Advances in thermochromic vanadium dioxide films,” J. Mater. Chem. A 2, 3275–3292 (2014).
    [Crossref]
  35. Y. Zhan, X. Xiao, Y. Lu, Z. Cao, S. Qi, C. Huan, C. Ye, H. Cheng, J. Shi, X. Xu, and G. Xu, “The growth mechanism of vo2 multilayer thin films with high thermochromic performance prepared by RTA in air,” Surf. Interfaces 9, 173–181 (2017).
    [Crossref]
  36. M. Liu, B. Su, Y. V. Kaneti, Z. Chen, Y. Tang, Y. Yuan, Y. Gao, L. Jiang, X. Jiang, and A. Yu, “Dual-phase transformation: Spontaneous self-template surface-patterning strategy for ultra-transparent VO2 solar modulating coatings,” ACS Nano 11, 407–415 (2016).
    [Crossref]
  37. B. Zhu, H. Tao, and X. Zhao, “Effect of buffer layer on thermochromic performances of VO2 films fabricated by magnetron sputtering,” Infrared Phys. Technol. 75, 22–25 (2016).
    [Crossref]
  38. F. Xu, X. Cao, H. Luo, and P. Jin, “Recent advances in VO2-based thermochromic composites for smart windows,” J. Mater. Chem. C 6, 1903–1919 (2018).
    [Crossref]
  39. J. Zhang, H. He, Y. Xie, and B. Pan, “Theoretical study on the tungsten-induced reduction of transition temperature and the degradation of optical properties for VO2,” J. Chem. Phys. 138, 114705 (2013).
    [Crossref]
  40. S. J. Lee, D. S. Choi, S. H. Kang, W. S. Yang, S. Nahm, S. H. Han, and T. Kim, “VO2/ WO3–based hybrid smart windows with thermochromic and electrochromic properties,” ACS Sustain. Chem. Eng. 7, 7111–7117 (2019).
    [Crossref]
  41. J. Mandal, S. Du, M. Dontigny, K. Zaghib, N. Yu, and Y. Yang, “Li4Ti5O12: A visible-to-infrared broadband electrochromic material for optical and thermal management,” Adv. Funct. Mater. 28, 1802180 (2018).
    [Crossref]
  42. G. K. Dalapati, A. K. Kushwaha, M. Sharma, V. Suresh, S. Shannigrahi, S. Zhuk, and S. Masudy-Panah, “Transparent heat regulating (THR) materials and coatings for energy saving window applications: Impact of materials design, micro-structural, and interface quality on the THR performance,” Prog. Mater. Sci. 95, 42–131 (2018).
    [Crossref]
  43. A. Berk, P. Conforti, R. Kennett, T. Perkins, F. Hawes, and J. Van Den Bosch, “MODTRAN 6: a major up-grade of the MODTRAN radiative transfer code,” in 6th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS) (IEEE, 2014), pp. 1–4.
  44. J. R. Howell, M. P. Menguc, and R. Siegel, Thermal Radiation Heat Transfer (CRC Press, 2015).
  45. H. Kusaka, H. Kondo, Y. Kikegawa, and F. Kimura, “A simple single-layer urban canopy model for atmospheric models: comparison with multi-layer and slab models,” Bound. Layer Meteorol. 101, 329–358 (2001).
    [Crossref]
  46. E. Zhang, Y. Cao, C. Caloz, and M. Skorobogatiy, “Improving thermo-optic properties of smart windows via coupling to radiative coolers,” engrXiv preprint (2019).
  47. E. A. Goldstein, A. P. Raman, and S. Fan, “Sub-ambient non-evaporative fluid cooling with the sky,” Nat. Energy 2, 17143 (2017).
    [Crossref]
  48. H. Alibaba, “Determination of optimum window to external wall ratio for offices in a hot and humid climate,” MDPI Sustainability 8, 187 (2016).
    [Crossref]
  49. http://mundobim.com/construpm/edge-green-buildings-whats-window-to-wall-ratio/ .
  50. https://www.commercialwindows.org/adv_glass.php .

2019 (2)

B. Zhao, M. Hu, X. Ao, N. Chen, and G. Pei, “Radiative cooling: A review of fundamentals, materials, applications, and prospects,” Appl. Energy 236, 489–513 (2019).
[Crossref]

S. J. Lee, D. S. Choi, S. H. Kang, W. S. Yang, S. Nahm, S. H. Han, and T. Kim, “VO2/ WO3–based hybrid smart windows with thermochromic and electrochromic properties,” ACS Sustain. Chem. Eng. 7, 7111–7117 (2019).
[Crossref]

2018 (6)

J. Mandal, S. Du, M. Dontigny, K. Zaghib, N. Yu, and Y. Yang, “Li4Ti5O12: A visible-to-infrared broadband electrochromic material for optical and thermal management,” Adv. Funct. Mater. 28, 1802180 (2018).
[Crossref]

G. K. Dalapati, A. K. Kushwaha, M. Sharma, V. Suresh, S. Shannigrahi, S. Zhuk, and S. Masudy-Panah, “Transparent heat regulating (THR) materials and coatings for energy saving window applications: Impact of materials design, micro-structural, and interface quality on the THR performance,” Prog. Mater. Sci. 95, 42–131 (2018).
[Crossref]

T. Suichi, A. Ishikawa, Y. Hayashi, and K. Tsuruta, “Performance limit of daytime radiative cooling in warm humid environment,” AIP Adv. 8, 055124 (2018).
[Crossref]

S. Shin, S. Hong, and R. Chen, “Hollow photonic structures of transparent conducting oxide with selective and tunable absorptance,” Appl. Therm. Eng. 145, 416–422 (2018).
[Crossref]

H. Hillmer, B. Al-Qargholi, M. M. Khan, N. Worapattrakul, H. Wilke, C. Woidt, and A. Tatzel, “Optical mems-based micromirror arrays for active light steering in smart windows,” Jpn. J. Appl. Phys. 57, 08PA07 (2018).
[Crossref]

F. Xu, X. Cao, H. Luo, and P. Jin, “Recent advances in VO2-based thermochromic composites for smart windows,” J. Mater. Chem. C 6, 1903–1919 (2018).
[Crossref]

2017 (3)

Y. Zhan, X. Xiao, Y. Lu, Z. Cao, S. Qi, C. Huan, C. Ye, H. Cheng, J. Shi, X. Xu, and G. Xu, “The growth mechanism of vo2 multilayer thin films with high thermochromic performance prepared by RTA in air,” Surf. Interfaces 9, 173–181 (2017).
[Crossref]

L. Long and H. Ye, “Dual-intelligent windows regulating both solar and long-wave radiations dynamically,” Sol. Energy Mater. Sol. Cells 169, 145–150 (2017).
[Crossref]

E. A. Goldstein, A. P. Raman, and S. Fan, “Sub-ambient non-evaporative fluid cooling with the sky,” Nat. Energy 2, 17143 (2017).
[Crossref]

2016 (7)

H. Alibaba, “Determination of optimum window to external wall ratio for offices in a hot and humid climate,” MDPI Sustainability 8, 187 (2016).
[Crossref]

Z. Chen, L. Zhu, A. Raman, and S. Fan, “Radiative cooling to deep sub-freezing temperatures through a 24-h day–night cycle,” Nat. Commun. 7, 13729 (2016).
[Crossref]

M. Liu, B. Su, Y. V. Kaneti, Z. Chen, Y. Tang, Y. Yuan, Y. Gao, L. Jiang, X. Jiang, and A. Yu, “Dual-phase transformation: Spontaneous self-template surface-patterning strategy for ultra-transparent VO2 solar modulating coatings,” ACS Nano 11, 407–415 (2016).
[Crossref]

B. Zhu, H. Tao, and X. Zhao, “Effect of buffer layer on thermochromic performances of VO2 films fabricated by magnetron sputtering,” Infrared Phys. Technol. 75, 22–25 (2016).
[Crossref]

S. Long, H. Zhou, S. Bao, Y. Xin, X. Cao, and P. Jin, “Thermochromic multilayer films of WO3/VO2/WO3 sandwich structure with enhanced luminous transmittance and durability,” RSC Adv. 6, 106435 (2016).
[Crossref]

M. Santamouris, “Cooling the buildings–past, present and future,” Energy Build. 128, 617–638 (2016).
[Crossref]

M. M. Hossain and M. Gu, “Radiative cooling: principles, progress, and potentials,” Adv. Sci. 3, 1500360 (2016).
[Crossref]

2015 (2)

S. Sorrell, “Reducing energy demand: a review of issues, challenges and approaches,” Renew. Sustain. Energy Rev. 47, 74–82 (2015).
[Crossref]

J. Yang, Z. Xu, H. Ye, X. Xu, X. Wu, and J. Wang, “Performance analyses of building energy on phase transition processes of vo2 windows with an improved model,” Appl. Energy 159, 502–508 (2015).
[Crossref]

2014 (6)

L. Long and H. Ye, “How to be smart and energy efficient: A general discussion on thermochromic windows,” Sci. Rep. 4, 6427 (2014).
[Crossref]

A. R. Kumar, K. Vijyakumar, and P. Sinivasan, “A review on passive cooling practices in residential buildings,” Int. J. Math. Sci. Eng. Appl. 3, 1–5 (2014).

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515, 540–544 (2014).
[Crossref]

P. F. Tavares, A. R. Gaspar, A. G. Martins, and F. Frontini, “Evaluation of electrochromic windows impact in the energy performance of buildings in Mediterranean climates,” Energy Policy 67, 68–81 (2014).
[Crossref]

E. L. Runnerstrom, A. Llordés, S. D. Lounis, and D. J. Milliron, “Nanostructured electrochromic smart windows: traditional materials and NIR-selective plasmonic nanocrystals,” Chem. Commun. 50, 10555–10572 (2014).
[Crossref]

M. E. Warwick and R. Binions, “Advances in thermochromic vanadium dioxide films,” J. Mater. Chem. A 2, 3275–3292 (2014).
[Crossref]

2013 (6)

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13, 1457–1461 (2013).
[Crossref]

N. DeForest, A. Shehabi, G. Garcia, J. Greenblatt, E. Masanet, E. S. Lee, S. Selkowitz, and D. J. Milliron, “Regional performance targets for transparent near-infrared switching electrochromic window glazings,” Build. Environ. 61, 160–168 (2013).
[Crossref]

H. Ye, X. Meng, L. Long, and B. Xu, “The route to a perfect window,” Renew. Energy 55, 448–455 (2013).
[Crossref]

B. A. Korgel, “Materials science: composite for smarter windows,” Nature 500, 278–279 (2013).
[Crossref]

A. Llordés, G. Garcia, J. Gazquez, and D. J. Milliron, “Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites,” Nature 500, 323–326 (2013).
[Crossref]

J. Zhang, H. He, Y. Xie, and B. Pan, “Theoretical study on the tungsten-induced reduction of transition temperature and the degradation of optical properties for VO2,” J. Chem. Phys. 138, 114705 (2013).
[Crossref]

2012 (1)

H. Ye, X. Meng, and B. Xu, “Theoretical discussions of perfect window, ideal near infrared solar spectrum regulating window and current thermochromic window,” Energy Build. 49, 164–172 (2012).
[Crossref]

2010 (2)

A. R. Gentle and G. B. Smith, “Radiative heat pumping from the earth using surface phonon resonant nanoparticles,” Nano Lett. 10, 373–379 (2010).
[Crossref]

C. G. Granqvist, S. Green, G. A. Niklasson, N. R. Mlyuka, S. Von Kraemer, and P. Georén, “Advances in chromogenic materials and devices,” Thin Solid Films 518, 3046–3053 (2010).
[Crossref]

2007 (1)

C. G. Granqvist, G. A. Niklasson, and A. Azens, “Electrochromics: fundamentals and energy-related applications of oxide-based devices,” Appl. Phys. A 89, 29–35 (2007).
[Crossref]

2001 (1)

H. Kusaka, H. Kondo, Y. Kikegawa, and F. Kimura, “A simple single-layer urban canopy model for atmospheric models: comparison with multi-layer and slab models,” Bound. Layer Meteorol. 101, 329–358 (2001).
[Crossref]

1990 (1)

C. Granqvist, “Chromogenic materials for transmittance control of large-area windows,” Crit. Rev. Solid State 16, 291–308 (1990).
[Crossref]

1984 (1)

1982 (1)

P. Berdahl and R. Fromberg, “The thermal radiance of clear skies,” Sol. Energy 29, 299–314 (1982).
[Crossref]

1981 (1)

C. Granqvist and A. Hjortsberg, “Radiative cooling to low temperatures: General considerations and application to selectively emitting SiO films,” J. Appl. Phys. 52, 4205–4220 (1981).
[Crossref]

1978 (1)

M. N. Bahadori, “Passive cooling systems in Iranian architecture,” Sci. Am. 238, 144–155 (1978).
[Crossref]

1975 (1)

S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17, 83–89 (1975).
[Crossref]

Alibaba, H.

H. Alibaba, “Determination of optimum window to external wall ratio for offices in a hot and humid climate,” MDPI Sustainability 8, 187 (2016).
[Crossref]

Al-Qargholi, B.

H. Hillmer, B. Al-Qargholi, M. M. Khan, N. Worapattrakul, H. Wilke, C. Woidt, and A. Tatzel, “Optical mems-based micromirror arrays for active light steering in smart windows,” Jpn. J. Appl. Phys. 57, 08PA07 (2018).
[Crossref]

Anoma, M. A.

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515, 540–544 (2014).
[Crossref]

Ao, X.

B. Zhao, M. Hu, X. Ao, N. Chen, and G. Pei, “Radiative cooling: A review of fundamentals, materials, applications, and prospects,” Appl. Energy 236, 489–513 (2019).
[Crossref]

Azens, A.

C. G. Granqvist, G. A. Niklasson, and A. Azens, “Electrochromics: fundamentals and energy-related applications of oxide-based devices,” Appl. Phys. A 89, 29–35 (2007).
[Crossref]

Bahadori, M. N.

M. N. Bahadori, “Passive cooling systems in Iranian architecture,” Sci. Am. 238, 144–155 (1978).
[Crossref]

Bamfield, P.

P. Bamfield, Chromic Phenomena: Technological Applications of Colour Chemistry (RSC, 2010).

Bao, S.

S. Long, H. Zhou, S. Bao, Y. Xin, X. Cao, and P. Jin, “Thermochromic multilayer films of WO3/VO2/WO3 sandwich structure with enhanced luminous transmittance and durability,” RSC Adv. 6, 106435 (2016).
[Crossref]

Berdahl, P.

P. Berdahl, “Radiative cooling with MgO and/or LiF layers,” Appl. Opt. 23, 370–372 (1984).
[Crossref]

P. Berdahl and R. Fromberg, “The thermal radiance of clear skies,” Sol. Energy 29, 299–314 (1982).
[Crossref]

Berk, A.

A. Berk, P. Conforti, R. Kennett, T. Perkins, F. Hawes, and J. Van Den Bosch, “MODTRAN 6: a major up-grade of the MODTRAN radiative transfer code,” in 6th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS) (IEEE, 2014), pp. 1–4.

Binions, R.

M. E. Warwick and R. Binions, “Advances in thermochromic vanadium dioxide films,” J. Mater. Chem. A 2, 3275–3292 (2014).
[Crossref]

Caloz, C.

E. Zhang, Y. Cao, C. Caloz, and M. Skorobogatiy, “Improving thermo-optic properties of smart windows via coupling to radiative coolers,” engrXiv preprint (2019).

Cao, X.

F. Xu, X. Cao, H. Luo, and P. Jin, “Recent advances in VO2-based thermochromic composites for smart windows,” J. Mater. Chem. C 6, 1903–1919 (2018).
[Crossref]

S. Long, H. Zhou, S. Bao, Y. Xin, X. Cao, and P. Jin, “Thermochromic multilayer films of WO3/VO2/WO3 sandwich structure with enhanced luminous transmittance and durability,” RSC Adv. 6, 106435 (2016).
[Crossref]

Cao, Y.

E. Zhang, Y. Cao, C. Caloz, and M. Skorobogatiy, “Improving thermo-optic properties of smart windows via coupling to radiative coolers,” engrXiv preprint (2019).

Cao, Z.

Y. Zhan, X. Xiao, Y. Lu, Z. Cao, S. Qi, C. Huan, C. Ye, H. Cheng, J. Shi, X. Xu, and G. Xu, “The growth mechanism of vo2 multilayer thin films with high thermochromic performance prepared by RTA in air,” Surf. Interfaces 9, 173–181 (2017).
[Crossref]

Catalanotti, S.

S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17, 83–89 (1975).
[Crossref]

Chen, N.

B. Zhao, M. Hu, X. Ao, N. Chen, and G. Pei, “Radiative cooling: A review of fundamentals, materials, applications, and prospects,” Appl. Energy 236, 489–513 (2019).
[Crossref]

Chen, R.

S. Shin, S. Hong, and R. Chen, “Hollow photonic structures of transparent conducting oxide with selective and tunable absorptance,” Appl. Therm. Eng. 145, 416–422 (2018).
[Crossref]

Chen, Z.

Z. Chen, L. Zhu, A. Raman, and S. Fan, “Radiative cooling to deep sub-freezing temperatures through a 24-h day–night cycle,” Nat. Commun. 7, 13729 (2016).
[Crossref]

M. Liu, B. Su, Y. V. Kaneti, Z. Chen, Y. Tang, Y. Yuan, Y. Gao, L. Jiang, X. Jiang, and A. Yu, “Dual-phase transformation: Spontaneous self-template surface-patterning strategy for ultra-transparent VO2 solar modulating coatings,” ACS Nano 11, 407–415 (2016).
[Crossref]

Cheng, H.

Y. Zhan, X. Xiao, Y. Lu, Z. Cao, S. Qi, C. Huan, C. Ye, H. Cheng, J. Shi, X. Xu, and G. Xu, “The growth mechanism of vo2 multilayer thin films with high thermochromic performance prepared by RTA in air,” Surf. Interfaces 9, 173–181 (2017).
[Crossref]

Choi, D. S.

S. J. Lee, D. S. Choi, S. H. Kang, W. S. Yang, S. Nahm, S. H. Han, and T. Kim, “VO2/ WO3–based hybrid smart windows with thermochromic and electrochromic properties,” ACS Sustain. Chem. Eng. 7, 7111–7117 (2019).
[Crossref]

Conforti, P.

A. Berk, P. Conforti, R. Kennett, T. Perkins, F. Hawes, and J. Van Den Bosch, “MODTRAN 6: a major up-grade of the MODTRAN radiative transfer code,” in 6th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS) (IEEE, 2014), pp. 1–4.

Cuomo, V.

S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17, 83–89 (1975).
[Crossref]

Dalapati, G. K.

G. K. Dalapati, A. K. Kushwaha, M. Sharma, V. Suresh, S. Shannigrahi, S. Zhuk, and S. Masudy-Panah, “Transparent heat regulating (THR) materials and coatings for energy saving window applications: Impact of materials design, micro-structural, and interface quality on the THR performance,” Prog. Mater. Sci. 95, 42–131 (2018).
[Crossref]

DeForest, N.

N. DeForest, A. Shehabi, G. Garcia, J. Greenblatt, E. Masanet, E. S. Lee, S. Selkowitz, and D. J. Milliron, “Regional performance targets for transparent near-infrared switching electrochromic window glazings,” Build. Environ. 61, 160–168 (2013).
[Crossref]

Dontigny, M.

J. Mandal, S. Du, M. Dontigny, K. Zaghib, N. Yu, and Y. Yang, “Li4Ti5O12: A visible-to-infrared broadband electrochromic material for optical and thermal management,” Adv. Funct. Mater. 28, 1802180 (2018).
[Crossref]

Du, S.

J. Mandal, S. Du, M. Dontigny, K. Zaghib, N. Yu, and Y. Yang, “Li4Ti5O12: A visible-to-infrared broadband electrochromic material for optical and thermal management,” Adv. Funct. Mater. 28, 1802180 (2018).
[Crossref]

Fan, S.

E. A. Goldstein, A. P. Raman, and S. Fan, “Sub-ambient non-evaporative fluid cooling with the sky,” Nat. Energy 2, 17143 (2017).
[Crossref]

Z. Chen, L. Zhu, A. Raman, and S. Fan, “Radiative cooling to deep sub-freezing temperatures through a 24-h day–night cycle,” Nat. Commun. 7, 13729 (2016).
[Crossref]

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515, 540–544 (2014).
[Crossref]

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13, 1457–1461 (2013).
[Crossref]

Fromberg, R.

P. Berdahl and R. Fromberg, “The thermal radiance of clear skies,” Sol. Energy 29, 299–314 (1982).
[Crossref]

Frontini, F.

P. F. Tavares, A. R. Gaspar, A. G. Martins, and F. Frontini, “Evaluation of electrochromic windows impact in the energy performance of buildings in Mediterranean climates,” Energy Policy 67, 68–81 (2014).
[Crossref]

Gao, Y.

M. Liu, B. Su, Y. V. Kaneti, Z. Chen, Y. Tang, Y. Yuan, Y. Gao, L. Jiang, X. Jiang, and A. Yu, “Dual-phase transformation: Spontaneous self-template surface-patterning strategy for ultra-transparent VO2 solar modulating coatings,” ACS Nano 11, 407–415 (2016).
[Crossref]

Garcia, G.

A. Llordés, G. Garcia, J. Gazquez, and D. J. Milliron, “Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites,” Nature 500, 323–326 (2013).
[Crossref]

N. DeForest, A. Shehabi, G. Garcia, J. Greenblatt, E. Masanet, E. S. Lee, S. Selkowitz, and D. J. Milliron, “Regional performance targets for transparent near-infrared switching electrochromic window glazings,” Build. Environ. 61, 160–168 (2013).
[Crossref]

Gaspar, A. R.

P. F. Tavares, A. R. Gaspar, A. G. Martins, and F. Frontini, “Evaluation of electrochromic windows impact in the energy performance of buildings in Mediterranean climates,” Energy Policy 67, 68–81 (2014).
[Crossref]

Gazquez, J.

A. Llordés, G. Garcia, J. Gazquez, and D. J. Milliron, “Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites,” Nature 500, 323–326 (2013).
[Crossref]

Gentle, A. R.

A. R. Gentle and G. B. Smith, “Radiative heat pumping from the earth using surface phonon resonant nanoparticles,” Nano Lett. 10, 373–379 (2010).
[Crossref]

Georén, P.

C. G. Granqvist, S. Green, G. A. Niklasson, N. R. Mlyuka, S. Von Kraemer, and P. Georén, “Advances in chromogenic materials and devices,” Thin Solid Films 518, 3046–3053 (2010).
[Crossref]

Goldstein, E. A.

E. A. Goldstein, A. P. Raman, and S. Fan, “Sub-ambient non-evaporative fluid cooling with the sky,” Nat. Energy 2, 17143 (2017).
[Crossref]

Granqvist, C.

C. Granqvist, “Chromogenic materials for transmittance control of large-area windows,” Crit. Rev. Solid State 16, 291–308 (1990).
[Crossref]

C. Granqvist and A. Hjortsberg, “Radiative cooling to low temperatures: General considerations and application to selectively emitting SiO films,” J. Appl. Phys. 52, 4205–4220 (1981).
[Crossref]

Granqvist, C. G.

C. G. Granqvist, S. Green, G. A. Niklasson, N. R. Mlyuka, S. Von Kraemer, and P. Georén, “Advances in chromogenic materials and devices,” Thin Solid Films 518, 3046–3053 (2010).
[Crossref]

C. G. Granqvist, G. A. Niklasson, and A. Azens, “Electrochromics: fundamentals and energy-related applications of oxide-based devices,” Appl. Phys. A 89, 29–35 (2007).
[Crossref]

Green, S.

C. G. Granqvist, S. Green, G. A. Niklasson, N. R. Mlyuka, S. Von Kraemer, and P. Georén, “Advances in chromogenic materials and devices,” Thin Solid Films 518, 3046–3053 (2010).
[Crossref]

Greenblatt, J.

N. DeForest, A. Shehabi, G. Garcia, J. Greenblatt, E. Masanet, E. S. Lee, S. Selkowitz, and D. J. Milliron, “Regional performance targets for transparent near-infrared switching electrochromic window glazings,” Build. Environ. 61, 160–168 (2013).
[Crossref]

Gu, M.

M. M. Hossain and M. Gu, “Radiative cooling: principles, progress, and potentials,” Adv. Sci. 3, 1500360 (2016).
[Crossref]

Han, S. H.

S. J. Lee, D. S. Choi, S. H. Kang, W. S. Yang, S. Nahm, S. H. Han, and T. Kim, “VO2/ WO3–based hybrid smart windows with thermochromic and electrochromic properties,” ACS Sustain. Chem. Eng. 7, 7111–7117 (2019).
[Crossref]

Hawes, F.

A. Berk, P. Conforti, R. Kennett, T. Perkins, F. Hawes, and J. Van Den Bosch, “MODTRAN 6: a major up-grade of the MODTRAN radiative transfer code,” in 6th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS) (IEEE, 2014), pp. 1–4.

Hayashi, Y.

T. Suichi, A. Ishikawa, Y. Hayashi, and K. Tsuruta, “Performance limit of daytime radiative cooling in warm humid environment,” AIP Adv. 8, 055124 (2018).
[Crossref]

He, H.

J. Zhang, H. He, Y. Xie, and B. Pan, “Theoretical study on the tungsten-induced reduction of transition temperature and the degradation of optical properties for VO2,” J. Chem. Phys. 138, 114705 (2013).
[Crossref]

Hillmer, H.

H. Hillmer, B. Al-Qargholi, M. M. Khan, N. Worapattrakul, H. Wilke, C. Woidt, and A. Tatzel, “Optical mems-based micromirror arrays for active light steering in smart windows,” Jpn. J. Appl. Phys. 57, 08PA07 (2018).
[Crossref]

Hjortsberg, A.

C. Granqvist and A. Hjortsberg, “Radiative cooling to low temperatures: General considerations and application to selectively emitting SiO films,” J. Appl. Phys. 52, 4205–4220 (1981).
[Crossref]

Hong, S.

S. Shin, S. Hong, and R. Chen, “Hollow photonic structures of transparent conducting oxide with selective and tunable absorptance,” Appl. Therm. Eng. 145, 416–422 (2018).
[Crossref]

Hossain, M. M.

M. M. Hossain and M. Gu, “Radiative cooling: principles, progress, and potentials,” Adv. Sci. 3, 1500360 (2016).
[Crossref]

Howell, J. R.

J. R. Howell, M. P. Menguc, and R. Siegel, Thermal Radiation Heat Transfer (CRC Press, 2015).

Hu, M.

B. Zhao, M. Hu, X. Ao, N. Chen, and G. Pei, “Radiative cooling: A review of fundamentals, materials, applications, and prospects,” Appl. Energy 236, 489–513 (2019).
[Crossref]

Huan, C.

Y. Zhan, X. Xiao, Y. Lu, Z. Cao, S. Qi, C. Huan, C. Ye, H. Cheng, J. Shi, X. Xu, and G. Xu, “The growth mechanism of vo2 multilayer thin films with high thermochromic performance prepared by RTA in air,” Surf. Interfaces 9, 173–181 (2017).
[Crossref]

Ishikawa, A.

T. Suichi, A. Ishikawa, Y. Hayashi, and K. Tsuruta, “Performance limit of daytime radiative cooling in warm humid environment,” AIP Adv. 8, 055124 (2018).
[Crossref]

Jiang, L.

M. Liu, B. Su, Y. V. Kaneti, Z. Chen, Y. Tang, Y. Yuan, Y. Gao, L. Jiang, X. Jiang, and A. Yu, “Dual-phase transformation: Spontaneous self-template surface-patterning strategy for ultra-transparent VO2 solar modulating coatings,” ACS Nano 11, 407–415 (2016).
[Crossref]

Jiang, X.

M. Liu, B. Su, Y. V. Kaneti, Z. Chen, Y. Tang, Y. Yuan, Y. Gao, L. Jiang, X. Jiang, and A. Yu, “Dual-phase transformation: Spontaneous self-template surface-patterning strategy for ultra-transparent VO2 solar modulating coatings,” ACS Nano 11, 407–415 (2016).
[Crossref]

Jin, P.

F. Xu, X. Cao, H. Luo, and P. Jin, “Recent advances in VO2-based thermochromic composites for smart windows,” J. Mater. Chem. C 6, 1903–1919 (2018).
[Crossref]

S. Long, H. Zhou, S. Bao, Y. Xin, X. Cao, and P. Jin, “Thermochromic multilayer films of WO3/VO2/WO3 sandwich structure with enhanced luminous transmittance and durability,” RSC Adv. 6, 106435 (2016).
[Crossref]

Kaneti, Y. V.

M. Liu, B. Su, Y. V. Kaneti, Z. Chen, Y. Tang, Y. Yuan, Y. Gao, L. Jiang, X. Jiang, and A. Yu, “Dual-phase transformation: Spontaneous self-template surface-patterning strategy for ultra-transparent VO2 solar modulating coatings,” ACS Nano 11, 407–415 (2016).
[Crossref]

Kang, S. H.

S. J. Lee, D. S. Choi, S. H. Kang, W. S. Yang, S. Nahm, S. H. Han, and T. Kim, “VO2/ WO3–based hybrid smart windows with thermochromic and electrochromic properties,” ACS Sustain. Chem. Eng. 7, 7111–7117 (2019).
[Crossref]

Kennett, R.

A. Berk, P. Conforti, R. Kennett, T. Perkins, F. Hawes, and J. Van Den Bosch, “MODTRAN 6: a major up-grade of the MODTRAN radiative transfer code,” in 6th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS) (IEEE, 2014), pp. 1–4.

Khan, M. M.

H. Hillmer, B. Al-Qargholi, M. M. Khan, N. Worapattrakul, H. Wilke, C. Woidt, and A. Tatzel, “Optical mems-based micromirror arrays for active light steering in smart windows,” Jpn. J. Appl. Phys. 57, 08PA07 (2018).
[Crossref]

Kikegawa, Y.

H. Kusaka, H. Kondo, Y. Kikegawa, and F. Kimura, “A simple single-layer urban canopy model for atmospheric models: comparison with multi-layer and slab models,” Bound. Layer Meteorol. 101, 329–358 (2001).
[Crossref]

Kim, T.

S. J. Lee, D. S. Choi, S. H. Kang, W. S. Yang, S. Nahm, S. H. Han, and T. Kim, “VO2/ WO3–based hybrid smart windows with thermochromic and electrochromic properties,” ACS Sustain. Chem. Eng. 7, 7111–7117 (2019).
[Crossref]

Kimura, F.

H. Kusaka, H. Kondo, Y. Kikegawa, and F. Kimura, “A simple single-layer urban canopy model for atmospheric models: comparison with multi-layer and slab models,” Bound. Layer Meteorol. 101, 329–358 (2001).
[Crossref]

Kondo, H.

H. Kusaka, H. Kondo, Y. Kikegawa, and F. Kimura, “A simple single-layer urban canopy model for atmospheric models: comparison with multi-layer and slab models,” Bound. Layer Meteorol. 101, 329–358 (2001).
[Crossref]

Korgel, B. A.

B. A. Korgel, “Materials science: composite for smarter windows,” Nature 500, 278–279 (2013).
[Crossref]

Kumar, A. R.

A. R. Kumar, K. Vijyakumar, and P. Sinivasan, “A review on passive cooling practices in residential buildings,” Int. J. Math. Sci. Eng. Appl. 3, 1–5 (2014).

Kusaka, H.

H. Kusaka, H. Kondo, Y. Kikegawa, and F. Kimura, “A simple single-layer urban canopy model for atmospheric models: comparison with multi-layer and slab models,” Bound. Layer Meteorol. 101, 329–358 (2001).
[Crossref]

Kushwaha, A. K.

G. K. Dalapati, A. K. Kushwaha, M. Sharma, V. Suresh, S. Shannigrahi, S. Zhuk, and S. Masudy-Panah, “Transparent heat regulating (THR) materials and coatings for energy saving window applications: Impact of materials design, micro-structural, and interface quality on the THR performance,” Prog. Mater. Sci. 95, 42–131 (2018).
[Crossref]

Lee, E. S.

N. DeForest, A. Shehabi, G. Garcia, J. Greenblatt, E. Masanet, E. S. Lee, S. Selkowitz, and D. J. Milliron, “Regional performance targets for transparent near-infrared switching electrochromic window glazings,” Build. Environ. 61, 160–168 (2013).
[Crossref]

Lee, S. J.

S. J. Lee, D. S. Choi, S. H. Kang, W. S. Yang, S. Nahm, S. H. Han, and T. Kim, “VO2/ WO3–based hybrid smart windows with thermochromic and electrochromic properties,” ACS Sustain. Chem. Eng. 7, 7111–7117 (2019).
[Crossref]

Liu, M.

M. Liu, B. Su, Y. V. Kaneti, Z. Chen, Y. Tang, Y. Yuan, Y. Gao, L. Jiang, X. Jiang, and A. Yu, “Dual-phase transformation: Spontaneous self-template surface-patterning strategy for ultra-transparent VO2 solar modulating coatings,” ACS Nano 11, 407–415 (2016).
[Crossref]

Llordés, A.

E. L. Runnerstrom, A. Llordés, S. D. Lounis, and D. J. Milliron, “Nanostructured electrochromic smart windows: traditional materials and NIR-selective plasmonic nanocrystals,” Chem. Commun. 50, 10555–10572 (2014).
[Crossref]

A. Llordés, G. Garcia, J. Gazquez, and D. J. Milliron, “Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites,” Nature 500, 323–326 (2013).
[Crossref]

Long, L.

L. Long and H. Ye, “Dual-intelligent windows regulating both solar and long-wave radiations dynamically,” Sol. Energy Mater. Sol. Cells 169, 145–150 (2017).
[Crossref]

L. Long and H. Ye, “How to be smart and energy efficient: A general discussion on thermochromic windows,” Sci. Rep. 4, 6427 (2014).
[Crossref]

H. Ye, X. Meng, L. Long, and B. Xu, “The route to a perfect window,” Renew. Energy 55, 448–455 (2013).
[Crossref]

Long, S.

S. Long, H. Zhou, S. Bao, Y. Xin, X. Cao, and P. Jin, “Thermochromic multilayer films of WO3/VO2/WO3 sandwich structure with enhanced luminous transmittance and durability,” RSC Adv. 6, 106435 (2016).
[Crossref]

Lounis, S. D.

E. L. Runnerstrom, A. Llordés, S. D. Lounis, and D. J. Milliron, “Nanostructured electrochromic smart windows: traditional materials and NIR-selective plasmonic nanocrystals,” Chem. Commun. 50, 10555–10572 (2014).
[Crossref]

Lu, Y.

Y. Zhan, X. Xiao, Y. Lu, Z. Cao, S. Qi, C. Huan, C. Ye, H. Cheng, J. Shi, X. Xu, and G. Xu, “The growth mechanism of vo2 multilayer thin films with high thermochromic performance prepared by RTA in air,” Surf. Interfaces 9, 173–181 (2017).
[Crossref]

Luo, H.

F. Xu, X. Cao, H. Luo, and P. Jin, “Recent advances in VO2-based thermochromic composites for smart windows,” J. Mater. Chem. C 6, 1903–1919 (2018).
[Crossref]

Mandal, J.

J. Mandal, S. Du, M. Dontigny, K. Zaghib, N. Yu, and Y. Yang, “Li4Ti5O12: A visible-to-infrared broadband electrochromic material for optical and thermal management,” Adv. Funct. Mater. 28, 1802180 (2018).
[Crossref]

Mann, T. P.

T. P. Mann, “Metamaterial window glass for adaptable energy efficiency,” Master's thesis (University of Texas at Austin, 2014).

Martins, A. G.

P. F. Tavares, A. R. Gaspar, A. G. Martins, and F. Frontini, “Evaluation of electrochromic windows impact in the energy performance of buildings in Mediterranean climates,” Energy Policy 67, 68–81 (2014).
[Crossref]

Masanet, E.

N. DeForest, A. Shehabi, G. Garcia, J. Greenblatt, E. Masanet, E. S. Lee, S. Selkowitz, and D. J. Milliron, “Regional performance targets for transparent near-infrared switching electrochromic window glazings,” Build. Environ. 61, 160–168 (2013).
[Crossref]

Masudy-Panah, S.

G. K. Dalapati, A. K. Kushwaha, M. Sharma, V. Suresh, S. Shannigrahi, S. Zhuk, and S. Masudy-Panah, “Transparent heat regulating (THR) materials and coatings for energy saving window applications: Impact of materials design, micro-structural, and interface quality on the THR performance,” Prog. Mater. Sci. 95, 42–131 (2018).
[Crossref]

Meng, X.

H. Ye, X. Meng, L. Long, and B. Xu, “The route to a perfect window,” Renew. Energy 55, 448–455 (2013).
[Crossref]

H. Ye, X. Meng, and B. Xu, “Theoretical discussions of perfect window, ideal near infrared solar spectrum regulating window and current thermochromic window,” Energy Build. 49, 164–172 (2012).
[Crossref]

Menguc, M. P.

J. R. Howell, M. P. Menguc, and R. Siegel, Thermal Radiation Heat Transfer (CRC Press, 2015).

Milliron, D. J.

E. L. Runnerstrom, A. Llordés, S. D. Lounis, and D. J. Milliron, “Nanostructured electrochromic smart windows: traditional materials and NIR-selective plasmonic nanocrystals,” Chem. Commun. 50, 10555–10572 (2014).
[Crossref]

N. DeForest, A. Shehabi, G. Garcia, J. Greenblatt, E. Masanet, E. S. Lee, S. Selkowitz, and D. J. Milliron, “Regional performance targets for transparent near-infrared switching electrochromic window glazings,” Build. Environ. 61, 160–168 (2013).
[Crossref]

A. Llordés, G. Garcia, J. Gazquez, and D. J. Milliron, “Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites,” Nature 500, 323–326 (2013).
[Crossref]

Mlyuka, N. R.

C. G. Granqvist, S. Green, G. A. Niklasson, N. R. Mlyuka, S. Von Kraemer, and P. Georén, “Advances in chromogenic materials and devices,” Thin Solid Films 518, 3046–3053 (2010).
[Crossref]

Nahm, S.

S. J. Lee, D. S. Choi, S. H. Kang, W. S. Yang, S. Nahm, S. H. Han, and T. Kim, “VO2/ WO3–based hybrid smart windows with thermochromic and electrochromic properties,” ACS Sustain. Chem. Eng. 7, 7111–7117 (2019).
[Crossref]

Niklasson, G. A.

C. G. Granqvist, S. Green, G. A. Niklasson, N. R. Mlyuka, S. Von Kraemer, and P. Georén, “Advances in chromogenic materials and devices,” Thin Solid Films 518, 3046–3053 (2010).
[Crossref]

C. G. Granqvist, G. A. Niklasson, and A. Azens, “Electrochromics: fundamentals and energy-related applications of oxide-based devices,” Appl. Phys. A 89, 29–35 (2007).
[Crossref]

Pan, B.

J. Zhang, H. He, Y. Xie, and B. Pan, “Theoretical study on the tungsten-induced reduction of transition temperature and the degradation of optical properties for VO2,” J. Chem. Phys. 138, 114705 (2013).
[Crossref]

Pei, G.

B. Zhao, M. Hu, X. Ao, N. Chen, and G. Pei, “Radiative cooling: A review of fundamentals, materials, applications, and prospects,” Appl. Energy 236, 489–513 (2019).
[Crossref]

Perkins, T.

A. Berk, P. Conforti, R. Kennett, T. Perkins, F. Hawes, and J. Van Den Bosch, “MODTRAN 6: a major up-grade of the MODTRAN radiative transfer code,” in 6th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS) (IEEE, 2014), pp. 1–4.

Piro, G.

S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17, 83–89 (1975).
[Crossref]

Qi, S.

Y. Zhan, X. Xiao, Y. Lu, Z. Cao, S. Qi, C. Huan, C. Ye, H. Cheng, J. Shi, X. Xu, and G. Xu, “The growth mechanism of vo2 multilayer thin films with high thermochromic performance prepared by RTA in air,” Surf. Interfaces 9, 173–181 (2017).
[Crossref]

Raman, A.

Z. Chen, L. Zhu, A. Raman, and S. Fan, “Radiative cooling to deep sub-freezing temperatures through a 24-h day–night cycle,” Nat. Commun. 7, 13729 (2016).
[Crossref]

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13, 1457–1461 (2013).
[Crossref]

Raman, A. P.

E. A. Goldstein, A. P. Raman, and S. Fan, “Sub-ambient non-evaporative fluid cooling with the sky,” Nat. Energy 2, 17143 (2017).
[Crossref]

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515, 540–544 (2014).
[Crossref]

Rephaeli, E.

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515, 540–544 (2014).
[Crossref]

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13, 1457–1461 (2013).
[Crossref]

Ruggi, D.

S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17, 83–89 (1975).
[Crossref]

Runnerstrom, E. L.

E. L. Runnerstrom, A. Llordés, S. D. Lounis, and D. J. Milliron, “Nanostructured electrochromic smart windows: traditional materials and NIR-selective plasmonic nanocrystals,” Chem. Commun. 50, 10555–10572 (2014).
[Crossref]

Santamouris, M.

M. Santamouris, “Cooling the buildings–past, present and future,” Energy Build. 128, 617–638 (2016).
[Crossref]

Selkowitz, S.

N. DeForest, A. Shehabi, G. Garcia, J. Greenblatt, E. Masanet, E. S. Lee, S. Selkowitz, and D. J. Milliron, “Regional performance targets for transparent near-infrared switching electrochromic window glazings,” Build. Environ. 61, 160–168 (2013).
[Crossref]

Shannigrahi, S.

G. K. Dalapati, A. K. Kushwaha, M. Sharma, V. Suresh, S. Shannigrahi, S. Zhuk, and S. Masudy-Panah, “Transparent heat regulating (THR) materials and coatings for energy saving window applications: Impact of materials design, micro-structural, and interface quality on the THR performance,” Prog. Mater. Sci. 95, 42–131 (2018).
[Crossref]

Sharma, M.

G. K. Dalapati, A. K. Kushwaha, M. Sharma, V. Suresh, S. Shannigrahi, S. Zhuk, and S. Masudy-Panah, “Transparent heat regulating (THR) materials and coatings for energy saving window applications: Impact of materials design, micro-structural, and interface quality on the THR performance,” Prog. Mater. Sci. 95, 42–131 (2018).
[Crossref]

Shehabi, A.

N. DeForest, A. Shehabi, G. Garcia, J. Greenblatt, E. Masanet, E. S. Lee, S. Selkowitz, and D. J. Milliron, “Regional performance targets for transparent near-infrared switching electrochromic window glazings,” Build. Environ. 61, 160–168 (2013).
[Crossref]

Shi, J.

Y. Zhan, X. Xiao, Y. Lu, Z. Cao, S. Qi, C. Huan, C. Ye, H. Cheng, J. Shi, X. Xu, and G. Xu, “The growth mechanism of vo2 multilayer thin films with high thermochromic performance prepared by RTA in air,” Surf. Interfaces 9, 173–181 (2017).
[Crossref]

Shin, S.

S. Shin, S. Hong, and R. Chen, “Hollow photonic structures of transparent conducting oxide with selective and tunable absorptance,” Appl. Therm. Eng. 145, 416–422 (2018).
[Crossref]

Siegel, R.

J. R. Howell, M. P. Menguc, and R. Siegel, Thermal Radiation Heat Transfer (CRC Press, 2015).

Silvestrini, V.

S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17, 83–89 (1975).
[Crossref]

Sinivasan, P.

A. R. Kumar, K. Vijyakumar, and P. Sinivasan, “A review on passive cooling practices in residential buildings,” Int. J. Math. Sci. Eng. Appl. 3, 1–5 (2014).

Skorobogatiy, M.

E. Zhang, Y. Cao, C. Caloz, and M. Skorobogatiy, “Improving thermo-optic properties of smart windows via coupling to radiative coolers,” engrXiv preprint (2019).

Smith, G. B.

A. R. Gentle and G. B. Smith, “Radiative heat pumping from the earth using surface phonon resonant nanoparticles,” Nano Lett. 10, 373–379 (2010).
[Crossref]

Sorrell, S.

S. Sorrell, “Reducing energy demand: a review of issues, challenges and approaches,” Renew. Sustain. Energy Rev. 47, 74–82 (2015).
[Crossref]

Su, B.

M. Liu, B. Su, Y. V. Kaneti, Z. Chen, Y. Tang, Y. Yuan, Y. Gao, L. Jiang, X. Jiang, and A. Yu, “Dual-phase transformation: Spontaneous self-template surface-patterning strategy for ultra-transparent VO2 solar modulating coatings,” ACS Nano 11, 407–415 (2016).
[Crossref]

Suichi, T.

T. Suichi, A. Ishikawa, Y. Hayashi, and K. Tsuruta, “Performance limit of daytime radiative cooling in warm humid environment,” AIP Adv. 8, 055124 (2018).
[Crossref]

Suresh, V.

G. K. Dalapati, A. K. Kushwaha, M. Sharma, V. Suresh, S. Shannigrahi, S. Zhuk, and S. Masudy-Panah, “Transparent heat regulating (THR) materials and coatings for energy saving window applications: Impact of materials design, micro-structural, and interface quality on the THR performance,” Prog. Mater. Sci. 95, 42–131 (2018).
[Crossref]

Tang, Y.

M. Liu, B. Su, Y. V. Kaneti, Z. Chen, Y. Tang, Y. Yuan, Y. Gao, L. Jiang, X. Jiang, and A. Yu, “Dual-phase transformation: Spontaneous self-template surface-patterning strategy for ultra-transparent VO2 solar modulating coatings,” ACS Nano 11, 407–415 (2016).
[Crossref]

Tao, H.

B. Zhu, H. Tao, and X. Zhao, “Effect of buffer layer on thermochromic performances of VO2 films fabricated by magnetron sputtering,” Infrared Phys. Technol. 75, 22–25 (2016).
[Crossref]

Tatzel, A.

H. Hillmer, B. Al-Qargholi, M. M. Khan, N. Worapattrakul, H. Wilke, C. Woidt, and A. Tatzel, “Optical mems-based micromirror arrays for active light steering in smart windows,” Jpn. J. Appl. Phys. 57, 08PA07 (2018).
[Crossref]

Tavares, P. F.

P. F. Tavares, A. R. Gaspar, A. G. Martins, and F. Frontini, “Evaluation of electrochromic windows impact in the energy performance of buildings in Mediterranean climates,” Energy Policy 67, 68–81 (2014).
[Crossref]

Troise, G.

S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17, 83–89 (1975).
[Crossref]

Tsuruta, K.

T. Suichi, A. Ishikawa, Y. Hayashi, and K. Tsuruta, “Performance limit of daytime radiative cooling in warm humid environment,” AIP Adv. 8, 055124 (2018).
[Crossref]

Van Den Bosch, J.

A. Berk, P. Conforti, R. Kennett, T. Perkins, F. Hawes, and J. Van Den Bosch, “MODTRAN 6: a major up-grade of the MODTRAN radiative transfer code,” in 6th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS) (IEEE, 2014), pp. 1–4.

Vijyakumar, K.

A. R. Kumar, K. Vijyakumar, and P. Sinivasan, “A review on passive cooling practices in residential buildings,” Int. J. Math. Sci. Eng. Appl. 3, 1–5 (2014).

Von Kraemer, S.

C. G. Granqvist, S. Green, G. A. Niklasson, N. R. Mlyuka, S. Von Kraemer, and P. Georén, “Advances in chromogenic materials and devices,” Thin Solid Films 518, 3046–3053 (2010).
[Crossref]

Wang, J.

J. Yang, Z. Xu, H. Ye, X. Xu, X. Wu, and J. Wang, “Performance analyses of building energy on phase transition processes of vo2 windows with an improved model,” Appl. Energy 159, 502–508 (2015).
[Crossref]

Warwick, M. E.

M. E. Warwick and R. Binions, “Advances in thermochromic vanadium dioxide films,” J. Mater. Chem. A 2, 3275–3292 (2014).
[Crossref]

Wilke, H.

H. Hillmer, B. Al-Qargholi, M. M. Khan, N. Worapattrakul, H. Wilke, C. Woidt, and A. Tatzel, “Optical mems-based micromirror arrays for active light steering in smart windows,” Jpn. J. Appl. Phys. 57, 08PA07 (2018).
[Crossref]

Woidt, C.

H. Hillmer, B. Al-Qargholi, M. M. Khan, N. Worapattrakul, H. Wilke, C. Woidt, and A. Tatzel, “Optical mems-based micromirror arrays for active light steering in smart windows,” Jpn. J. Appl. Phys. 57, 08PA07 (2018).
[Crossref]

Worapattrakul, N.

H. Hillmer, B. Al-Qargholi, M. M. Khan, N. Worapattrakul, H. Wilke, C. Woidt, and A. Tatzel, “Optical mems-based micromirror arrays for active light steering in smart windows,” Jpn. J. Appl. Phys. 57, 08PA07 (2018).
[Crossref]

Wu, X.

J. Yang, Z. Xu, H. Ye, X. Xu, X. Wu, and J. Wang, “Performance analyses of building energy on phase transition processes of vo2 windows with an improved model,” Appl. Energy 159, 502–508 (2015).
[Crossref]

Xiao, X.

Y. Zhan, X. Xiao, Y. Lu, Z. Cao, S. Qi, C. Huan, C. Ye, H. Cheng, J. Shi, X. Xu, and G. Xu, “The growth mechanism of vo2 multilayer thin films with high thermochromic performance prepared by RTA in air,” Surf. Interfaces 9, 173–181 (2017).
[Crossref]

Xie, Y.

J. Zhang, H. He, Y. Xie, and B. Pan, “Theoretical study on the tungsten-induced reduction of transition temperature and the degradation of optical properties for VO2,” J. Chem. Phys. 138, 114705 (2013).
[Crossref]

Xin, Y.

S. Long, H. Zhou, S. Bao, Y. Xin, X. Cao, and P. Jin, “Thermochromic multilayer films of WO3/VO2/WO3 sandwich structure with enhanced luminous transmittance and durability,” RSC Adv. 6, 106435 (2016).
[Crossref]

Xu, B.

H. Ye, X. Meng, L. Long, and B. Xu, “The route to a perfect window,” Renew. Energy 55, 448–455 (2013).
[Crossref]

H. Ye, X. Meng, and B. Xu, “Theoretical discussions of perfect window, ideal near infrared solar spectrum regulating window and current thermochromic window,” Energy Build. 49, 164–172 (2012).
[Crossref]

Xu, F.

F. Xu, X. Cao, H. Luo, and P. Jin, “Recent advances in VO2-based thermochromic composites for smart windows,” J. Mater. Chem. C 6, 1903–1919 (2018).
[Crossref]

Xu, G.

Y. Zhan, X. Xiao, Y. Lu, Z. Cao, S. Qi, C. Huan, C. Ye, H. Cheng, J. Shi, X. Xu, and G. Xu, “The growth mechanism of vo2 multilayer thin films with high thermochromic performance prepared by RTA in air,” Surf. Interfaces 9, 173–181 (2017).
[Crossref]

Xu, X.

Y. Zhan, X. Xiao, Y. Lu, Z. Cao, S. Qi, C. Huan, C. Ye, H. Cheng, J. Shi, X. Xu, and G. Xu, “The growth mechanism of vo2 multilayer thin films with high thermochromic performance prepared by RTA in air,” Surf. Interfaces 9, 173–181 (2017).
[Crossref]

J. Yang, Z. Xu, H. Ye, X. Xu, X. Wu, and J. Wang, “Performance analyses of building energy on phase transition processes of vo2 windows with an improved model,” Appl. Energy 159, 502–508 (2015).
[Crossref]

Xu, Z.

J. Yang, Z. Xu, H. Ye, X. Xu, X. Wu, and J. Wang, “Performance analyses of building energy on phase transition processes of vo2 windows with an improved model,” Appl. Energy 159, 502–508 (2015).
[Crossref]

Yang, J.

J. Yang, Z. Xu, H. Ye, X. Xu, X. Wu, and J. Wang, “Performance analyses of building energy on phase transition processes of vo2 windows with an improved model,” Appl. Energy 159, 502–508 (2015).
[Crossref]

Yang, W. S.

S. J. Lee, D. S. Choi, S. H. Kang, W. S. Yang, S. Nahm, S. H. Han, and T. Kim, “VO2/ WO3–based hybrid smart windows with thermochromic and electrochromic properties,” ACS Sustain. Chem. Eng. 7, 7111–7117 (2019).
[Crossref]

Yang, Y.

J. Mandal, S. Du, M. Dontigny, K. Zaghib, N. Yu, and Y. Yang, “Li4Ti5O12: A visible-to-infrared broadband electrochromic material for optical and thermal management,” Adv. Funct. Mater. 28, 1802180 (2018).
[Crossref]

Ye, C.

Y. Zhan, X. Xiao, Y. Lu, Z. Cao, S. Qi, C. Huan, C. Ye, H. Cheng, J. Shi, X. Xu, and G. Xu, “The growth mechanism of vo2 multilayer thin films with high thermochromic performance prepared by RTA in air,” Surf. Interfaces 9, 173–181 (2017).
[Crossref]

Ye, H.

L. Long and H. Ye, “Dual-intelligent windows regulating both solar and long-wave radiations dynamically,” Sol. Energy Mater. Sol. Cells 169, 145–150 (2017).
[Crossref]

J. Yang, Z. Xu, H. Ye, X. Xu, X. Wu, and J. Wang, “Performance analyses of building energy on phase transition processes of vo2 windows with an improved model,” Appl. Energy 159, 502–508 (2015).
[Crossref]

L. Long and H. Ye, “How to be smart and energy efficient: A general discussion on thermochromic windows,” Sci. Rep. 4, 6427 (2014).
[Crossref]

H. Ye, X. Meng, L. Long, and B. Xu, “The route to a perfect window,” Renew. Energy 55, 448–455 (2013).
[Crossref]

H. Ye, X. Meng, and B. Xu, “Theoretical discussions of perfect window, ideal near infrared solar spectrum regulating window and current thermochromic window,” Energy Build. 49, 164–172 (2012).
[Crossref]

Yu, A.

M. Liu, B. Su, Y. V. Kaneti, Z. Chen, Y. Tang, Y. Yuan, Y. Gao, L. Jiang, X. Jiang, and A. Yu, “Dual-phase transformation: Spontaneous self-template surface-patterning strategy for ultra-transparent VO2 solar modulating coatings,” ACS Nano 11, 407–415 (2016).
[Crossref]

Yu, N.

J. Mandal, S. Du, M. Dontigny, K. Zaghib, N. Yu, and Y. Yang, “Li4Ti5O12: A visible-to-infrared broadband electrochromic material for optical and thermal management,” Adv. Funct. Mater. 28, 1802180 (2018).
[Crossref]

Yuan, Y.

M. Liu, B. Su, Y. V. Kaneti, Z. Chen, Y. Tang, Y. Yuan, Y. Gao, L. Jiang, X. Jiang, and A. Yu, “Dual-phase transformation: Spontaneous self-template surface-patterning strategy for ultra-transparent VO2 solar modulating coatings,” ACS Nano 11, 407–415 (2016).
[Crossref]

Zaghib, K.

J. Mandal, S. Du, M. Dontigny, K. Zaghib, N. Yu, and Y. Yang, “Li4Ti5O12: A visible-to-infrared broadband electrochromic material for optical and thermal management,” Adv. Funct. Mater. 28, 1802180 (2018).
[Crossref]

Zhan, Y.

Y. Zhan, X. Xiao, Y. Lu, Z. Cao, S. Qi, C. Huan, C. Ye, H. Cheng, J. Shi, X. Xu, and G. Xu, “The growth mechanism of vo2 multilayer thin films with high thermochromic performance prepared by RTA in air,” Surf. Interfaces 9, 173–181 (2017).
[Crossref]

Zhang, E.

E. Zhang, Y. Cao, C. Caloz, and M. Skorobogatiy, “Improving thermo-optic properties of smart windows via coupling to radiative coolers,” engrXiv preprint (2019).

Zhang, J.

J. Zhang, H. He, Y. Xie, and B. Pan, “Theoretical study on the tungsten-induced reduction of transition temperature and the degradation of optical properties for VO2,” J. Chem. Phys. 138, 114705 (2013).
[Crossref]

Zhao, B.

B. Zhao, M. Hu, X. Ao, N. Chen, and G. Pei, “Radiative cooling: A review of fundamentals, materials, applications, and prospects,” Appl. Energy 236, 489–513 (2019).
[Crossref]

Zhao, X.

B. Zhu, H. Tao, and X. Zhao, “Effect of buffer layer on thermochromic performances of VO2 films fabricated by magnetron sputtering,” Infrared Phys. Technol. 75, 22–25 (2016).
[Crossref]

Zhou, H.

S. Long, H. Zhou, S. Bao, Y. Xin, X. Cao, and P. Jin, “Thermochromic multilayer films of WO3/VO2/WO3 sandwich structure with enhanced luminous transmittance and durability,” RSC Adv. 6, 106435 (2016).
[Crossref]

Zhu, B.

B. Zhu, H. Tao, and X. Zhao, “Effect of buffer layer on thermochromic performances of VO2 films fabricated by magnetron sputtering,” Infrared Phys. Technol. 75, 22–25 (2016).
[Crossref]

Zhu, L.

Z. Chen, L. Zhu, A. Raman, and S. Fan, “Radiative cooling to deep sub-freezing temperatures through a 24-h day–night cycle,” Nat. Commun. 7, 13729 (2016).
[Crossref]

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515, 540–544 (2014).
[Crossref]

Zhuk, S.

G. K. Dalapati, A. K. Kushwaha, M. Sharma, V. Suresh, S. Shannigrahi, S. Zhuk, and S. Masudy-Panah, “Transparent heat regulating (THR) materials and coatings for energy saving window applications: Impact of materials design, micro-structural, and interface quality on the THR performance,” Prog. Mater. Sci. 95, 42–131 (2018).
[Crossref]

ACS Nano (1)

M. Liu, B. Su, Y. V. Kaneti, Z. Chen, Y. Tang, Y. Yuan, Y. Gao, L. Jiang, X. Jiang, and A. Yu, “Dual-phase transformation: Spontaneous self-template surface-patterning strategy for ultra-transparent VO2 solar modulating coatings,” ACS Nano 11, 407–415 (2016).
[Crossref]

ACS Sustain. Chem. Eng. (1)

S. J. Lee, D. S. Choi, S. H. Kang, W. S. Yang, S. Nahm, S. H. Han, and T. Kim, “VO2/ WO3–based hybrid smart windows with thermochromic and electrochromic properties,” ACS Sustain. Chem. Eng. 7, 7111–7117 (2019).
[Crossref]

Adv. Funct. Mater. (1)

J. Mandal, S. Du, M. Dontigny, K. Zaghib, N. Yu, and Y. Yang, “Li4Ti5O12: A visible-to-infrared broadband electrochromic material for optical and thermal management,” Adv. Funct. Mater. 28, 1802180 (2018).
[Crossref]

Adv. Sci. (1)

M. M. Hossain and M. Gu, “Radiative cooling: principles, progress, and potentials,” Adv. Sci. 3, 1500360 (2016).
[Crossref]

AIP Adv. (1)

T. Suichi, A. Ishikawa, Y. Hayashi, and K. Tsuruta, “Performance limit of daytime radiative cooling in warm humid environment,” AIP Adv. 8, 055124 (2018).
[Crossref]

Appl. Energy (2)

B. Zhao, M. Hu, X. Ao, N. Chen, and G. Pei, “Radiative cooling: A review of fundamentals, materials, applications, and prospects,” Appl. Energy 236, 489–513 (2019).
[Crossref]

J. Yang, Z. Xu, H. Ye, X. Xu, X. Wu, and J. Wang, “Performance analyses of building energy on phase transition processes of vo2 windows with an improved model,” Appl. Energy 159, 502–508 (2015).
[Crossref]

Appl. Opt. (1)

Appl. Phys. A (1)

C. G. Granqvist, G. A. Niklasson, and A. Azens, “Electrochromics: fundamentals and energy-related applications of oxide-based devices,” Appl. Phys. A 89, 29–35 (2007).
[Crossref]

Appl. Therm. Eng. (1)

S. Shin, S. Hong, and R. Chen, “Hollow photonic structures of transparent conducting oxide with selective and tunable absorptance,” Appl. Therm. Eng. 145, 416–422 (2018).
[Crossref]

Bound. Layer Meteorol. (1)

H. Kusaka, H. Kondo, Y. Kikegawa, and F. Kimura, “A simple single-layer urban canopy model for atmospheric models: comparison with multi-layer and slab models,” Bound. Layer Meteorol. 101, 329–358 (2001).
[Crossref]

Build. Environ. (1)

N. DeForest, A. Shehabi, G. Garcia, J. Greenblatt, E. Masanet, E. S. Lee, S. Selkowitz, and D. J. Milliron, “Regional performance targets for transparent near-infrared switching electrochromic window glazings,” Build. Environ. 61, 160–168 (2013).
[Crossref]

Chem. Commun. (1)

E. L. Runnerstrom, A. Llordés, S. D. Lounis, and D. J. Milliron, “Nanostructured electrochromic smart windows: traditional materials and NIR-selective plasmonic nanocrystals,” Chem. Commun. 50, 10555–10572 (2014).
[Crossref]

Crit. Rev. Solid State (1)

C. Granqvist, “Chromogenic materials for transmittance control of large-area windows,” Crit. Rev. Solid State 16, 291–308 (1990).
[Crossref]

Energy Build. (2)

H. Ye, X. Meng, and B. Xu, “Theoretical discussions of perfect window, ideal near infrared solar spectrum regulating window and current thermochromic window,” Energy Build. 49, 164–172 (2012).
[Crossref]

M. Santamouris, “Cooling the buildings–past, present and future,” Energy Build. 128, 617–638 (2016).
[Crossref]

Energy Policy (1)

P. F. Tavares, A. R. Gaspar, A. G. Martins, and F. Frontini, “Evaluation of electrochromic windows impact in the energy performance of buildings in Mediterranean climates,” Energy Policy 67, 68–81 (2014).
[Crossref]

Infrared Phys. Technol. (1)

B. Zhu, H. Tao, and X. Zhao, “Effect of buffer layer on thermochromic performances of VO2 films fabricated by magnetron sputtering,” Infrared Phys. Technol. 75, 22–25 (2016).
[Crossref]

Int. J. Math. Sci. Eng. Appl. (1)

A. R. Kumar, K. Vijyakumar, and P. Sinivasan, “A review on passive cooling practices in residential buildings,” Int. J. Math. Sci. Eng. Appl. 3, 1–5 (2014).

J. Appl. Phys. (1)

C. Granqvist and A. Hjortsberg, “Radiative cooling to low temperatures: General considerations and application to selectively emitting SiO films,” J. Appl. Phys. 52, 4205–4220 (1981).
[Crossref]

J. Chem. Phys. (1)

J. Zhang, H. He, Y. Xie, and B. Pan, “Theoretical study on the tungsten-induced reduction of transition temperature and the degradation of optical properties for VO2,” J. Chem. Phys. 138, 114705 (2013).
[Crossref]

J. Mater. Chem. A (1)

M. E. Warwick and R. Binions, “Advances in thermochromic vanadium dioxide films,” J. Mater. Chem. A 2, 3275–3292 (2014).
[Crossref]

J. Mater. Chem. C (1)

F. Xu, X. Cao, H. Luo, and P. Jin, “Recent advances in VO2-based thermochromic composites for smart windows,” J. Mater. Chem. C 6, 1903–1919 (2018).
[Crossref]

Jpn. J. Appl. Phys. (1)

H. Hillmer, B. Al-Qargholi, M. M. Khan, N. Worapattrakul, H. Wilke, C. Woidt, and A. Tatzel, “Optical mems-based micromirror arrays for active light steering in smart windows,” Jpn. J. Appl. Phys. 57, 08PA07 (2018).
[Crossref]

MDPI Sustainability (1)

H. Alibaba, “Determination of optimum window to external wall ratio for offices in a hot and humid climate,” MDPI Sustainability 8, 187 (2016).
[Crossref]

Nano Lett. (2)

A. R. Gentle and G. B. Smith, “Radiative heat pumping from the earth using surface phonon resonant nanoparticles,” Nano Lett. 10, 373–379 (2010).
[Crossref]

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13, 1457–1461 (2013).
[Crossref]

Nat. Commun. (1)

Z. Chen, L. Zhu, A. Raman, and S. Fan, “Radiative cooling to deep sub-freezing temperatures through a 24-h day–night cycle,” Nat. Commun. 7, 13729 (2016).
[Crossref]

Nat. Energy (1)

E. A. Goldstein, A. P. Raman, and S. Fan, “Sub-ambient non-evaporative fluid cooling with the sky,” Nat. Energy 2, 17143 (2017).
[Crossref]

Nature (3)

B. A. Korgel, “Materials science: composite for smarter windows,” Nature 500, 278–279 (2013).
[Crossref]

A. Llordés, G. Garcia, J. Gazquez, and D. J. Milliron, “Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites,” Nature 500, 323–326 (2013).
[Crossref]

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515, 540–544 (2014).
[Crossref]

Prog. Mater. Sci. (1)

G. K. Dalapati, A. K. Kushwaha, M. Sharma, V. Suresh, S. Shannigrahi, S. Zhuk, and S. Masudy-Panah, “Transparent heat regulating (THR) materials and coatings for energy saving window applications: Impact of materials design, micro-structural, and interface quality on the THR performance,” Prog. Mater. Sci. 95, 42–131 (2018).
[Crossref]

Renew. Energy (1)

H. Ye, X. Meng, L. Long, and B. Xu, “The route to a perfect window,” Renew. Energy 55, 448–455 (2013).
[Crossref]

Renew. Sustain. Energy Rev. (1)

S. Sorrell, “Reducing energy demand: a review of issues, challenges and approaches,” Renew. Sustain. Energy Rev. 47, 74–82 (2015).
[Crossref]

RSC Adv. (1)

S. Long, H. Zhou, S. Bao, Y. Xin, X. Cao, and P. Jin, “Thermochromic multilayer films of WO3/VO2/WO3 sandwich structure with enhanced luminous transmittance and durability,” RSC Adv. 6, 106435 (2016).
[Crossref]

Sci. Am. (1)

M. N. Bahadori, “Passive cooling systems in Iranian architecture,” Sci. Am. 238, 144–155 (1978).
[Crossref]

Sci. Rep. (1)

L. Long and H. Ye, “How to be smart and energy efficient: A general discussion on thermochromic windows,” Sci. Rep. 4, 6427 (2014).
[Crossref]

Sol. Energy (2)

P. Berdahl and R. Fromberg, “The thermal radiance of clear skies,” Sol. Energy 29, 299–314 (1982).
[Crossref]

S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17, 83–89 (1975).
[Crossref]

Sol. Energy Mater. Sol. Cells (1)

L. Long and H. Ye, “Dual-intelligent windows regulating both solar and long-wave radiations dynamically,” Sol. Energy Mater. Sol. Cells 169, 145–150 (2017).
[Crossref]

Surf. Interfaces (1)

Y. Zhan, X. Xiao, Y. Lu, Z. Cao, S. Qi, C. Huan, C. Ye, H. Cheng, J. Shi, X. Xu, and G. Xu, “The growth mechanism of vo2 multilayer thin films with high thermochromic performance prepared by RTA in air,” Surf. Interfaces 9, 173–181 (2017).
[Crossref]

Thin Solid Films (1)

C. G. Granqvist, S. Green, G. A. Niklasson, N. R. Mlyuka, S. Von Kraemer, and P. Georén, “Advances in chromogenic materials and devices,” Thin Solid Films 518, 3046–3053 (2010).
[Crossref]

Other (7)

T. P. Mann, “Metamaterial window glass for adaptable energy efficiency,” Master's thesis (University of Texas at Austin, 2014).

P. Bamfield, Chromic Phenomena: Technological Applications of Colour Chemistry (RSC, 2010).

A. Berk, P. Conforti, R. Kennett, T. Perkins, F. Hawes, and J. Van Den Bosch, “MODTRAN 6: a major up-grade of the MODTRAN radiative transfer code,” in 6th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS) (IEEE, 2014), pp. 1–4.

J. R. Howell, M. P. Menguc, and R. Siegel, Thermal Radiation Heat Transfer (CRC Press, 2015).

E. Zhang, Y. Cao, C. Caloz, and M. Skorobogatiy, “Improving thermo-optic properties of smart windows via coupling to radiative coolers,” engrXiv preprint (2019).

http://mundobim.com/construpm/edge-green-buildings-whats-window-to-wall-ratio/ .

https://www.commercialwindows.org/adv_glass.php .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Schematic of the window/radiative cooler tandem.
Fig. 2.
Fig. 2. Single-layer model of the atmosphere with the corresponding energy fluxes at the two interfaces.
Fig. 3.
Fig. 3. (a) Model of the optically symmetric single-layer window (no convection/conduction between the wall and the window). (b) Step-like model for the frequency-dependent optical properties of the window (absorption, transmission, and reflection).
Fig. 4.
Fig. 4. Thermally coupled radiative cooler and partially transparent window via exchange of a cooling fluid. Thus, cooled windows can offer higher transmission intensities of the visible light compared to a standalone window.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

σ T a 4 = ( 1 a l ) ( 2 ε a ) P ¯ , T g = 2 1 / 4 T a ,
T w 4 T a 4 = ε a + ( 2 ε a ) T w V I S + A w V I S ( 1 + T w M I R ε w M I R ) 2 T w M I R + ε w M I R , T s 4 T a 4 = ε a + ( 2 ε a ) 2 T w V I S + A w V I S 2 T w M I R + ε w M I R .
min ( T s ) = ε a 1 / 4 T a 0.94 T a w h e n 2 T w V I S + A w V I S 2 T w M I R + ε w M I R = 0 T w V I S 0 ; A w V I S 0 R w V I S 1 we must also require  2 T w M I R + ε w M I R = = 1 + T w M I R R w M I R 0 R w M I R 1.
min ( T w ) = ε a 1 / 4 T a 0.94 T a w h e n T w V I S + A w V I S ( 1 + T w M I R ε w M I R ) 2 T w M I R + ε w M I R = 0 T w V I S 0 ; A w V I S 0 ; A w V I S ε w M I R 0 R w V I S 1 ; A w V I S ε w M I R we must also require  2 T w M I R + ε w M I R = = 1 + T w M I R R w M I R 0 R w M I R 1.
T s 4 T a 4 = ε a + ( 2 ε a ) 2 T w V I S + A w V I S 2 T w M I R + ε w M I R < 1 , T w V I S < 1 2 1 ε a 2 ε a ( 1 + T w M I R R w M I R ) A w V I S 2 , max ( T w V I S ) = γ w h e n T w M I R = 1 ( ε w M I R = R w M I R = 0 ) ; A w V I S = 0 , w h e r e γ = 1 ε a 2 ε a = 0.18.
T w 4 T a 4 = ε a + ( 2 ε a ) T w V I S + A w V I S ( 1 + T w M I R ε w M I R ) 2 T w M I R + ε w M I R < 1 , T w V I S < 1 ε a 2 ε a ( 1 + T w M I R R w M I R ) A w V I S ( 1 + T w M I R ε w M I R ) , max ( T w V I S ) = 2 γ = 0.36   w h e n T w M I R 1 ( ε w M I R , R w M I R 0 ) ; A w V I S ε w M I R 0.
Q w = ζ T w ; Q c = ζ T c ,
{ A w V I S P ¯ ¯ + ε w M I R σ T s w 4 + ε w M I R ε a σ T a 4 + ( T c T w ) ζ = 2 ε w M I R σ T w 4 T w V I S P ¯ ¯ + T w M I R ε a σ T a 4 + ε w M I R σ T w 4 = ( 1 R w M I R ) σ T s w 4 A c V I S P ¯ ¯ + ε c M I R σ T s c 4 + ε c M I R ε a σ T a 4 + ( T w T c ) ζ = 2 ε c M I R σ T c 4 T c V I S P ¯ ¯ + T c M I R ε a σ T a 4 + ε c M I R σ T c 4 = ( 1 R c M I R ) σ T s c 4
{ T w 4 T a 4 = T w V I S P ¯ ¯ σ T a 4 + ε a + ( T c T a T w T a ) ζ σ T a 3 T s w 4 T a 4 = 2 T w V I S P ¯ ¯ σ T a 4 + ε a + ( T c T a T w T a ) ζ σ T a 3 T c 4 T a 4 = ε a + ( T w T a T c T a ) ζ σ T a 3
{ δ T w T a = 1 ε a 4 + T w V I S 2 ε a 8 ( 1 + ( 1 + ζ 2 σ T a 3 ) 1 ) δ T s w T a = 1 ε a 4 + T w V I S 2 ε a 8 ( 3 + ( 1 + ζ 2 σ T a 3 ) 1 ) δ T c T a = 1 ε a 4 + T w V I S 2 ε a 8 ( 1 ( 1 + ζ 2 σ T a 3 ) 1 ) .
δ T w T a = 1 ε a 4 + T w V I S 2 ε a 8 2 δ T s w T a = 1 ε a 4 + T w V I S 2 ε a 8 4 δ T c T a = 1 ε a 4 no heat exchange between window and cooler  ζ = 0 δ T w T a = 1 ε a 4 + T w V I S 2 ε a 8 1 δ T s w T a = 1 ε a 4 + T w V I S 2 ε a 8 3 δ T c T a = δ T w T a strong heat exchange between window and cooler  ζ 2 σ T a 3
{ ( A w V I S + A c V I S ) P ¯ ¯ + ( ε w M I R + ε c M I R ) ε a σ T a 4 + ε w M I R σ T s w 4 + ε c M I R σ T s c 4 = 2 ( ε w M I R + ε c M I R ) σ T f 4 T w V I S P ¯ ¯ + T w M I R ε a σ T a 4 + ε w M I R σ T f 4 = ( 1 R w M I R ) σ T s w 4 T c V I S P ¯ ¯ + T c M I R ε a σ T a 4 + ε c M I R σ T f 4 = ( 1 R c M I R ) σ T s c 4
limit of strong heat exchange  ζ / 4 σ T a 3 1 : T w 4 T a 4 | ζ = T c 4 T a 4 | ζ = ε a + ( 2 ε a ) T w V I S + A w V I S ( 1 + T w M I R ε w M I R ) + T c V I S + A c V I S ( 1 + T c M I R ε c M I R ) 2 T w M I R + ε w M I R + 2 T c M I R + ε c M I R ; no heat exchange  ζ = 0 : T w 4 T a 4 | ζ = 0 = ε a + ( 2 ε a ) T w V I S + A w V I S ( 1 + T w M I R ε w M I R ) 2 T w M I R + ε w M I R ; T c 4 T a 4 | ζ = 0 = ε a + ( 2 ε a ) T c V I S + A c V I S ( 1 + T c M I R ε c M I R ) 2 T c M I R + ε c M I R
ζ = C v A c h a n n e l A r a d . a r e a v f = C v d L v f 4 σ T a 3 v f 4 σ T a 3 C v L d 0.5 m m / s .
Δ P = ( ρ ( T c ) ρ ( T w ) ) g L ρ ( T a ) g L α f ( T c T w ) ,
V t = Δ P R c ζ g r a v = C v A r a d . s u r f a c e V t = C v A r a d . s u r f a c e Δ P R c ζ g r a v ρ ( T a ) C v g α f 12 μ d 3 L ( T c T w ) .
ζ g r a v 4 σ T a 3 ( T c T w ) 48 σ T a 3 μ ρ ( T a ) C v g α f L d 3 w a t e r 0.35 K .

Metrics