Abstract

A novel technique is presented for the full-color reconstruction of large-scale computer-generated holograms (CGHs). In this method, three printed CGHs are transferred to three volume holograms at the wavelengths corresponding to red–green–blue (RGB) colors and then stacked to superimpose the RGB color images. The developed CGHs are compact and portable. The reconstructed image is sharp and vivid as compared with that developed using RGB color filters. A technique for correcting the original CGHs is proposed to compensate for the aberration caused by the thick glass substrate because the RGB images exhibit a considerable position shift owing to the aberration. Fabricated large-scale full-color CGHs are demonstrated to verify the techniques.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Full-color large-scaled computer-generated holograms using RGB color filters

Yasuhiro Tsuchiyama and Kyoji Matsushima
Opt. Express 25(3) 2016-2030 (2017)

Full-color digitized holography for large-scale holographic 3D imaging of physical and nonphysical objects

Kyoji Matsushima and Noriaki Sonobe
Appl. Opt. 57(1) A150-A156 (2018)

Extremely high-definition full-parallax computer-generated hologram created by the polygon-based method

Kyoji Matsushima and Sumio Nakahara
Appl. Opt. 48(34) H54-H63 (2009)

References

  • View by:
  • |
  • |
  • |

  1. H. I. Bjelkhagen and E. Mirlis, “Color holography to produce highly realistic three-dimensional images,” Appl. Opt. 47, A123–A133 (2008).
    [Crossref]
  2. G. Saxby and S. Zacharovas, Practical Holography, 4th ed. (CRC Press, 2016), Chap. 4.
  3. H. I. Bjelkhagen and D. Brotherton-Ratcliffe, Ultra-Realistic Imaging (CRC Press, 2013), Chap. 7.
  4. F. Yang, Y. Murakami, and M. Yamaguchi, “Digital color management in full-color holographic three-dimensional printer,” Appl. Opt. 51, 4343–4352 (2012).
    [Crossref]
  5. H. Yoshikawa and T. Yamaguchi, “Computer-generated holograms for 3D display,” Chin. Opt. Lett. 7, 1079–1082 (2009).
    [Crossref]
  6. X. Yang, H. Wang, Y. Li, F. Xu, J. H. Zhang, and H. Zhang, “Large scale and high resolution color Fresnel holographic 3D display using RGB LED illumination,” Proc. SPIE 10964, 109642G (2018).
    [Crossref]
  7. W. Freese, T. Kämpfe, W. Rockstroh, E.-B. Kley, and A. Tünnermann, “Optimized electron beam writing strategy for fabricating computer-generated holograms based on an effective medium approach,” Opt. Express 19, 8684–8692 (2011).
    [Crossref]
  8. X. Yang, H. Wang, Y. Li, F. Xu, J. H. Zhang, and H. Zhang, “Large scale and high resolution computer generated synthetic color rainbow hologram,” J. Opt. 21, 025601 (2019).
    [Crossref]
  9. N. S. Merzlyakov and M. G. Mozerov, “Computer-generated true-color rainbow holograms,” Opt. Laser Eng. 29, 369–376 (1998).
    [Crossref]
  10. Y. Shi, H. Wang, Y. Li, H. Jin, and L. Ma, “Practical method for color computer-generated rainbow holograms of real-existing objects,” Appl. Opt. 48, 4219–4226 (2009).
    [Crossref]
  11. Y. Shi, H. Wang, and Q. Wu, “Color evaluation of computer-generated color rainbow holography,” J. Opt. 15, 025701 (2013).
    [Crossref]
  12. T. Miyaoka, K. Matsushima, and S. Nakahara, “Optimization of design-wavelength for unobtrusive chromatic aberration in high-definition color computer holography,” Proc. SPIE. 9386, 93860N (2015).
    [Crossref]
  13. M. Makowski, M. Sypek, and A. Kolodziejczyk, “Colorful reconstructions from a thin multi-plane phase hologram,” Opt. Express 16, 11618–11623 (2008).
    [Crossref]
  14. T. Yamaguchi, O. Miyamoto, and H. Yoshikawa, “Volume hologram printer to record the wavefront of three-dimensional objects,” Opt. Eng. 51, 075802 (2012).
    [Crossref]
  15. W. Nishii and K. Matsushima, “A wavefront printer using phase-only spatial light modulator for producing computer-generated volume holograms,” Proc. SPIE 9006, 90061F (2014).
    [Crossref]
  16. Y. Kim, E. Stoykova, H. Kang, S. Hong, J. Park, J. Park, and J. Hong, “Seamless full color holographic printing method based on spatial partitioning of SLM,” Opt. Express 23, 172–182 (2015).
    [Crossref]
  17. K. Wakunami, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, and K. Yamamoto, “Wavefront printing technique with overlapping approach toward high definition holographic image reconstruction,” Proc. SPIE 9867, 98670J (2016).
    [Crossref]
  18. Y. Ichihashi, K. Yamamoto, K. Wakunami, R. Oi, M. Okui, and T. Senoh, “An analysis of printing conditions for wavefront overlapping printing,” Proc. SPIE 10127, 101270L (2017).
    [Crossref]
  19. K. Matsushima, “Computer-generated holograms for three-dimensional surface objects with shade and texture,” Appl. Opt. 44, 4607–4614 (2005).
    [Crossref]
  20. K. Matsushima, M. Nakamura, and S. Nakahara, “Silhouette method for hidden surface removal in computer holography and its acceleration using the switch-back technique,” Opt. Express 22, 24450–24465 (2014).
    [Crossref]
  21. K. Matsushima and S. Nakahara, “Extremely high-definition full-parallax computer-generated hologram created by the polygon-based method,” Appl. Opt. 48, H54–H63 (2009).
    [Crossref]
  22. K. Matsushima, Y. Arima, and S. Nakahara, “Digitized holography: modern holography for 3D imaging of virtual and real objects,” Appl. Opt. 50, H278–H284 (2011).
    [Crossref]
  23. K. Matsushima, H. Nishi, and S. Nakahara, “Simple wave-field rendering for photorealistic reconstruction in polygon-based high-definition computer holography,” J. Electron. Imaging 21, 023002 (2012).
    [Crossref]
  24. K. Matsushima and S. Nakahara, “Stepping closer to the perfect 3D digital image,” SPIE Newsroom, 2012, https://spie.org/news/4526-stepping-closer-to-the-perfect-3d-digital-image?SSO=1.
    [Crossref]
  25. H. Nishi and K. Matsushima, “Rendering of specular curved objects in polygon-based computer holography,” Appl. Opt. 56, F37–F44 (2017).
    [Crossref]
  26. Y. Tsuchiyama and K. Matsushima, “Full-color large-scaled computer-generated holograms using RGB color filters,” Opt. Express 25, 2016–2030 (2017).
    [Crossref]
  27. K. Matsushima and N. Sonobe, “Full-color digitized holography for large-scale holographic 3D imaging of physical and nonphysical objects,” Appl. Opt. 57, A150–A156 (2018).
    [Crossref]
  28. T. Kämpfe, E. Kley, A. Tünnermann, and P. Dannberg, “Design and fabrication of stacked, computer generated holograms for multicolor image generation,” Appl. Opt. 46, 5482–5488 (2007).
    [Crossref]
  29. O. Kunieda and K. Matsushima, “Large-scale full-color computer-generated display holograms created by stacking transferred volume holograms,” Proc. SPIE 11062, 1106203 (2019).
    [Crossref]
  30. K. Matsushima and T. Shimobaba, “Band-limited angular spectrum method for numerical simulation of free-space propagation in far and near fields,” Opt. Express 17, 19662–19673 (2009).
    [Crossref]

2019 (2)

X. Yang, H. Wang, Y. Li, F. Xu, J. H. Zhang, and H. Zhang, “Large scale and high resolution computer generated synthetic color rainbow hologram,” J. Opt. 21, 025601 (2019).
[Crossref]

O. Kunieda and K. Matsushima, “Large-scale full-color computer-generated display holograms created by stacking transferred volume holograms,” Proc. SPIE 11062, 1106203 (2019).
[Crossref]

2018 (2)

K. Matsushima and N. Sonobe, “Full-color digitized holography for large-scale holographic 3D imaging of physical and nonphysical objects,” Appl. Opt. 57, A150–A156 (2018).
[Crossref]

X. Yang, H. Wang, Y. Li, F. Xu, J. H. Zhang, and H. Zhang, “Large scale and high resolution color Fresnel holographic 3D display using RGB LED illumination,” Proc. SPIE 10964, 109642G (2018).
[Crossref]

2017 (3)

2016 (1)

K. Wakunami, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, and K. Yamamoto, “Wavefront printing technique with overlapping approach toward high definition holographic image reconstruction,” Proc. SPIE 9867, 98670J (2016).
[Crossref]

2015 (2)

Y. Kim, E. Stoykova, H. Kang, S. Hong, J. Park, J. Park, and J. Hong, “Seamless full color holographic printing method based on spatial partitioning of SLM,” Opt. Express 23, 172–182 (2015).
[Crossref]

T. Miyaoka, K. Matsushima, and S. Nakahara, “Optimization of design-wavelength for unobtrusive chromatic aberration in high-definition color computer holography,” Proc. SPIE. 9386, 93860N (2015).
[Crossref]

2014 (2)

W. Nishii and K. Matsushima, “A wavefront printer using phase-only spatial light modulator for producing computer-generated volume holograms,” Proc. SPIE 9006, 90061F (2014).
[Crossref]

K. Matsushima, M. Nakamura, and S. Nakahara, “Silhouette method for hidden surface removal in computer holography and its acceleration using the switch-back technique,” Opt. Express 22, 24450–24465 (2014).
[Crossref]

2013 (1)

Y. Shi, H. Wang, and Q. Wu, “Color evaluation of computer-generated color rainbow holography,” J. Opt. 15, 025701 (2013).
[Crossref]

2012 (3)

T. Yamaguchi, O. Miyamoto, and H. Yoshikawa, “Volume hologram printer to record the wavefront of three-dimensional objects,” Opt. Eng. 51, 075802 (2012).
[Crossref]

F. Yang, Y. Murakami, and M. Yamaguchi, “Digital color management in full-color holographic three-dimensional printer,” Appl. Opt. 51, 4343–4352 (2012).
[Crossref]

K. Matsushima, H. Nishi, and S. Nakahara, “Simple wave-field rendering for photorealistic reconstruction in polygon-based high-definition computer holography,” J. Electron. Imaging 21, 023002 (2012).
[Crossref]

2011 (2)

2009 (4)

2008 (2)

2007 (1)

2005 (1)

1998 (1)

N. S. Merzlyakov and M. G. Mozerov, “Computer-generated true-color rainbow holograms,” Opt. Laser Eng. 29, 369–376 (1998).
[Crossref]

Arima, Y.

Bjelkhagen, H. I.

Brotherton-Ratcliffe, D.

H. I. Bjelkhagen and D. Brotherton-Ratcliffe, Ultra-Realistic Imaging (CRC Press, 2013), Chap. 7.

Dannberg, P.

Freese, W.

Hong, J.

Hong, S.

Ichihashi, Y.

Y. Ichihashi, K. Yamamoto, K. Wakunami, R. Oi, M. Okui, and T. Senoh, “An analysis of printing conditions for wavefront overlapping printing,” Proc. SPIE 10127, 101270L (2017).
[Crossref]

K. Wakunami, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, and K. Yamamoto, “Wavefront printing technique with overlapping approach toward high definition holographic image reconstruction,” Proc. SPIE 9867, 98670J (2016).
[Crossref]

Jin, H.

Kämpfe, T.

Kang, H.

Kim, Y.

Kley, E.

Kley, E.-B.

Kolodziejczyk, A.

Kunieda, O.

O. Kunieda and K. Matsushima, “Large-scale full-color computer-generated display holograms created by stacking transferred volume holograms,” Proc. SPIE 11062, 1106203 (2019).
[Crossref]

Li, Y.

X. Yang, H. Wang, Y. Li, F. Xu, J. H. Zhang, and H. Zhang, “Large scale and high resolution computer generated synthetic color rainbow hologram,” J. Opt. 21, 025601 (2019).
[Crossref]

X. Yang, H. Wang, Y. Li, F. Xu, J. H. Zhang, and H. Zhang, “Large scale and high resolution color Fresnel holographic 3D display using RGB LED illumination,” Proc. SPIE 10964, 109642G (2018).
[Crossref]

Y. Shi, H. Wang, Y. Li, H. Jin, and L. Ma, “Practical method for color computer-generated rainbow holograms of real-existing objects,” Appl. Opt. 48, 4219–4226 (2009).
[Crossref]

Ma, L.

Makowski, M.

Matsushima, K.

O. Kunieda and K. Matsushima, “Large-scale full-color computer-generated display holograms created by stacking transferred volume holograms,” Proc. SPIE 11062, 1106203 (2019).
[Crossref]

K. Matsushima and N. Sonobe, “Full-color digitized holography for large-scale holographic 3D imaging of physical and nonphysical objects,” Appl. Opt. 57, A150–A156 (2018).
[Crossref]

H. Nishi and K. Matsushima, “Rendering of specular curved objects in polygon-based computer holography,” Appl. Opt. 56, F37–F44 (2017).
[Crossref]

Y. Tsuchiyama and K. Matsushima, “Full-color large-scaled computer-generated holograms using RGB color filters,” Opt. Express 25, 2016–2030 (2017).
[Crossref]

T. Miyaoka, K. Matsushima, and S. Nakahara, “Optimization of design-wavelength for unobtrusive chromatic aberration in high-definition color computer holography,” Proc. SPIE. 9386, 93860N (2015).
[Crossref]

W. Nishii and K. Matsushima, “A wavefront printer using phase-only spatial light modulator for producing computer-generated volume holograms,” Proc. SPIE 9006, 90061F (2014).
[Crossref]

K. Matsushima, M. Nakamura, and S. Nakahara, “Silhouette method for hidden surface removal in computer holography and its acceleration using the switch-back technique,” Opt. Express 22, 24450–24465 (2014).
[Crossref]

K. Matsushima, H. Nishi, and S. Nakahara, “Simple wave-field rendering for photorealistic reconstruction in polygon-based high-definition computer holography,” J. Electron. Imaging 21, 023002 (2012).
[Crossref]

K. Matsushima, Y. Arima, and S. Nakahara, “Digitized holography: modern holography for 3D imaging of virtual and real objects,” Appl. Opt. 50, H278–H284 (2011).
[Crossref]

K. Matsushima and T. Shimobaba, “Band-limited angular spectrum method for numerical simulation of free-space propagation in far and near fields,” Opt. Express 17, 19662–19673 (2009).
[Crossref]

K. Matsushima and S. Nakahara, “Extremely high-definition full-parallax computer-generated hologram created by the polygon-based method,” Appl. Opt. 48, H54–H63 (2009).
[Crossref]

K. Matsushima, “Computer-generated holograms for three-dimensional surface objects with shade and texture,” Appl. Opt. 44, 4607–4614 (2005).
[Crossref]

K. Matsushima and S. Nakahara, “Stepping closer to the perfect 3D digital image,” SPIE Newsroom, 2012, https://spie.org/news/4526-stepping-closer-to-the-perfect-3d-digital-image?SSO=1.
[Crossref]

Merzlyakov, N. S.

N. S. Merzlyakov and M. G. Mozerov, “Computer-generated true-color rainbow holograms,” Opt. Laser Eng. 29, 369–376 (1998).
[Crossref]

Mirlis, E.

Miyamoto, O.

T. Yamaguchi, O. Miyamoto, and H. Yoshikawa, “Volume hologram printer to record the wavefront of three-dimensional objects,” Opt. Eng. 51, 075802 (2012).
[Crossref]

Miyaoka, T.

T. Miyaoka, K. Matsushima, and S. Nakahara, “Optimization of design-wavelength for unobtrusive chromatic aberration in high-definition color computer holography,” Proc. SPIE. 9386, 93860N (2015).
[Crossref]

Mozerov, M. G.

N. S. Merzlyakov and M. G. Mozerov, “Computer-generated true-color rainbow holograms,” Opt. Laser Eng. 29, 369–376 (1998).
[Crossref]

Murakami, Y.

Nakahara, S.

T. Miyaoka, K. Matsushima, and S. Nakahara, “Optimization of design-wavelength for unobtrusive chromatic aberration in high-definition color computer holography,” Proc. SPIE. 9386, 93860N (2015).
[Crossref]

K. Matsushima, M. Nakamura, and S. Nakahara, “Silhouette method for hidden surface removal in computer holography and its acceleration using the switch-back technique,” Opt. Express 22, 24450–24465 (2014).
[Crossref]

K. Matsushima, H. Nishi, and S. Nakahara, “Simple wave-field rendering for photorealistic reconstruction in polygon-based high-definition computer holography,” J. Electron. Imaging 21, 023002 (2012).
[Crossref]

K. Matsushima, Y. Arima, and S. Nakahara, “Digitized holography: modern holography for 3D imaging of virtual and real objects,” Appl. Opt. 50, H278–H284 (2011).
[Crossref]

K. Matsushima and S. Nakahara, “Extremely high-definition full-parallax computer-generated hologram created by the polygon-based method,” Appl. Opt. 48, H54–H63 (2009).
[Crossref]

K. Matsushima and S. Nakahara, “Stepping closer to the perfect 3D digital image,” SPIE Newsroom, 2012, https://spie.org/news/4526-stepping-closer-to-the-perfect-3d-digital-image?SSO=1.
[Crossref]

Nakamura, M.

Nishi, H.

H. Nishi and K. Matsushima, “Rendering of specular curved objects in polygon-based computer holography,” Appl. Opt. 56, F37–F44 (2017).
[Crossref]

K. Matsushima, H. Nishi, and S. Nakahara, “Simple wave-field rendering for photorealistic reconstruction in polygon-based high-definition computer holography,” J. Electron. Imaging 21, 023002 (2012).
[Crossref]

Nishii, W.

W. Nishii and K. Matsushima, “A wavefront printer using phase-only spatial light modulator for producing computer-generated volume holograms,” Proc. SPIE 9006, 90061F (2014).
[Crossref]

Oi, R.

Y. Ichihashi, K. Yamamoto, K. Wakunami, R. Oi, M. Okui, and T. Senoh, “An analysis of printing conditions for wavefront overlapping printing,” Proc. SPIE 10127, 101270L (2017).
[Crossref]

K. Wakunami, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, and K. Yamamoto, “Wavefront printing technique with overlapping approach toward high definition holographic image reconstruction,” Proc. SPIE 9867, 98670J (2016).
[Crossref]

Okui, M.

Y. Ichihashi, K. Yamamoto, K. Wakunami, R. Oi, M. Okui, and T. Senoh, “An analysis of printing conditions for wavefront overlapping printing,” Proc. SPIE 10127, 101270L (2017).
[Crossref]

Park, J.

Rockstroh, W.

Sasaki, H.

K. Wakunami, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, and K. Yamamoto, “Wavefront printing technique with overlapping approach toward high definition holographic image reconstruction,” Proc. SPIE 9867, 98670J (2016).
[Crossref]

Saxby, G.

G. Saxby and S. Zacharovas, Practical Holography, 4th ed. (CRC Press, 2016), Chap. 4.

Senoh, T.

Y. Ichihashi, K. Yamamoto, K. Wakunami, R. Oi, M. Okui, and T. Senoh, “An analysis of printing conditions for wavefront overlapping printing,” Proc. SPIE 10127, 101270L (2017).
[Crossref]

K. Wakunami, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, and K. Yamamoto, “Wavefront printing technique with overlapping approach toward high definition holographic image reconstruction,” Proc. SPIE 9867, 98670J (2016).
[Crossref]

Shi, Y.

Shimobaba, T.

Sonobe, N.

Stoykova, E.

Sypek, M.

Tsuchiyama, Y.

Tünnermann, A.

Wakunami, K.

Y. Ichihashi, K. Yamamoto, K. Wakunami, R. Oi, M. Okui, and T. Senoh, “An analysis of printing conditions for wavefront overlapping printing,” Proc. SPIE 10127, 101270L (2017).
[Crossref]

K. Wakunami, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, and K. Yamamoto, “Wavefront printing technique with overlapping approach toward high definition holographic image reconstruction,” Proc. SPIE 9867, 98670J (2016).
[Crossref]

Wang, H.

X. Yang, H. Wang, Y. Li, F. Xu, J. H. Zhang, and H. Zhang, “Large scale and high resolution computer generated synthetic color rainbow hologram,” J. Opt. 21, 025601 (2019).
[Crossref]

X. Yang, H. Wang, Y. Li, F. Xu, J. H. Zhang, and H. Zhang, “Large scale and high resolution color Fresnel holographic 3D display using RGB LED illumination,” Proc. SPIE 10964, 109642G (2018).
[Crossref]

Y. Shi, H. Wang, and Q. Wu, “Color evaluation of computer-generated color rainbow holography,” J. Opt. 15, 025701 (2013).
[Crossref]

Y. Shi, H. Wang, Y. Li, H. Jin, and L. Ma, “Practical method for color computer-generated rainbow holograms of real-existing objects,” Appl. Opt. 48, 4219–4226 (2009).
[Crossref]

Wu, Q.

Y. Shi, H. Wang, and Q. Wu, “Color evaluation of computer-generated color rainbow holography,” J. Opt. 15, 025701 (2013).
[Crossref]

Xu, F.

X. Yang, H. Wang, Y. Li, F. Xu, J. H. Zhang, and H. Zhang, “Large scale and high resolution computer generated synthetic color rainbow hologram,” J. Opt. 21, 025601 (2019).
[Crossref]

X. Yang, H. Wang, Y. Li, F. Xu, J. H. Zhang, and H. Zhang, “Large scale and high resolution color Fresnel holographic 3D display using RGB LED illumination,” Proc. SPIE 10964, 109642G (2018).
[Crossref]

Yamaguchi, M.

Yamaguchi, T.

T. Yamaguchi, O. Miyamoto, and H. Yoshikawa, “Volume hologram printer to record the wavefront of three-dimensional objects,” Opt. Eng. 51, 075802 (2012).
[Crossref]

H. Yoshikawa and T. Yamaguchi, “Computer-generated holograms for 3D display,” Chin. Opt. Lett. 7, 1079–1082 (2009).
[Crossref]

Yamamoto, K.

Y. Ichihashi, K. Yamamoto, K. Wakunami, R. Oi, M. Okui, and T. Senoh, “An analysis of printing conditions for wavefront overlapping printing,” Proc. SPIE 10127, 101270L (2017).
[Crossref]

K. Wakunami, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, and K. Yamamoto, “Wavefront printing technique with overlapping approach toward high definition holographic image reconstruction,” Proc. SPIE 9867, 98670J (2016).
[Crossref]

Yang, F.

Yang, X.

X. Yang, H. Wang, Y. Li, F. Xu, J. H. Zhang, and H. Zhang, “Large scale and high resolution computer generated synthetic color rainbow hologram,” J. Opt. 21, 025601 (2019).
[Crossref]

X. Yang, H. Wang, Y. Li, F. Xu, J. H. Zhang, and H. Zhang, “Large scale and high resolution color Fresnel holographic 3D display using RGB LED illumination,” Proc. SPIE 10964, 109642G (2018).
[Crossref]

Yoshikawa, H.

T. Yamaguchi, O. Miyamoto, and H. Yoshikawa, “Volume hologram printer to record the wavefront of three-dimensional objects,” Opt. Eng. 51, 075802 (2012).
[Crossref]

H. Yoshikawa and T. Yamaguchi, “Computer-generated holograms for 3D display,” Chin. Opt. Lett. 7, 1079–1082 (2009).
[Crossref]

Zacharovas, S.

G. Saxby and S. Zacharovas, Practical Holography, 4th ed. (CRC Press, 2016), Chap. 4.

Zhang, H.

X. Yang, H. Wang, Y. Li, F. Xu, J. H. Zhang, and H. Zhang, “Large scale and high resolution computer generated synthetic color rainbow hologram,” J. Opt. 21, 025601 (2019).
[Crossref]

X. Yang, H. Wang, Y. Li, F. Xu, J. H. Zhang, and H. Zhang, “Large scale and high resolution color Fresnel holographic 3D display using RGB LED illumination,” Proc. SPIE 10964, 109642G (2018).
[Crossref]

Zhang, J. H.

X. Yang, H. Wang, Y. Li, F. Xu, J. H. Zhang, and H. Zhang, “Large scale and high resolution computer generated synthetic color rainbow hologram,” J. Opt. 21, 025601 (2019).
[Crossref]

X. Yang, H. Wang, Y. Li, F. Xu, J. H. Zhang, and H. Zhang, “Large scale and high resolution color Fresnel holographic 3D display using RGB LED illumination,” Proc. SPIE 10964, 109642G (2018).
[Crossref]

Appl. Opt. (9)

K. Matsushima, “Computer-generated holograms for three-dimensional surface objects with shade and texture,” Appl. Opt. 44, 4607–4614 (2005).
[Crossref]

T. Kämpfe, E. Kley, A. Tünnermann, and P. Dannberg, “Design and fabrication of stacked, computer generated holograms for multicolor image generation,” Appl. Opt. 46, 5482–5488 (2007).
[Crossref]

H. I. Bjelkhagen and E. Mirlis, “Color holography to produce highly realistic three-dimensional images,” Appl. Opt. 47, A123–A133 (2008).
[Crossref]

Y. Shi, H. Wang, Y. Li, H. Jin, and L. Ma, “Practical method for color computer-generated rainbow holograms of real-existing objects,” Appl. Opt. 48, 4219–4226 (2009).
[Crossref]

K. Matsushima and S. Nakahara, “Extremely high-definition full-parallax computer-generated hologram created by the polygon-based method,” Appl. Opt. 48, H54–H63 (2009).
[Crossref]

K. Matsushima, Y. Arima, and S. Nakahara, “Digitized holography: modern holography for 3D imaging of virtual and real objects,” Appl. Opt. 50, H278–H284 (2011).
[Crossref]

F. Yang, Y. Murakami, and M. Yamaguchi, “Digital color management in full-color holographic three-dimensional printer,” Appl. Opt. 51, 4343–4352 (2012).
[Crossref]

H. Nishi and K. Matsushima, “Rendering of specular curved objects in polygon-based computer holography,” Appl. Opt. 56, F37–F44 (2017).
[Crossref]

K. Matsushima and N. Sonobe, “Full-color digitized holography for large-scale holographic 3D imaging of physical and nonphysical objects,” Appl. Opt. 57, A150–A156 (2018).
[Crossref]

Chin. Opt. Lett. (1)

J. Electron. Imaging (1)

K. Matsushima, H. Nishi, and S. Nakahara, “Simple wave-field rendering for photorealistic reconstruction in polygon-based high-definition computer holography,” J. Electron. Imaging 21, 023002 (2012).
[Crossref]

J. Opt. (2)

Y. Shi, H. Wang, and Q. Wu, “Color evaluation of computer-generated color rainbow holography,” J. Opt. 15, 025701 (2013).
[Crossref]

X. Yang, H. Wang, Y. Li, F. Xu, J. H. Zhang, and H. Zhang, “Large scale and high resolution computer generated synthetic color rainbow hologram,” J. Opt. 21, 025601 (2019).
[Crossref]

Opt. Eng. (1)

T. Yamaguchi, O. Miyamoto, and H. Yoshikawa, “Volume hologram printer to record the wavefront of three-dimensional objects,” Opt. Eng. 51, 075802 (2012).
[Crossref]

Opt. Express (6)

Opt. Laser Eng. (1)

N. S. Merzlyakov and M. G. Mozerov, “Computer-generated true-color rainbow holograms,” Opt. Laser Eng. 29, 369–376 (1998).
[Crossref]

Proc. SPIE (5)

W. Nishii and K. Matsushima, “A wavefront printer using phase-only spatial light modulator for producing computer-generated volume holograms,” Proc. SPIE 9006, 90061F (2014).
[Crossref]

K. Wakunami, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, and K. Yamamoto, “Wavefront printing technique with overlapping approach toward high definition holographic image reconstruction,” Proc. SPIE 9867, 98670J (2016).
[Crossref]

Y. Ichihashi, K. Yamamoto, K. Wakunami, R. Oi, M. Okui, and T. Senoh, “An analysis of printing conditions for wavefront overlapping printing,” Proc. SPIE 10127, 101270L (2017).
[Crossref]

X. Yang, H. Wang, Y. Li, F. Xu, J. H. Zhang, and H. Zhang, “Large scale and high resolution color Fresnel holographic 3D display using RGB LED illumination,” Proc. SPIE 10964, 109642G (2018).
[Crossref]

O. Kunieda and K. Matsushima, “Large-scale full-color computer-generated display holograms created by stacking transferred volume holograms,” Proc. SPIE 11062, 1106203 (2019).
[Crossref]

Proc. SPIE. (1)

T. Miyaoka, K. Matsushima, and S. Nakahara, “Optimization of design-wavelength for unobtrusive chromatic aberration in high-definition color computer holography,” Proc. SPIE. 9386, 93860N (2015).
[Crossref]

Other (3)

K. Matsushima and S. Nakahara, “Stepping closer to the perfect 3D digital image,” SPIE Newsroom, 2012, https://spie.org/news/4526-stepping-closer-to-the-perfect-3d-digital-image?SSO=1.
[Crossref]

G. Saxby and S. Zacharovas, Practical Holography, 4th ed. (CRC Press, 2016), Chap. 4.

H. I. Bjelkhagen and D. Brotherton-Ratcliffe, Ultra-Realistic Imaging (CRC Press, 2013), Chap. 7.

Supplementary Material (1)

NameDescription
» Visualization 1       The video clips shows optical reconstruction of a full-color large-scale computer-generated hologram created by the proposed novel technique called stacked CGVH.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1. (a) Reconstruction of CGHs printed by laser lithography and examples of optical reconstruction by (b) monochromatic and (c) white-light illumination.
Fig. 2.
Fig. 2. (a) Fabrication and (b) reconstruction of a volume hologram transferred from the original CGH using contact copy; (c) example of optical reconstruction of the transferred CGH using white-light illumination.
Fig. 3.
Fig. 3. Reconstruction of a full-color image from the stack of transferred CGVHs and the coordinate system used for compensation.
Fig. 4.
Fig. 4. Ideal object field that should be reconstructed by the stacked CGVH.
Fig. 5.
Fig. 5. Backward propagation of the ideal object field through the glass substrate. The propagation is depicted in the case of G, for example.
Fig. 6.
Fig. 6. Backward propagation through the substrate of the original CGH.
Fig. 7.
Fig. 7. 3D scene of the fabricated CGH.
Fig. 8.
Fig. 8. Optical system used to transfer the original CGHs to volume holograms.
Fig. 9.
Fig. 9. Optical reconstructions of the individual transferred CGHs. A pigtail white LED is used for the illumination light source. (a) Red, (b) green, (c) blue.
Fig. 10.
Fig. 10. Optical reconstruction of the stacked CGVH using a pigtail white LED. (a) Setup and (b) a distant picture (see Visualization 1).
Fig. 11.
Fig. 11. Close-up photographs of the 3D image reconstructed by the stacked CGVH. The pictures are taken from (a) left, (b) center, and (c) right viewpoints (see Visualization 1).
Fig. 12.
Fig. 12. Comparison between optical reconstructions of (a) the stacked CGVH (this work) and (b) full-color CGH using RGB color filters [26].
Fig. 13.
Fig. 13. Comparison between spectra of (a) measured reflectance of the volume holograms and (b) estimated effective illuminations with use of RGB color filters [26].
Fig. 14.
Fig. 14. Comparison between optical reconstructions of the stacked CGVHs (a) with and (b) without the substrate compensation. Both pictures are taken from a left viewpoint.

Tables (3)

Tables Icon

Table 1. Parameters Used for Creating the CGH

Tables Icon

Table 2. Parameters of the Glass Substrate of the Recording Material and Original CGH

Tables Icon

Table 3. Parameters for Transferring the Original CGHs to Volume Holograms

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

λ p = λ p n p ,
O ( x , y ; λ G ) = h B L A S ( x , y ; 3 d , λ G ) O ( x , y ; λ G ) ,
O ( x , y ; λ p ) = h B L A S ( x , y ; d C G H , λ p ) O ( x , y ; λ p ) ,
I ( x , y ; λ p ) = | O ( x , y ; λ p ) + R ( x , y ; λ p ) | 2 O ( x , y ; λ p ) R ( x , y ; λ p ) + B ,

Metrics