Abstract

We describe the inline integration of the digital holographic sensor HoloTop in a precision turning plant. A fully automated part-handling system that fulfills the requirements for cycle time and stability was built and integrated into the production process. The inspection system has been running in multishift operation since 2015. For the first time, to the best of our knowledge, the results of one-year, long-term height measurements of 10 million parts under rough production conditions are presented to verify the suitability for industrial use.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Digital holography on moving objects: interference contrast as a function of velocity and aperture width

Annelie Schiller, Tobias Beckmann, Markus Fratz, Dominik Belzer, Alexander Bertz, Daniel Carl, and Karsten Buse
Appl. Opt. 56(16) 4622-4628 (2017)

Comparative digital holography

Wolfgang Osten, Torsten Baumbach, and Werner Jüptner
Opt. Lett. 27(20) 1764-1766 (2002)

Recent advances in digital holography [Invited]

Wolfgang Osten, Ahmad Faridian, Peng Gao, Klaus Körner, Dinesh Naik, Giancarlo Pedrini, Alok Kumar Singh, Mitsuo Takeda, and Marc Wilke
Appl. Opt. 53(27) G44-G63 (2014)

References

  • View by:
  • |
  • |
  • |

  1. V. Pagliarulo, T. Russo, L. Miccio, and P. Ferraro, “Numerical tools for the characterization of microelectromechanical systems by digital holographic microscopy,” J. Micro/Nanolithogr. MEMS, MOEMS 14, 041314 (2015).
    [Crossref]
  2. C. J. Mann, L. Yu, C.-M. Lo, and M. K. Kim, “High-resolution quantitative phase-contrast microscopy by digital holography,” Opt. Express 13, 8693–8698 (2005).
    [Crossref]
  3. C. Wagner, W. Osten, and S. Seebacher, “Direct shape measurement by digital wavefront reconstruction and multiwavelength contouring,” Opt. Eng. 39, 79–85 (2000).
    [Crossref]
  4. C. J. Mann, P. R. Bingham, V. C. Paquit, and K. W. Tobin, “Quantitative phase imaging by three-wavelength digital holography,” Opt. Express 16, 9753–9764 (2008).
    [Crossref]
  5. D. Carl, M. Fratz, M. Pfeifer, D. M. Giel, and H. Höfler, “Multiwavelength digital holography with autocalibration of phase shifts and artificial wavelengths,” Appl. Opt. 48, H1–H8 (2009).
    [Crossref]
  6. M. Fratz and D. Carl, “Novel industry ready sensors for shape measurement based on multi wavelength digital holography,” in Fringe 2013 (Springer, 2014), pp. 479–484.
  7. M. Fratz, T. Beckmann, A. Schiller, T. Seyler, A. Bertz, D. Carl, and K. Buse, “Digital holography: evolution from a research topic to a versatile tool for the inline 100% 3D quality control in industry,” in Proceedings Sensor (2017), pp. 286–289.
  8. “Holographic measurement technology at production for the Fraunhofer Award,” 2017, https://youtu.be/t1Sud60mXl0 .
  9. J. W. Goodman, “Some fundamental properties of speckle,” J. Opt. Soc. Am. 66, 1145–1150 (1976).
    [Crossref]
  10. J. Burke and H. Helmers, “Spatial versus temporal phase shifting in electronic speckle-pattern interferometry: noise comparison in phase maps,” Appl. Opt. 39, 4598–4606 (2000).
    [Crossref]
  11. L. Z. Cai, Q. Liu, and X. L. Yang, “Generalized phase-shifting interferometry with arbitrary unknown phase shifts for diffraction objects,” Opt. Lett. 29, 183 (2004).
    [Crossref]
  12. T. Kreis, Holographic Interferometry: Principles and Methods (Wiley-VCH, 1996).
  13. P. Memmolo, C. Distante, M. Paturzo, A. Finizio, P. Ferraro, and B. Javidi, “Automatic focusing in digital holography and its application to stretched holograms,” Opt. Lett. 36, 1945–1947 (2011).
    [Crossref]
  14. P. Langehanenberg, B. Kemper, D. Dirksen, and G. von Bally, “Autofocusing in digital holographic phase contrast microscopy on pure phase objects for live cell imaging,” Appl. Opt. 47, D176–D182 (2008).
    [Crossref]
  15. T. Seyler, M. Fratz, T. Beckmann, A. Bertz, D. Carl, V. Grün, R. Börret, F. Ströer, and J. Seewig, “Extensive microstructural quality control inside a machine tool using multiwavelength digital holography,” in SPECKLE 2018-VII International Conference on Speckle Metrology (2018).
  16. A. Schiller, T. Beckmann, M. Fratz, A. Bertz, D. Carl, and K. Buse, “Multiwavelength digital holography: height measurements on linearly moving and rotating objects,” in SPECKLE 2018: VII International Conference on Speckle Metrology (2018).

2015 (1)

V. Pagliarulo, T. Russo, L. Miccio, and P. Ferraro, “Numerical tools for the characterization of microelectromechanical systems by digital holographic microscopy,” J. Micro/Nanolithogr. MEMS, MOEMS 14, 041314 (2015).
[Crossref]

2011 (1)

2009 (1)

2008 (2)

2005 (1)

2004 (1)

2000 (2)

C. Wagner, W. Osten, and S. Seebacher, “Direct shape measurement by digital wavefront reconstruction and multiwavelength contouring,” Opt. Eng. 39, 79–85 (2000).
[Crossref]

J. Burke and H. Helmers, “Spatial versus temporal phase shifting in electronic speckle-pattern interferometry: noise comparison in phase maps,” Appl. Opt. 39, 4598–4606 (2000).
[Crossref]

1976 (1)

Beckmann, T.

M. Fratz, T. Beckmann, A. Schiller, T. Seyler, A. Bertz, D. Carl, and K. Buse, “Digital holography: evolution from a research topic to a versatile tool for the inline 100% 3D quality control in industry,” in Proceedings Sensor (2017), pp. 286–289.

T. Seyler, M. Fratz, T. Beckmann, A. Bertz, D. Carl, V. Grün, R. Börret, F. Ströer, and J. Seewig, “Extensive microstructural quality control inside a machine tool using multiwavelength digital holography,” in SPECKLE 2018-VII International Conference on Speckle Metrology (2018).

A. Schiller, T. Beckmann, M. Fratz, A. Bertz, D. Carl, and K. Buse, “Multiwavelength digital holography: height measurements on linearly moving and rotating objects,” in SPECKLE 2018: VII International Conference on Speckle Metrology (2018).

Bertz, A.

A. Schiller, T. Beckmann, M. Fratz, A. Bertz, D. Carl, and K. Buse, “Multiwavelength digital holography: height measurements on linearly moving and rotating objects,” in SPECKLE 2018: VII International Conference on Speckle Metrology (2018).

T. Seyler, M. Fratz, T. Beckmann, A. Bertz, D. Carl, V. Grün, R. Börret, F. Ströer, and J. Seewig, “Extensive microstructural quality control inside a machine tool using multiwavelength digital holography,” in SPECKLE 2018-VII International Conference on Speckle Metrology (2018).

M. Fratz, T. Beckmann, A. Schiller, T. Seyler, A. Bertz, D. Carl, and K. Buse, “Digital holography: evolution from a research topic to a versatile tool for the inline 100% 3D quality control in industry,” in Proceedings Sensor (2017), pp. 286–289.

Bingham, P. R.

Börret, R.

T. Seyler, M. Fratz, T. Beckmann, A. Bertz, D. Carl, V. Grün, R. Börret, F. Ströer, and J. Seewig, “Extensive microstructural quality control inside a machine tool using multiwavelength digital holography,” in SPECKLE 2018-VII International Conference on Speckle Metrology (2018).

Burke, J.

Buse, K.

A. Schiller, T. Beckmann, M. Fratz, A. Bertz, D. Carl, and K. Buse, “Multiwavelength digital holography: height measurements on linearly moving and rotating objects,” in SPECKLE 2018: VII International Conference on Speckle Metrology (2018).

M. Fratz, T. Beckmann, A. Schiller, T. Seyler, A. Bertz, D. Carl, and K. Buse, “Digital holography: evolution from a research topic to a versatile tool for the inline 100% 3D quality control in industry,” in Proceedings Sensor (2017), pp. 286–289.

Cai, L. Z.

Carl, D.

D. Carl, M. Fratz, M. Pfeifer, D. M. Giel, and H. Höfler, “Multiwavelength digital holography with autocalibration of phase shifts and artificial wavelengths,” Appl. Opt. 48, H1–H8 (2009).
[Crossref]

M. Fratz, T. Beckmann, A. Schiller, T. Seyler, A. Bertz, D. Carl, and K. Buse, “Digital holography: evolution from a research topic to a versatile tool for the inline 100% 3D quality control in industry,” in Proceedings Sensor (2017), pp. 286–289.

M. Fratz and D. Carl, “Novel industry ready sensors for shape measurement based on multi wavelength digital holography,” in Fringe 2013 (Springer, 2014), pp. 479–484.

A. Schiller, T. Beckmann, M. Fratz, A. Bertz, D. Carl, and K. Buse, “Multiwavelength digital holography: height measurements on linearly moving and rotating objects,” in SPECKLE 2018: VII International Conference on Speckle Metrology (2018).

T. Seyler, M. Fratz, T. Beckmann, A. Bertz, D. Carl, V. Grün, R. Börret, F. Ströer, and J. Seewig, “Extensive microstructural quality control inside a machine tool using multiwavelength digital holography,” in SPECKLE 2018-VII International Conference on Speckle Metrology (2018).

Dirksen, D.

Distante, C.

Ferraro, P.

V. Pagliarulo, T. Russo, L. Miccio, and P. Ferraro, “Numerical tools for the characterization of microelectromechanical systems by digital holographic microscopy,” J. Micro/Nanolithogr. MEMS, MOEMS 14, 041314 (2015).
[Crossref]

P. Memmolo, C. Distante, M. Paturzo, A. Finizio, P. Ferraro, and B. Javidi, “Automatic focusing in digital holography and its application to stretched holograms,” Opt. Lett. 36, 1945–1947 (2011).
[Crossref]

Finizio, A.

Fratz, M.

D. Carl, M. Fratz, M. Pfeifer, D. M. Giel, and H. Höfler, “Multiwavelength digital holography with autocalibration of phase shifts and artificial wavelengths,” Appl. Opt. 48, H1–H8 (2009).
[Crossref]

M. Fratz and D. Carl, “Novel industry ready sensors for shape measurement based on multi wavelength digital holography,” in Fringe 2013 (Springer, 2014), pp. 479–484.

M. Fratz, T. Beckmann, A. Schiller, T. Seyler, A. Bertz, D. Carl, and K. Buse, “Digital holography: evolution from a research topic to a versatile tool for the inline 100% 3D quality control in industry,” in Proceedings Sensor (2017), pp. 286–289.

T. Seyler, M. Fratz, T. Beckmann, A. Bertz, D. Carl, V. Grün, R. Börret, F. Ströer, and J. Seewig, “Extensive microstructural quality control inside a machine tool using multiwavelength digital holography,” in SPECKLE 2018-VII International Conference on Speckle Metrology (2018).

A. Schiller, T. Beckmann, M. Fratz, A. Bertz, D. Carl, and K. Buse, “Multiwavelength digital holography: height measurements on linearly moving and rotating objects,” in SPECKLE 2018: VII International Conference on Speckle Metrology (2018).

Giel, D. M.

Goodman, J. W.

Grün, V.

T. Seyler, M. Fratz, T. Beckmann, A. Bertz, D. Carl, V. Grün, R. Börret, F. Ströer, and J. Seewig, “Extensive microstructural quality control inside a machine tool using multiwavelength digital holography,” in SPECKLE 2018-VII International Conference on Speckle Metrology (2018).

Helmers, H.

Höfler, H.

Javidi, B.

Kemper, B.

Kim, M. K.

Kreis, T.

T. Kreis, Holographic Interferometry: Principles and Methods (Wiley-VCH, 1996).

Langehanenberg, P.

Liu, Q.

Lo, C.-M.

Mann, C. J.

Memmolo, P.

Miccio, L.

V. Pagliarulo, T. Russo, L. Miccio, and P. Ferraro, “Numerical tools for the characterization of microelectromechanical systems by digital holographic microscopy,” J. Micro/Nanolithogr. MEMS, MOEMS 14, 041314 (2015).
[Crossref]

Osten, W.

C. Wagner, W. Osten, and S. Seebacher, “Direct shape measurement by digital wavefront reconstruction and multiwavelength contouring,” Opt. Eng. 39, 79–85 (2000).
[Crossref]

Pagliarulo, V.

V. Pagliarulo, T. Russo, L. Miccio, and P. Ferraro, “Numerical tools for the characterization of microelectromechanical systems by digital holographic microscopy,” J. Micro/Nanolithogr. MEMS, MOEMS 14, 041314 (2015).
[Crossref]

Paquit, V. C.

Paturzo, M.

Pfeifer, M.

Russo, T.

V. Pagliarulo, T. Russo, L. Miccio, and P. Ferraro, “Numerical tools for the characterization of microelectromechanical systems by digital holographic microscopy,” J. Micro/Nanolithogr. MEMS, MOEMS 14, 041314 (2015).
[Crossref]

Schiller, A.

M. Fratz, T. Beckmann, A. Schiller, T. Seyler, A. Bertz, D. Carl, and K. Buse, “Digital holography: evolution from a research topic to a versatile tool for the inline 100% 3D quality control in industry,” in Proceedings Sensor (2017), pp. 286–289.

A. Schiller, T. Beckmann, M. Fratz, A. Bertz, D. Carl, and K. Buse, “Multiwavelength digital holography: height measurements on linearly moving and rotating objects,” in SPECKLE 2018: VII International Conference on Speckle Metrology (2018).

Seebacher, S.

C. Wagner, W. Osten, and S. Seebacher, “Direct shape measurement by digital wavefront reconstruction and multiwavelength contouring,” Opt. Eng. 39, 79–85 (2000).
[Crossref]

Seewig, J.

T. Seyler, M. Fratz, T. Beckmann, A. Bertz, D. Carl, V. Grün, R. Börret, F. Ströer, and J. Seewig, “Extensive microstructural quality control inside a machine tool using multiwavelength digital holography,” in SPECKLE 2018-VII International Conference on Speckle Metrology (2018).

Seyler, T.

M. Fratz, T. Beckmann, A. Schiller, T. Seyler, A. Bertz, D. Carl, and K. Buse, “Digital holography: evolution from a research topic to a versatile tool for the inline 100% 3D quality control in industry,” in Proceedings Sensor (2017), pp. 286–289.

T. Seyler, M. Fratz, T. Beckmann, A. Bertz, D. Carl, V. Grün, R. Börret, F. Ströer, and J. Seewig, “Extensive microstructural quality control inside a machine tool using multiwavelength digital holography,” in SPECKLE 2018-VII International Conference on Speckle Metrology (2018).

Ströer, F.

T. Seyler, M. Fratz, T. Beckmann, A. Bertz, D. Carl, V. Grün, R. Börret, F. Ströer, and J. Seewig, “Extensive microstructural quality control inside a machine tool using multiwavelength digital holography,” in SPECKLE 2018-VII International Conference on Speckle Metrology (2018).

Tobin, K. W.

von Bally, G.

Wagner, C.

C. Wagner, W. Osten, and S. Seebacher, “Direct shape measurement by digital wavefront reconstruction and multiwavelength contouring,” Opt. Eng. 39, 79–85 (2000).
[Crossref]

Yang, X. L.

Yu, L.

Appl. Opt. (3)

J. Micro/Nanolithogr. MEMS, MOEMS (1)

V. Pagliarulo, T. Russo, L. Miccio, and P. Ferraro, “Numerical tools for the characterization of microelectromechanical systems by digital holographic microscopy,” J. Micro/Nanolithogr. MEMS, MOEMS 14, 041314 (2015).
[Crossref]

J. Opt. Soc. Am. (1)

Opt. Eng. (1)

C. Wagner, W. Osten, and S. Seebacher, “Direct shape measurement by digital wavefront reconstruction and multiwavelength contouring,” Opt. Eng. 39, 79–85 (2000).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Other (6)

M. Fratz and D. Carl, “Novel industry ready sensors for shape measurement based on multi wavelength digital holography,” in Fringe 2013 (Springer, 2014), pp. 479–484.

M. Fratz, T. Beckmann, A. Schiller, T. Seyler, A. Bertz, D. Carl, and K. Buse, “Digital holography: evolution from a research topic to a versatile tool for the inline 100% 3D quality control in industry,” in Proceedings Sensor (2017), pp. 286–289.

“Holographic measurement technology at production for the Fraunhofer Award,” 2017, https://youtu.be/t1Sud60mXl0 .

T. Kreis, Holographic Interferometry: Principles and Methods (Wiley-VCH, 1996).

T. Seyler, M. Fratz, T. Beckmann, A. Bertz, D. Carl, V. Grün, R. Börret, F. Ströer, and J. Seewig, “Extensive microstructural quality control inside a machine tool using multiwavelength digital holography,” in SPECKLE 2018-VII International Conference on Speckle Metrology (2018).

A. Schiller, T. Beckmann, M. Fratz, A. Bertz, D. Carl, and K. Buse, “Multiwavelength digital holography: height measurements on linearly moving and rotating objects,” in SPECKLE 2018: VII International Conference on Speckle Metrology (2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (a) Part handling with clockwise working round table, pneumatic grippers, and optical inspection of sealing surface with digital multiwavelength sensor HoloTop at site. (b) Measurement head with directly mounted sample tray and test object.
Fig. 2.
Fig. 2. (a) Sketch of the setup: Multiple laser sources are selected by a fiber switch inside the laser system (1). Single frequency laser light is guided by a single-mode polarization maintaining fiber to the measurement head (2) where the beam is expanded and coupled into a temporally phase-shifting interferometer. Both, laser system and measurement head are controlled by a PC (3). (b) Electrical control signals of the main devices during a complete measurement cycle compared to the production cycle of one second.
Fig. 3.
Fig. 3. (a) Photo of measurement head with all optical, mechanical, and electronic components, as depicted in Fig. 2. (b) Simulation of spatial vibration amplitude distribution after pulse excitation in arbitrary units. Result is the first eigenfrequency at 605 Hz. Not shown: Laser and PC, both in 19-inch racks.
Fig. 4.
Fig. 4. Measurement results on a groove standard: (a) Height map of a detail of the measurement; (b) 3D representation of the measured data; and (c) section along the dashed line in (a).
Fig. 5.
Fig. 5. Measurement result of the shape of one test sample. (a) Colored height map of the sample surface. (b) Cross section along the dashed line shown in (a).
Fig. 6.
Fig. 6. Height image, pseudo-3D representation of a detail of two sample surfaces and results of repeated measurements. (a) Height image without defect and (b) with intentionally generated impact mark. (c) and (d) Pseudo 3D representation of (a) and (b), respectively. (e) and (f) Result of 20 repeat measurements of the Pt-value on the data given in (a) and (b).
Fig. 7.
Fig. 7. (a) Photograph of the produced parts that are investigated using the holographic sensor, with the evaluated functional surface marked red. (b) Values of a feature (Pt) extracted from the holographic data recorded over one year (9.86 million 3D measurements). For visualization, the data points (blue) are plotted semi-transparent. The red dashed line illustrates the moving average over 80,000 measurements (approximately one day).

Metrics