J. Tesch, T. Truong, R. Burruss, and S. Gibson, “On-sky demonstration of optimal control for adaptive optics at Palomar Observatory,” Opt. Lett. 40, 1575–1578 (2015).

[Crossref]

H. Xiaochuan, P. Jiaqi, and Z. Bin, “Thermal distortion of deformable mirror and its influence on beam quality,” Chin. J. Lasers 42, 45–53 (2015).

K. Cheon, J. Kim, M. Hamadache, and D. Lee, “On replacing PID controller with deep learning controller for DC motor system,” J. Automation Control Eng. 3, 452–456 (2015).

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature 521, 436–444 (2015).

[Crossref]

Y. M. Guo, X. Y. Ma, and C. H. Rao, “Optimal closed-loop bandwidth of tip-tilt correction loop in adaptive optics system,” Acta Phys. Sinca 63, 069502 (2014).

[Crossref]

Y. M. Guo, C. H. Rao, H. Ba, A. Zhang, and K. Wei, “Direct computation of the interaction matrix of adaptive optical system,” Acta Phys. Sinca 63, 149501 (2014).

[Crossref]

Z. Y. Zheng, C. W. Li, B. M. Li, and S. J. Zhang, “Analysis and demonstration of PID algorithm based on arranging the transient process for adaptive optics,” Chin. Opt. Lett. 11, 110101 (2013).

[Crossref]

Z. J. Yan, X. Y. Li, and C. H. Rao, “Multi channel adaptive control algorithm for closed-loop adaptive optics system,” Acta Opt. Sin. 33, 0301002 (2013).

[Crossref]

F. Cao, L. Z. Chen, C. Long, and Y. Li, “Analysis of the influence of spatial mismatch between deformable mirror and wavefront sensor on fitting accuracy,” Mod. Appl. Phys. 4, 5–8 (2013).

J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online learning and stochastic optimization,” J. Mach. Learn. Res. 12, 2121–2159 (2011).

N. T. Gu, Z. P. Yang, L. H. Huang, and C. H. Rao, “Measurement method of alignment error between Hartmann-Shack sensor and deformable mirror in adaptive optics system,” J. Opt. 12, 095504 (2010).

[Crossref]

L. Dong, P. Yang, and B. Xu, “Adaptive aberration correction based on ant colony algorithm for solid-state lasers: numerical simulations,” Appl. Phys. B 96, 527–533 (2009).

[Crossref]

M. Voronstov, J. Riker, G. Carhart, V. S. R. Gudimetla, L. Beresnev, T. Weyrauch, and L. C. Roberts, “Deep turbulence effects compensation experiments with a cascaded adaptive optics system using 3.63 m telescope,” Appl. Opt. 48, A47–A57 (2009).

[Crossref]

P. Yang, Y. Liu, M. Ao, S. Hu, and B. Xu, “A wavefront sensor-less adaptive optical system for a solid-state laser,” Opt. Commun. 278, 377–381 (2007).

[Crossref]

P. Yang, M. Ao, Y. Liu, B. Xu, and W. Jiang, “Intracavity transverse modes control by an genetic algorithm based on Zernike mode coefficients,” Opt. Express 15, 17051–17062 (2007).

[Crossref]

H. Jing, J. Wenhan, and L. Ning, “The misalignment errors of Hartmann-Shack wavefront sensors and deformable mirror in the two kinds of adaptive optics systems,” J. Opt. 23, 750–755 (2003).

W. Jiang, S. Huang, N. Ling, and X. Wu, “Hill-climb–ing wavefront correction system for large laser engineering,” Proc. SPIE 965, 266–272 (1988).

[Crossref]

W. Jang, S. Huang, and B. Xu, “Hill-climbing adaptive optics wavefront correction system,” Chin. Phys. Lasers 15, 27–31 (1988).

Y. Nesterov, “A method of solving a convex programming problem with convergence rate O(1/k 2),” Sov. Math. Dokl. 27, 372–376(1983).

A. Punjani and P. Abbeel, “Deep learning helicopter dynamics models,” in IEEE International Conference on Robotics and Automation (ICRA) (IEEE, 2015), pp. 3223–3230.

C. W. Anderson, M. Lee, and D. L. Elliott, “Faster reinforcement learning after pretraining deep networks to predict state dynamics,” in International Joint Conference on Neural Networks (IJCNN) (IEEE, 2015), pp. 1–7.

P. Yang, M. Ao, Y. Liu, B. Xu, and W. Jiang, “Intracavity transverse modes control by an genetic algorithm based on Zernike mode coefficients,” Opt. Express 15, 17051–17062 (2007).

[Crossref]

P. Yang, Y. Liu, M. Ao, S. Hu, and B. Xu, “A wavefront sensor-less adaptive optical system for a solid-state laser,” Opt. Commun. 278, 377–381 (2007).

[Crossref]

Y. M. Guo, C. H. Rao, H. Ba, A. Zhang, and K. Wei, “Direct computation of the interaction matrix of adaptive optical system,” Acta Phys. Sinca 63, 149501 (2014).

[Crossref]

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature 521, 436–444 (2015).

[Crossref]

H. Xiaochuan, P. Jiaqi, and Z. Bin, “Thermal distortion of deformable mirror and its influence on beam quality,” Chin. J. Lasers 42, 45–53 (2015).

F. Cao, L. Z. Chen, C. Long, and Y. Li, “Analysis of the influence of spatial mismatch between deformable mirror and wavefront sensor on fitting accuracy,” Mod. Appl. Phys. 4, 5–8 (2013).

F. Cao, L. Z. Chen, C. Long, and Y. Li, “Analysis of the influence of spatial mismatch between deformable mirror and wavefront sensor on fitting accuracy,” Mod. Appl. Phys. 4, 5–8 (2013).

K. Cheon, J. Kim, M. Hamadache, and D. Lee, “On replacing PID controller with deep learning controller for DC motor system,” J. Automation Control Eng. 3, 452–456 (2015).

L. Dong, P. Yang, and B. Xu, “Adaptive aberration correction based on ant colony algorithm for solid-state lasers: numerical simulations,” Appl. Phys. B 96, 527–533 (2009).

[Crossref]

J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online learning and stochastic optimization,” J. Mach. Learn. Res. 12, 2121–2159 (2011).

C. W. Anderson, M. Lee, and D. L. Elliott, “Faster reinforcement learning after pretraining deep networks to predict state dynamics,” in International Joint Conference on Neural Networks (IJCNN) (IEEE, 2015), pp. 1–7.

N. T. Gu, Z. P. Yang, L. H. Huang, and C. H. Rao, “Measurement method of alignment error between Hartmann-Shack sensor and deformable mirror in adaptive optics system,” J. Opt. 12, 095504 (2010).

[Crossref]

Y. M. Guo, X. Y. Ma, and C. H. Rao, “Optimal closed-loop bandwidth of tip-tilt correction loop in adaptive optics system,” Acta Phys. Sinca 63, 069502 (2014).

[Crossref]

Y. M. Guo, C. H. Rao, H. Ba, A. Zhang, and K. Wei, “Direct computation of the interaction matrix of adaptive optical system,” Acta Phys. Sinca 63, 149501 (2014).

[Crossref]

K. Cheon, J. Kim, M. Hamadache, and D. Lee, “On replacing PID controller with deep learning controller for DC motor system,” J. Automation Control Eng. 3, 452–456 (2015).

J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online learning and stochastic optimization,” J. Mach. Learn. Res. 12, 2121–2159 (2011).

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature 521, 436–444 (2015).

[Crossref]

P. Yang, Y. Liu, M. Ao, S. Hu, and B. Xu, “A wavefront sensor-less adaptive optical system for a solid-state laser,” Opt. Commun. 278, 377–381 (2007).

[Crossref]

N. T. Gu, Z. P. Yang, L. H. Huang, and C. H. Rao, “Measurement method of alignment error between Hartmann-Shack sensor and deformable mirror in adaptive optics system,” J. Opt. 12, 095504 (2010).

[Crossref]

W. Jiang, S. Huang, N. Ling, and X. Wu, “Hill-climb–ing wavefront correction system for large laser engineering,” Proc. SPIE 965, 266–272 (1988).

[Crossref]

W. Jang, S. Huang, and B. Xu, “Hill-climbing adaptive optics wavefront correction system,” Chin. Phys. Lasers 15, 27–31 (1988).

W. Jang, S. Huang, and B. Xu, “Hill-climbing adaptive optics wavefront correction system,” Chin. Phys. Lasers 15, 27–31 (1988).

P. Yang, M. Ao, Y. Liu, B. Xu, and W. Jiang, “Intracavity transverse modes control by an genetic algorithm based on Zernike mode coefficients,” Opt. Express 15, 17051–17062 (2007).

[Crossref]

W. Jiang, S. Huang, N. Ling, and X. Wu, “Hill-climb–ing wavefront correction system for large laser engineering,” Proc. SPIE 965, 266–272 (1988).

[Crossref]

H. Xiaochuan, P. Jiaqi, and Z. Bin, “Thermal distortion of deformable mirror and its influence on beam quality,” Chin. J. Lasers 42, 45–53 (2015).

H. Jing, J. Wenhan, and L. Ning, “The misalignment errors of Hartmann-Shack wavefront sensors and deformable mirror in the two kinds of adaptive optics systems,” J. Opt. 23, 750–755 (2003).

K. Cheon, J. Kim, M. Hamadache, and D. Lee, “On replacing PID controller with deep learning controller for DC motor system,” J. Automation Control Eng. 3, 452–456 (2015).

I. Lenz, R. Knepper, and A. Saxena, “Deep MPC: learning deep latent features for model predictive control,” in Robotics: Science and Systems (RSS), Rome, Italy (2015).

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature 521, 436–444 (2015).

[Crossref]

K. Cheon, J. Kim, M. Hamadache, and D. Lee, “On replacing PID controller with deep learning controller for DC motor system,” J. Automation Control Eng. 3, 452–456 (2015).

C. W. Anderson, M. Lee, and D. L. Elliott, “Faster reinforcement learning after pretraining deep networks to predict state dynamics,” in International Joint Conference on Neural Networks (IJCNN) (IEEE, 2015), pp. 1–7.

I. Lenz, R. Knepper, and A. Saxena, “Deep MPC: learning deep latent features for model predictive control,” in Robotics: Science and Systems (RSS), Rome, Italy (2015).

S. Levine, “Exploring deep and recurrent architectures for optimal control,” arXiv: 1311.1761 (2013).

Z. J. Yan, X. Y. Li, and C. H. Rao, “Multi channel adaptive control algorithm for closed-loop adaptive optics system,” Acta Opt. Sin. 33, 0301002 (2013).

[Crossref]

F. Cao, L. Z. Chen, C. Long, and Y. Li, “Analysis of the influence of spatial mismatch between deformable mirror and wavefront sensor on fitting accuracy,” Mod. Appl. Phys. 4, 5–8 (2013).

W. Jiang, S. Huang, N. Ling, and X. Wu, “Hill-climb–ing wavefront correction system for large laser engineering,” Proc. SPIE 965, 266–272 (1988).

[Crossref]

P. Yang, M. Ao, Y. Liu, B. Xu, and W. Jiang, “Intracavity transverse modes control by an genetic algorithm based on Zernike mode coefficients,” Opt. Express 15, 17051–17062 (2007).

[Crossref]

P. Yang, Y. Liu, M. Ao, S. Hu, and B. Xu, “A wavefront sensor-less adaptive optical system for a solid-state laser,” Opt. Commun. 278, 377–381 (2007).

[Crossref]

F. Cao, L. Z. Chen, C. Long, and Y. Li, “Analysis of the influence of spatial mismatch between deformable mirror and wavefront sensor on fitting accuracy,” Mod. Appl. Phys. 4, 5–8 (2013).

Y. M. Guo, X. Y. Ma, and C. H. Rao, “Optimal closed-loop bandwidth of tip-tilt correction loop in adaptive optics system,” Acta Phys. Sinca 63, 069502 (2014).

[Crossref]

Y. Nesterov, “A method of solving a convex programming problem with convergence rate O(1/k 2),” Sov. Math. Dokl. 27, 372–376(1983).

H. Jing, J. Wenhan, and L. Ning, “The misalignment errors of Hartmann-Shack wavefront sensors and deformable mirror in the two kinds of adaptive optics systems,” J. Opt. 23, 750–755 (2003).

A. Punjani and P. Abbeel, “Deep learning helicopter dynamics models,” in IEEE International Conference on Robotics and Automation (ICRA) (IEEE, 2015), pp. 3223–3230.

Y. M. Guo, X. Y. Ma, and C. H. Rao, “Optimal closed-loop bandwidth of tip-tilt correction loop in adaptive optics system,” Acta Phys. Sinca 63, 069502 (2014).

[Crossref]

Y. M. Guo, C. H. Rao, H. Ba, A. Zhang, and K. Wei, “Direct computation of the interaction matrix of adaptive optical system,” Acta Phys. Sinca 63, 149501 (2014).

[Crossref]

Z. J. Yan, X. Y. Li, and C. H. Rao, “Multi channel adaptive control algorithm for closed-loop adaptive optics system,” Acta Opt. Sin. 33, 0301002 (2013).

[Crossref]

N. T. Gu, Z. P. Yang, L. H. Huang, and C. H. Rao, “Measurement method of alignment error between Hartmann-Shack sensor and deformable mirror in adaptive optics system,” J. Opt. 12, 095504 (2010).

[Crossref]

I. Lenz, R. Knepper, and A. Saxena, “Deep MPC: learning deep latent features for model predictive control,” in Robotics: Science and Systems (RSS), Rome, Italy (2015).

J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online learning and stochastic optimization,” J. Mach. Learn. Res. 12, 2121–2159 (2011).

R. K. Tyson, Principles of Adaptive Optics (Academic, 1991).

Y. M. Guo, C. H. Rao, H. Ba, A. Zhang, and K. Wei, “Direct computation of the interaction matrix of adaptive optical system,” Acta Phys. Sinca 63, 149501 (2014).

[Crossref]

H. Jing, J. Wenhan, and L. Ning, “The misalignment errors of Hartmann-Shack wavefront sensors and deformable mirror in the two kinds of adaptive optics systems,” J. Opt. 23, 750–755 (2003).

W. Jiang, S. Huang, N. Ling, and X. Wu, “Hill-climb–ing wavefront correction system for large laser engineering,” Proc. SPIE 965, 266–272 (1988).

[Crossref]

H. Xiaochuan, P. Jiaqi, and Z. Bin, “Thermal distortion of deformable mirror and its influence on beam quality,” Chin. J. Lasers 42, 45–53 (2015).

L. Dong, P. Yang, and B. Xu, “Adaptive aberration correction based on ant colony algorithm for solid-state lasers: numerical simulations,” Appl. Phys. B 96, 527–533 (2009).

[Crossref]

P. Yang, Y. Liu, M. Ao, S. Hu, and B. Xu, “A wavefront sensor-less adaptive optical system for a solid-state laser,” Opt. Commun. 278, 377–381 (2007).

[Crossref]

P. Yang, M. Ao, Y. Liu, B. Xu, and W. Jiang, “Intracavity transverse modes control by an genetic algorithm based on Zernike mode coefficients,” Opt. Express 15, 17051–17062 (2007).

[Crossref]

W. Jang, S. Huang, and B. Xu, “Hill-climbing adaptive optics wavefront correction system,” Chin. Phys. Lasers 15, 27–31 (1988).

Z. J. Yan, X. Y. Li, and C. H. Rao, “Multi channel adaptive control algorithm for closed-loop adaptive optics system,” Acta Opt. Sin. 33, 0301002 (2013).

[Crossref]

L. Dong, P. Yang, and B. Xu, “Adaptive aberration correction based on ant colony algorithm for solid-state lasers: numerical simulations,” Appl. Phys. B 96, 527–533 (2009).

[Crossref]

P. Yang, Y. Liu, M. Ao, S. Hu, and B. Xu, “A wavefront sensor-less adaptive optical system for a solid-state laser,” Opt. Commun. 278, 377–381 (2007).

[Crossref]

P. Yang, M. Ao, Y. Liu, B. Xu, and W. Jiang, “Intracavity transverse modes control by an genetic algorithm based on Zernike mode coefficients,” Opt. Express 15, 17051–17062 (2007).

[Crossref]

N. T. Gu, Z. P. Yang, L. H. Huang, and C. H. Rao, “Measurement method of alignment error between Hartmann-Shack sensor and deformable mirror in adaptive optics system,” J. Opt. 12, 095504 (2010).

[Crossref]

Y. M. Guo, C. H. Rao, H. Ba, A. Zhang, and K. Wei, “Direct computation of the interaction matrix of adaptive optical system,” Acta Phys. Sinca 63, 149501 (2014).

[Crossref]

Z. J. Yan, X. Y. Li, and C. H. Rao, “Multi channel adaptive control algorithm for closed-loop adaptive optics system,” Acta Opt. Sin. 33, 0301002 (2013).

[Crossref]

Y. M. Guo, X. Y. Ma, and C. H. Rao, “Optimal closed-loop bandwidth of tip-tilt correction loop in adaptive optics system,” Acta Phys. Sinca 63, 069502 (2014).

[Crossref]

Y. M. Guo, C. H. Rao, H. Ba, A. Zhang, and K. Wei, “Direct computation of the interaction matrix of adaptive optical system,” Acta Phys. Sinca 63, 149501 (2014).

[Crossref]

L. Dong, P. Yang, and B. Xu, “Adaptive aberration correction based on ant colony algorithm for solid-state lasers: numerical simulations,” Appl. Phys. B 96, 527–533 (2009).

[Crossref]

H. Xiaochuan, P. Jiaqi, and Z. Bin, “Thermal distortion of deformable mirror and its influence on beam quality,” Chin. J. Lasers 42, 45–53 (2015).

W. Jang, S. Huang, and B. Xu, “Hill-climbing adaptive optics wavefront correction system,” Chin. Phys. Lasers 15, 27–31 (1988).

K. Cheon, J. Kim, M. Hamadache, and D. Lee, “On replacing PID controller with deep learning controller for DC motor system,” J. Automation Control Eng. 3, 452–456 (2015).

J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online learning and stochastic optimization,” J. Mach. Learn. Res. 12, 2121–2159 (2011).

H. Jing, J. Wenhan, and L. Ning, “The misalignment errors of Hartmann-Shack wavefront sensors and deformable mirror in the two kinds of adaptive optics systems,” J. Opt. 23, 750–755 (2003).

N. T. Gu, Z. P. Yang, L. H. Huang, and C. H. Rao, “Measurement method of alignment error between Hartmann-Shack sensor and deformable mirror in adaptive optics system,” J. Opt. 12, 095504 (2010).

[Crossref]

F. Cao, L. Z. Chen, C. Long, and Y. Li, “Analysis of the influence of spatial mismatch between deformable mirror and wavefront sensor on fitting accuracy,” Mod. Appl. Phys. 4, 5–8 (2013).

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature 521, 436–444 (2015).

[Crossref]

P. Yang, Y. Liu, M. Ao, S. Hu, and B. Xu, “A wavefront sensor-less adaptive optical system for a solid-state laser,” Opt. Commun. 278, 377–381 (2007).

[Crossref]

J. Tesch, T. Truong, R. Burruss, and S. Gibson, “On-sky demonstration of optimal control for adaptive optics at Palomar Observatory,” Opt. Lett. 40, 1575–1578 (2015).

[Crossref]

S. Zommer, E. N. Ribak, S. G. Lipson, and J. Adler, “Simulated annealing in ocular adaptive optics,” Opt. Lett. 31, 939–941(2006).

[Crossref]

W. Jiang, S. Huang, N. Ling, and X. Wu, “Hill-climb–ing wavefront correction system for large laser engineering,” Proc. SPIE 965, 266–272 (1988).

[Crossref]

Y. Nesterov, “A method of solving a convex programming problem with convergence rate O(1/k 2),” Sov. Math. Dokl. 27, 372–376(1983).

R. K. Tyson, Principles of Adaptive Optics (Academic, 1991).

S. Levine, “Exploring deep and recurrent architectures for optimal control,” arXiv: 1311.1761 (2013).

A. Punjani and P. Abbeel, “Deep learning helicopter dynamics models,” in IEEE International Conference on Robotics and Automation (ICRA) (IEEE, 2015), pp. 3223–3230.

I. Lenz, R. Knepper, and A. Saxena, “Deep MPC: learning deep latent features for model predictive control,” in Robotics: Science and Systems (RSS), Rome, Italy (2015).

C. W. Anderson, M. Lee, and D. L. Elliott, “Faster reinforcement learning after pretraining deep networks to predict state dynamics,” in International Joint Conference on Neural Networks (IJCNN) (IEEE, 2015), pp. 1–7.

https://github.com/rconan/OOMAO .