Abstract

Some pupil wavefront optimization (PWO) approaches were studied to compensate the thick mask effects considering only a field point, and these PWO methods neglect the inherent wave aberration in a realistic lithography system. Particularly, the wave aberration of lithography projection optics is exposure field dependent, and the wave aberrations at different fields of view (FOVs) would seriously and unevenly impact the results and effects of PWO. The current PWO method for single FOV cannot match full FOV. In this paper, we propose a multiple-field-point PWO (MPWO) method to improve lithography imaging quality for full FOV. A multiple-field-point cost function is built including the uneven impact of multiple aberrations on lithography imaging at full FOV. The comprehensive simulations demonstrate that the proposed MPWO method can effectively improve consistency of lithography imaging and enlarge the overlapped process window for full FOV. The most important point is that the optimized wavefront attained by MPWO can be realized via pupil wavefront manipulator FlexWave in lithography equipment, which is significant in holistic lithography for the next technology node.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Inverse pupil wavefront optimization for immersion lithography

Chunying Han, Yanqiu Li, Lisong Dong, Xu Ma, and Xuejia Guo
Appl. Opt. 53(29) 6861-6871 (2014)

Multi-objective lithographic source mask optimization to reduce the uneven impact of polarization aberration at full exposure field

Tie Li, Yiyu Sun, Enze Li, Naiyuan Sheng, Yanqiu Li, Pengzhi Wei, and Yang Liu
Opt. Express 27(11) 15604-15616 (2019)

References

  • View by:
  • |
  • |
  • |

  1. A. K.-K. Wong, Resolution Enhancement Techniques in Optical Lithography (SPIE, 2001).
  2. D. O. S. Melville, A. E. Rosenbluth, A. Waechter, M. Millstone, J. Tirapu-Azpiroz, K. Tian, K. Lai, T. Inoue, M. Sakamoto, K. Adam, and A. Tritchkov, “Computational lithography: exhausting the resolution limits of 193-nm projection lithography systems,” J. Vac. Sci. Technol. B 29, 06FH04 (2011).
    [Crossref]
  3. H.-F. Kuo, “Ant colony optimization-based freeform sources for enhancing nanolithographic imaging performance,” IEEE Trans. Nanotechnol. 15, 599–606 (2016).
    [Crossref]
  4. Z. Song, X. Ma, J. Gao, J. Wang, Y. Li, and G. R. Arce, “Inverse lithography source optimization via compressive sensing,” Opt. Express 22, 14180–14198 (2014).
    [Crossref]
  5. X. Ma, Y. Li, and L. Dong, “Mask optimization approaches in optical lithography based on a vector imaging model,” J. Opt. Soc. Am. A 29, 1300–1312 (2012).
    [Crossref]
  6. Y.-H. Su, Y.-C. Huang, L.-C. Tsai, Y.-W. Chang, and S. Banerjee, “Fast lithography mask optimization considering process variation,” IEEE Trans. CAD Integr. Circ. Syst. 35, 1345–1357 (2016).
    [Crossref]
  7. Y. Peng, J. Zhang, Y. Wang, and Z. Yu, “Gradient-based source and mask optimization in optical lithography,” IEEE Trans. Image Process. 20, 2856–2864 (2011).
    [Crossref]
  8. X. Ma, C. Han, Y. Li, L. Dong, and G. R. Arce, “Pixelated source and mask optimization for immersion lithography,” J. Opt. Soc. Am. A 30, 112–123 (2013).
    [Crossref]
  9. T. Li and Y. Li, “Lithographic source and mask optimization with low aberration sensitivity,” IEEE Trans. Nanotechnol. 16, 1099–1105 (2017).
    [Crossref]
  10. A. Erdmann, “Mask modeling in the low k1 and ultrahigh NA regime: phase and polarization effects,” Proc. SPIE 5835, 69–81 (2005).
    [Crossref]
  11. A. Erdmann and P. Evanschitzky, “Rigorous electromagnetic field mask modeling and related lithographic effects in the low k1 and ultrahigh numerical aperture regime,” J. Micro/Nanolithogr. MEMS MOEMS 6, 031002 (2007).
    [Crossref]
  12. M. Bai, L. S. Melvin, Q. Yan, J. P. Shiely, B. J. Falch, C.-C. Fu, and R. Wang, “Approximation of three dimensional mask effects with two dimensional features,” Proc. SPIE 5751, 446–454 (2005).
    [Crossref]
  13. M. K. Sears, G. Fenger, J. Mailfert, and B. W. Smith, “Extending SMO into the lens pupil domain,” Proc. SPIE 7973, 79731B (2011).
    [Crossref]
  14. M. K. Sears, J. Bekaert, and B. W. Smith, “Pupil wavefront manipulation for optical nanolithography,” Proc. SPIE 8326, 832611 (2012).
    [Crossref]
  15. M. K. Sears, J. Bekaert, and B. W. Smith, “Lens wavefront compensation for 3D photomask effects in subwavelength optical nanolithography,” Appl. Opt. 52, 314–322 (2013).
    [Crossref]
  16. J. Li and E. Y. Lam, “Joint optimization of source, mask, and pupil in optical lithography,” Proc. SPIE 9052, 90520S (2014).
    [Crossref]
  17. ASML, “TWINSCAN NXT: 2000i, 193-nm step and scan,” https://www.asml.com/-/media/asml/files/products/duv-immersion-nxt/twinscan-nxt2000i.pdf .
  18. F. Staals, A. Andryzhyieuskaya, H. Bakker, M. Beems, J. Finders, T. Hollink, J. Mulkens, A. Nachtwein, R. Willekers, P. Engblom, T. Gruner, and Y. Zhang, “Advanced wavefront engineering for improved imaging and overlay applications on a 1.35 NA immersion scanner,” Proc. SPIE 7973, 79731G (2011).
    [Crossref]
  19. C. Han, Y. Li, L. Dong, X. Ma, and X. Guo, “Inverse pupil wavefront optimization for immersion lithography,” Appl. Opt. 53, 6861–6871 (2014).
    [Crossref]
  20. V. N. Mahajan, Optical Imaging and Aberrations: Part I. Ray Geometrical Optics (SPIE, 1998).
  21. P. Song, S. Jiang, H. Zhang, X. Huang, Y. Zhang, and G. Zheng, “Full-field Fourier ptychography (FFP): spatially varying pupil modeling and its application for rapid field-dependent aberration metrology,” APL Photonics 4, 050802 (2019).
    [Crossref]
  22. J.-H. Park, L. Kong, Y. Zhou, and M. Cui, “Large-field-of-view imaging by multi-pupil adaptive optics,” Nat. Methods 14, 581–583 (2017).
    [Crossref]
  23. A. Poonawala and P. Milanfar, “Mask design for optical microlithography—an inverse imaging problem,” IEEE Trans. Image Process. 16, 774–778 (2007).
    [Crossref]
  24. P. Dirksen, J. Braat, A. Janssen, and A. Leeuswestein, “Aberration retrieval for high-NA optical systems using the extend Nijboer-Zernike theory,” Proc. SPIE 5754, 262–273 (2005).
    [Crossref]
  25. V. N. Mahajan, “Zernike circle polynomials and optical aberrations of systems with circular pupils,” Appl. Opt. 33, 8121–8124 (1994).
    [Crossref]
  26. C. Dewen, W. Yongtian, and H. Hong, “Automatic image performance balancing in lens optimization,” Opt. Express 18, 11574–11588 (2010).
    [Crossref]
  27. W. Ulrich, H.-J. Rostaiski, and R. Hudyma, “The development of dioptric projection lenses for DUV lithography,” Proc. SPIE 4832, 158–169 (2002).
    [Crossref]
  28. S. Mao, Y. Li, J. Jiang, S. Shen, K. Liu, and M. Zheng, “Design of a hyper- numerical-aperture deep ultraviolet lithography objective with freeform surfaces,” Chin. Opt. Lett. 16, 030801 (2018).
    [Crossref]
  29. R. Fletcher and C. M. Reeves, “Function minimization by conjugate gradients,” Comput. J. 7, 149–154 (1964).
    [Crossref]

2019 (1)

P. Song, S. Jiang, H. Zhang, X. Huang, Y. Zhang, and G. Zheng, “Full-field Fourier ptychography (FFP): spatially varying pupil modeling and its application for rapid field-dependent aberration metrology,” APL Photonics 4, 050802 (2019).
[Crossref]

2018 (1)

2017 (2)

J.-H. Park, L. Kong, Y. Zhou, and M. Cui, “Large-field-of-view imaging by multi-pupil adaptive optics,” Nat. Methods 14, 581–583 (2017).
[Crossref]

T. Li and Y. Li, “Lithographic source and mask optimization with low aberration sensitivity,” IEEE Trans. Nanotechnol. 16, 1099–1105 (2017).
[Crossref]

2016 (2)

H.-F. Kuo, “Ant colony optimization-based freeform sources for enhancing nanolithographic imaging performance,” IEEE Trans. Nanotechnol. 15, 599–606 (2016).
[Crossref]

Y.-H. Su, Y.-C. Huang, L.-C. Tsai, Y.-W. Chang, and S. Banerjee, “Fast lithography mask optimization considering process variation,” IEEE Trans. CAD Integr. Circ. Syst. 35, 1345–1357 (2016).
[Crossref]

2014 (3)

2013 (2)

2012 (2)

X. Ma, Y. Li, and L. Dong, “Mask optimization approaches in optical lithography based on a vector imaging model,” J. Opt. Soc. Am. A 29, 1300–1312 (2012).
[Crossref]

M. K. Sears, J. Bekaert, and B. W. Smith, “Pupil wavefront manipulation for optical nanolithography,” Proc. SPIE 8326, 832611 (2012).
[Crossref]

2011 (4)

M. K. Sears, G. Fenger, J. Mailfert, and B. W. Smith, “Extending SMO into the lens pupil domain,” Proc. SPIE 7973, 79731B (2011).
[Crossref]

F. Staals, A. Andryzhyieuskaya, H. Bakker, M. Beems, J. Finders, T. Hollink, J. Mulkens, A. Nachtwein, R. Willekers, P. Engblom, T. Gruner, and Y. Zhang, “Advanced wavefront engineering for improved imaging and overlay applications on a 1.35 NA immersion scanner,” Proc. SPIE 7973, 79731G (2011).
[Crossref]

Y. Peng, J. Zhang, Y. Wang, and Z. Yu, “Gradient-based source and mask optimization in optical lithography,” IEEE Trans. Image Process. 20, 2856–2864 (2011).
[Crossref]

D. O. S. Melville, A. E. Rosenbluth, A. Waechter, M. Millstone, J. Tirapu-Azpiroz, K. Tian, K. Lai, T. Inoue, M. Sakamoto, K. Adam, and A. Tritchkov, “Computational lithography: exhausting the resolution limits of 193-nm projection lithography systems,” J. Vac. Sci. Technol. B 29, 06FH04 (2011).
[Crossref]

2010 (1)

2007 (2)

A. Poonawala and P. Milanfar, “Mask design for optical microlithography—an inverse imaging problem,” IEEE Trans. Image Process. 16, 774–778 (2007).
[Crossref]

A. Erdmann and P. Evanschitzky, “Rigorous electromagnetic field mask modeling and related lithographic effects in the low k1 and ultrahigh numerical aperture regime,” J. Micro/Nanolithogr. MEMS MOEMS 6, 031002 (2007).
[Crossref]

2005 (3)

M. Bai, L. S. Melvin, Q. Yan, J. P. Shiely, B. J. Falch, C.-C. Fu, and R. Wang, “Approximation of three dimensional mask effects with two dimensional features,” Proc. SPIE 5751, 446–454 (2005).
[Crossref]

A. Erdmann, “Mask modeling in the low k1 and ultrahigh NA regime: phase and polarization effects,” Proc. SPIE 5835, 69–81 (2005).
[Crossref]

P. Dirksen, J. Braat, A. Janssen, and A. Leeuswestein, “Aberration retrieval for high-NA optical systems using the extend Nijboer-Zernike theory,” Proc. SPIE 5754, 262–273 (2005).
[Crossref]

2002 (1)

W. Ulrich, H.-J. Rostaiski, and R. Hudyma, “The development of dioptric projection lenses for DUV lithography,” Proc. SPIE 4832, 158–169 (2002).
[Crossref]

1994 (1)

1964 (1)

R. Fletcher and C. M. Reeves, “Function minimization by conjugate gradients,” Comput. J. 7, 149–154 (1964).
[Crossref]

Adam, K.

D. O. S. Melville, A. E. Rosenbluth, A. Waechter, M. Millstone, J. Tirapu-Azpiroz, K. Tian, K. Lai, T. Inoue, M. Sakamoto, K. Adam, and A. Tritchkov, “Computational lithography: exhausting the resolution limits of 193-nm projection lithography systems,” J. Vac. Sci. Technol. B 29, 06FH04 (2011).
[Crossref]

Andryzhyieuskaya, A.

F. Staals, A. Andryzhyieuskaya, H. Bakker, M. Beems, J. Finders, T. Hollink, J. Mulkens, A. Nachtwein, R. Willekers, P. Engblom, T. Gruner, and Y. Zhang, “Advanced wavefront engineering for improved imaging and overlay applications on a 1.35 NA immersion scanner,” Proc. SPIE 7973, 79731G (2011).
[Crossref]

Arce, G. R.

Bai, M.

M. Bai, L. S. Melvin, Q. Yan, J. P. Shiely, B. J. Falch, C.-C. Fu, and R. Wang, “Approximation of three dimensional mask effects with two dimensional features,” Proc. SPIE 5751, 446–454 (2005).
[Crossref]

Bakker, H.

F. Staals, A. Andryzhyieuskaya, H. Bakker, M. Beems, J. Finders, T. Hollink, J. Mulkens, A. Nachtwein, R. Willekers, P. Engblom, T. Gruner, and Y. Zhang, “Advanced wavefront engineering for improved imaging and overlay applications on a 1.35 NA immersion scanner,” Proc. SPIE 7973, 79731G (2011).
[Crossref]

Banerjee, S.

Y.-H. Su, Y.-C. Huang, L.-C. Tsai, Y.-W. Chang, and S. Banerjee, “Fast lithography mask optimization considering process variation,” IEEE Trans. CAD Integr. Circ. Syst. 35, 1345–1357 (2016).
[Crossref]

Beems, M.

F. Staals, A. Andryzhyieuskaya, H. Bakker, M. Beems, J. Finders, T. Hollink, J. Mulkens, A. Nachtwein, R. Willekers, P. Engblom, T. Gruner, and Y. Zhang, “Advanced wavefront engineering for improved imaging and overlay applications on a 1.35 NA immersion scanner,” Proc. SPIE 7973, 79731G (2011).
[Crossref]

Bekaert, J.

M. K. Sears, J. Bekaert, and B. W. Smith, “Lens wavefront compensation for 3D photomask effects in subwavelength optical nanolithography,” Appl. Opt. 52, 314–322 (2013).
[Crossref]

M. K. Sears, J. Bekaert, and B. W. Smith, “Pupil wavefront manipulation for optical nanolithography,” Proc. SPIE 8326, 832611 (2012).
[Crossref]

Braat, J.

P. Dirksen, J. Braat, A. Janssen, and A. Leeuswestein, “Aberration retrieval for high-NA optical systems using the extend Nijboer-Zernike theory,” Proc. SPIE 5754, 262–273 (2005).
[Crossref]

Chang, Y.-W.

Y.-H. Su, Y.-C. Huang, L.-C. Tsai, Y.-W. Chang, and S. Banerjee, “Fast lithography mask optimization considering process variation,” IEEE Trans. CAD Integr. Circ. Syst. 35, 1345–1357 (2016).
[Crossref]

Cui, M.

J.-H. Park, L. Kong, Y. Zhou, and M. Cui, “Large-field-of-view imaging by multi-pupil adaptive optics,” Nat. Methods 14, 581–583 (2017).
[Crossref]

Dewen, C.

Dirksen, P.

P. Dirksen, J. Braat, A. Janssen, and A. Leeuswestein, “Aberration retrieval for high-NA optical systems using the extend Nijboer-Zernike theory,” Proc. SPIE 5754, 262–273 (2005).
[Crossref]

Dong, L.

Engblom, P.

F. Staals, A. Andryzhyieuskaya, H. Bakker, M. Beems, J. Finders, T. Hollink, J. Mulkens, A. Nachtwein, R. Willekers, P. Engblom, T. Gruner, and Y. Zhang, “Advanced wavefront engineering for improved imaging and overlay applications on a 1.35 NA immersion scanner,” Proc. SPIE 7973, 79731G (2011).
[Crossref]

Erdmann, A.

A. Erdmann and P. Evanschitzky, “Rigorous electromagnetic field mask modeling and related lithographic effects in the low k1 and ultrahigh numerical aperture regime,” J. Micro/Nanolithogr. MEMS MOEMS 6, 031002 (2007).
[Crossref]

A. Erdmann, “Mask modeling in the low k1 and ultrahigh NA regime: phase and polarization effects,” Proc. SPIE 5835, 69–81 (2005).
[Crossref]

Evanschitzky, P.

A. Erdmann and P. Evanschitzky, “Rigorous electromagnetic field mask modeling and related lithographic effects in the low k1 and ultrahigh numerical aperture regime,” J. Micro/Nanolithogr. MEMS MOEMS 6, 031002 (2007).
[Crossref]

Falch, B. J.

M. Bai, L. S. Melvin, Q. Yan, J. P. Shiely, B. J. Falch, C.-C. Fu, and R. Wang, “Approximation of three dimensional mask effects with two dimensional features,” Proc. SPIE 5751, 446–454 (2005).
[Crossref]

Fenger, G.

M. K. Sears, G. Fenger, J. Mailfert, and B. W. Smith, “Extending SMO into the lens pupil domain,” Proc. SPIE 7973, 79731B (2011).
[Crossref]

Finders, J.

F. Staals, A. Andryzhyieuskaya, H. Bakker, M. Beems, J. Finders, T. Hollink, J. Mulkens, A. Nachtwein, R. Willekers, P. Engblom, T. Gruner, and Y. Zhang, “Advanced wavefront engineering for improved imaging and overlay applications on a 1.35 NA immersion scanner,” Proc. SPIE 7973, 79731G (2011).
[Crossref]

Fletcher, R.

R. Fletcher and C. M. Reeves, “Function minimization by conjugate gradients,” Comput. J. 7, 149–154 (1964).
[Crossref]

Fu, C.-C.

M. Bai, L. S. Melvin, Q. Yan, J. P. Shiely, B. J. Falch, C.-C. Fu, and R. Wang, “Approximation of three dimensional mask effects with two dimensional features,” Proc. SPIE 5751, 446–454 (2005).
[Crossref]

Gao, J.

Gruner, T.

F. Staals, A. Andryzhyieuskaya, H. Bakker, M. Beems, J. Finders, T. Hollink, J. Mulkens, A. Nachtwein, R. Willekers, P. Engblom, T. Gruner, and Y. Zhang, “Advanced wavefront engineering for improved imaging and overlay applications on a 1.35 NA immersion scanner,” Proc. SPIE 7973, 79731G (2011).
[Crossref]

Guo, X.

Han, C.

Hollink, T.

F. Staals, A. Andryzhyieuskaya, H. Bakker, M. Beems, J. Finders, T. Hollink, J. Mulkens, A. Nachtwein, R. Willekers, P. Engblom, T. Gruner, and Y. Zhang, “Advanced wavefront engineering for improved imaging and overlay applications on a 1.35 NA immersion scanner,” Proc. SPIE 7973, 79731G (2011).
[Crossref]

Hong, H.

Huang, X.

P. Song, S. Jiang, H. Zhang, X. Huang, Y. Zhang, and G. Zheng, “Full-field Fourier ptychography (FFP): spatially varying pupil modeling and its application for rapid field-dependent aberration metrology,” APL Photonics 4, 050802 (2019).
[Crossref]

Huang, Y.-C.

Y.-H. Su, Y.-C. Huang, L.-C. Tsai, Y.-W. Chang, and S. Banerjee, “Fast lithography mask optimization considering process variation,” IEEE Trans. CAD Integr. Circ. Syst. 35, 1345–1357 (2016).
[Crossref]

Hudyma, R.

W. Ulrich, H.-J. Rostaiski, and R. Hudyma, “The development of dioptric projection lenses for DUV lithography,” Proc. SPIE 4832, 158–169 (2002).
[Crossref]

Inoue, T.

D. O. S. Melville, A. E. Rosenbluth, A. Waechter, M. Millstone, J. Tirapu-Azpiroz, K. Tian, K. Lai, T. Inoue, M. Sakamoto, K. Adam, and A. Tritchkov, “Computational lithography: exhausting the resolution limits of 193-nm projection lithography systems,” J. Vac. Sci. Technol. B 29, 06FH04 (2011).
[Crossref]

Janssen, A.

P. Dirksen, J. Braat, A. Janssen, and A. Leeuswestein, “Aberration retrieval for high-NA optical systems using the extend Nijboer-Zernike theory,” Proc. SPIE 5754, 262–273 (2005).
[Crossref]

Jiang, J.

Jiang, S.

P. Song, S. Jiang, H. Zhang, X. Huang, Y. Zhang, and G. Zheng, “Full-field Fourier ptychography (FFP): spatially varying pupil modeling and its application for rapid field-dependent aberration metrology,” APL Photonics 4, 050802 (2019).
[Crossref]

Kong, L.

J.-H. Park, L. Kong, Y. Zhou, and M. Cui, “Large-field-of-view imaging by multi-pupil adaptive optics,” Nat. Methods 14, 581–583 (2017).
[Crossref]

Kuo, H.-F.

H.-F. Kuo, “Ant colony optimization-based freeform sources for enhancing nanolithographic imaging performance,” IEEE Trans. Nanotechnol. 15, 599–606 (2016).
[Crossref]

Lai, K.

D. O. S. Melville, A. E. Rosenbluth, A. Waechter, M. Millstone, J. Tirapu-Azpiroz, K. Tian, K. Lai, T. Inoue, M. Sakamoto, K. Adam, and A. Tritchkov, “Computational lithography: exhausting the resolution limits of 193-nm projection lithography systems,” J. Vac. Sci. Technol. B 29, 06FH04 (2011).
[Crossref]

Lam, E. Y.

J. Li and E. Y. Lam, “Joint optimization of source, mask, and pupil in optical lithography,” Proc. SPIE 9052, 90520S (2014).
[Crossref]

Leeuswestein, A.

P. Dirksen, J. Braat, A. Janssen, and A. Leeuswestein, “Aberration retrieval for high-NA optical systems using the extend Nijboer-Zernike theory,” Proc. SPIE 5754, 262–273 (2005).
[Crossref]

Li, J.

J. Li and E. Y. Lam, “Joint optimization of source, mask, and pupil in optical lithography,” Proc. SPIE 9052, 90520S (2014).
[Crossref]

Li, T.

T. Li and Y. Li, “Lithographic source and mask optimization with low aberration sensitivity,” IEEE Trans. Nanotechnol. 16, 1099–1105 (2017).
[Crossref]

Li, Y.

Liu, K.

Ma, X.

Mahajan, V. N.

Mailfert, J.

M. K. Sears, G. Fenger, J. Mailfert, and B. W. Smith, “Extending SMO into the lens pupil domain,” Proc. SPIE 7973, 79731B (2011).
[Crossref]

Mao, S.

Melville, D. O. S.

D. O. S. Melville, A. E. Rosenbluth, A. Waechter, M. Millstone, J. Tirapu-Azpiroz, K. Tian, K. Lai, T. Inoue, M. Sakamoto, K. Adam, and A. Tritchkov, “Computational lithography: exhausting the resolution limits of 193-nm projection lithography systems,” J. Vac. Sci. Technol. B 29, 06FH04 (2011).
[Crossref]

Melvin, L. S.

M. Bai, L. S. Melvin, Q. Yan, J. P. Shiely, B. J. Falch, C.-C. Fu, and R. Wang, “Approximation of three dimensional mask effects with two dimensional features,” Proc. SPIE 5751, 446–454 (2005).
[Crossref]

Milanfar, P.

A. Poonawala and P. Milanfar, “Mask design for optical microlithography—an inverse imaging problem,” IEEE Trans. Image Process. 16, 774–778 (2007).
[Crossref]

Millstone, M.

D. O. S. Melville, A. E. Rosenbluth, A. Waechter, M. Millstone, J. Tirapu-Azpiroz, K. Tian, K. Lai, T. Inoue, M. Sakamoto, K. Adam, and A. Tritchkov, “Computational lithography: exhausting the resolution limits of 193-nm projection lithography systems,” J. Vac. Sci. Technol. B 29, 06FH04 (2011).
[Crossref]

Mulkens, J.

F. Staals, A. Andryzhyieuskaya, H. Bakker, M. Beems, J. Finders, T. Hollink, J. Mulkens, A. Nachtwein, R. Willekers, P. Engblom, T. Gruner, and Y. Zhang, “Advanced wavefront engineering for improved imaging and overlay applications on a 1.35 NA immersion scanner,” Proc. SPIE 7973, 79731G (2011).
[Crossref]

Nachtwein, A.

F. Staals, A. Andryzhyieuskaya, H. Bakker, M. Beems, J. Finders, T. Hollink, J. Mulkens, A. Nachtwein, R. Willekers, P. Engblom, T. Gruner, and Y. Zhang, “Advanced wavefront engineering for improved imaging and overlay applications on a 1.35 NA immersion scanner,” Proc. SPIE 7973, 79731G (2011).
[Crossref]

Park, J.-H.

J.-H. Park, L. Kong, Y. Zhou, and M. Cui, “Large-field-of-view imaging by multi-pupil adaptive optics,” Nat. Methods 14, 581–583 (2017).
[Crossref]

Peng, Y.

Y. Peng, J. Zhang, Y. Wang, and Z. Yu, “Gradient-based source and mask optimization in optical lithography,” IEEE Trans. Image Process. 20, 2856–2864 (2011).
[Crossref]

Poonawala, A.

A. Poonawala and P. Milanfar, “Mask design for optical microlithography—an inverse imaging problem,” IEEE Trans. Image Process. 16, 774–778 (2007).
[Crossref]

Reeves, C. M.

R. Fletcher and C. M. Reeves, “Function minimization by conjugate gradients,” Comput. J. 7, 149–154 (1964).
[Crossref]

Rosenbluth, A. E.

D. O. S. Melville, A. E. Rosenbluth, A. Waechter, M. Millstone, J. Tirapu-Azpiroz, K. Tian, K. Lai, T. Inoue, M. Sakamoto, K. Adam, and A. Tritchkov, “Computational lithography: exhausting the resolution limits of 193-nm projection lithography systems,” J. Vac. Sci. Technol. B 29, 06FH04 (2011).
[Crossref]

Rostaiski, H.-J.

W. Ulrich, H.-J. Rostaiski, and R. Hudyma, “The development of dioptric projection lenses for DUV lithography,” Proc. SPIE 4832, 158–169 (2002).
[Crossref]

Sakamoto, M.

D. O. S. Melville, A. E. Rosenbluth, A. Waechter, M. Millstone, J. Tirapu-Azpiroz, K. Tian, K. Lai, T. Inoue, M. Sakamoto, K. Adam, and A. Tritchkov, “Computational lithography: exhausting the resolution limits of 193-nm projection lithography systems,” J. Vac. Sci. Technol. B 29, 06FH04 (2011).
[Crossref]

Sears, M. K.

M. K. Sears, J. Bekaert, and B. W. Smith, “Lens wavefront compensation for 3D photomask effects in subwavelength optical nanolithography,” Appl. Opt. 52, 314–322 (2013).
[Crossref]

M. K. Sears, J. Bekaert, and B. W. Smith, “Pupil wavefront manipulation for optical nanolithography,” Proc. SPIE 8326, 832611 (2012).
[Crossref]

M. K. Sears, G. Fenger, J. Mailfert, and B. W. Smith, “Extending SMO into the lens pupil domain,” Proc. SPIE 7973, 79731B (2011).
[Crossref]

Shen, S.

Shiely, J. P.

M. Bai, L. S. Melvin, Q. Yan, J. P. Shiely, B. J. Falch, C.-C. Fu, and R. Wang, “Approximation of three dimensional mask effects with two dimensional features,” Proc. SPIE 5751, 446–454 (2005).
[Crossref]

Smith, B. W.

M. K. Sears, J. Bekaert, and B. W. Smith, “Lens wavefront compensation for 3D photomask effects in subwavelength optical nanolithography,” Appl. Opt. 52, 314–322 (2013).
[Crossref]

M. K. Sears, J. Bekaert, and B. W. Smith, “Pupil wavefront manipulation for optical nanolithography,” Proc. SPIE 8326, 832611 (2012).
[Crossref]

M. K. Sears, G. Fenger, J. Mailfert, and B. W. Smith, “Extending SMO into the lens pupil domain,” Proc. SPIE 7973, 79731B (2011).
[Crossref]

Song, P.

P. Song, S. Jiang, H. Zhang, X. Huang, Y. Zhang, and G. Zheng, “Full-field Fourier ptychography (FFP): spatially varying pupil modeling and its application for rapid field-dependent aberration metrology,” APL Photonics 4, 050802 (2019).
[Crossref]

Song, Z.

Staals, F.

F. Staals, A. Andryzhyieuskaya, H. Bakker, M. Beems, J. Finders, T. Hollink, J. Mulkens, A. Nachtwein, R. Willekers, P. Engblom, T. Gruner, and Y. Zhang, “Advanced wavefront engineering for improved imaging and overlay applications on a 1.35 NA immersion scanner,” Proc. SPIE 7973, 79731G (2011).
[Crossref]

Su, Y.-H.

Y.-H. Su, Y.-C. Huang, L.-C. Tsai, Y.-W. Chang, and S. Banerjee, “Fast lithography mask optimization considering process variation,” IEEE Trans. CAD Integr. Circ. Syst. 35, 1345–1357 (2016).
[Crossref]

Tian, K.

D. O. S. Melville, A. E. Rosenbluth, A. Waechter, M. Millstone, J. Tirapu-Azpiroz, K. Tian, K. Lai, T. Inoue, M. Sakamoto, K. Adam, and A. Tritchkov, “Computational lithography: exhausting the resolution limits of 193-nm projection lithography systems,” J. Vac. Sci. Technol. B 29, 06FH04 (2011).
[Crossref]

Tirapu-Azpiroz, J.

D. O. S. Melville, A. E. Rosenbluth, A. Waechter, M. Millstone, J. Tirapu-Azpiroz, K. Tian, K. Lai, T. Inoue, M. Sakamoto, K. Adam, and A. Tritchkov, “Computational lithography: exhausting the resolution limits of 193-nm projection lithography systems,” J. Vac. Sci. Technol. B 29, 06FH04 (2011).
[Crossref]

Tritchkov, A.

D. O. S. Melville, A. E. Rosenbluth, A. Waechter, M. Millstone, J. Tirapu-Azpiroz, K. Tian, K. Lai, T. Inoue, M. Sakamoto, K. Adam, and A. Tritchkov, “Computational lithography: exhausting the resolution limits of 193-nm projection lithography systems,” J. Vac. Sci. Technol. B 29, 06FH04 (2011).
[Crossref]

Tsai, L.-C.

Y.-H. Su, Y.-C. Huang, L.-C. Tsai, Y.-W. Chang, and S. Banerjee, “Fast lithography mask optimization considering process variation,” IEEE Trans. CAD Integr. Circ. Syst. 35, 1345–1357 (2016).
[Crossref]

Ulrich, W.

W. Ulrich, H.-J. Rostaiski, and R. Hudyma, “The development of dioptric projection lenses for DUV lithography,” Proc. SPIE 4832, 158–169 (2002).
[Crossref]

Waechter, A.

D. O. S. Melville, A. E. Rosenbluth, A. Waechter, M. Millstone, J. Tirapu-Azpiroz, K. Tian, K. Lai, T. Inoue, M. Sakamoto, K. Adam, and A. Tritchkov, “Computational lithography: exhausting the resolution limits of 193-nm projection lithography systems,” J. Vac. Sci. Technol. B 29, 06FH04 (2011).
[Crossref]

Wang, J.

Wang, R.

M. Bai, L. S. Melvin, Q. Yan, J. P. Shiely, B. J. Falch, C.-C. Fu, and R. Wang, “Approximation of three dimensional mask effects with two dimensional features,” Proc. SPIE 5751, 446–454 (2005).
[Crossref]

Wang, Y.

Y. Peng, J. Zhang, Y. Wang, and Z. Yu, “Gradient-based source and mask optimization in optical lithography,” IEEE Trans. Image Process. 20, 2856–2864 (2011).
[Crossref]

Willekers, R.

F. Staals, A. Andryzhyieuskaya, H. Bakker, M. Beems, J. Finders, T. Hollink, J. Mulkens, A. Nachtwein, R. Willekers, P. Engblom, T. Gruner, and Y. Zhang, “Advanced wavefront engineering for improved imaging and overlay applications on a 1.35 NA immersion scanner,” Proc. SPIE 7973, 79731G (2011).
[Crossref]

Wong, A. K.-K.

A. K.-K. Wong, Resolution Enhancement Techniques in Optical Lithography (SPIE, 2001).

Yan, Q.

M. Bai, L. S. Melvin, Q. Yan, J. P. Shiely, B. J. Falch, C.-C. Fu, and R. Wang, “Approximation of three dimensional mask effects with two dimensional features,” Proc. SPIE 5751, 446–454 (2005).
[Crossref]

Yongtian, W.

Yu, Z.

Y. Peng, J. Zhang, Y. Wang, and Z. Yu, “Gradient-based source and mask optimization in optical lithography,” IEEE Trans. Image Process. 20, 2856–2864 (2011).
[Crossref]

Zhang, H.

P. Song, S. Jiang, H. Zhang, X. Huang, Y. Zhang, and G. Zheng, “Full-field Fourier ptychography (FFP): spatially varying pupil modeling and its application for rapid field-dependent aberration metrology,” APL Photonics 4, 050802 (2019).
[Crossref]

Zhang, J.

Y. Peng, J. Zhang, Y. Wang, and Z. Yu, “Gradient-based source and mask optimization in optical lithography,” IEEE Trans. Image Process. 20, 2856–2864 (2011).
[Crossref]

Zhang, Y.

P. Song, S. Jiang, H. Zhang, X. Huang, Y. Zhang, and G. Zheng, “Full-field Fourier ptychography (FFP): spatially varying pupil modeling and its application for rapid field-dependent aberration metrology,” APL Photonics 4, 050802 (2019).
[Crossref]

F. Staals, A. Andryzhyieuskaya, H. Bakker, M. Beems, J. Finders, T. Hollink, J. Mulkens, A. Nachtwein, R. Willekers, P. Engblom, T. Gruner, and Y. Zhang, “Advanced wavefront engineering for improved imaging and overlay applications on a 1.35 NA immersion scanner,” Proc. SPIE 7973, 79731G (2011).
[Crossref]

Zheng, G.

P. Song, S. Jiang, H. Zhang, X. Huang, Y. Zhang, and G. Zheng, “Full-field Fourier ptychography (FFP): spatially varying pupil modeling and its application for rapid field-dependent aberration metrology,” APL Photonics 4, 050802 (2019).
[Crossref]

Zheng, M.

Zhou, Y.

J.-H. Park, L. Kong, Y. Zhou, and M. Cui, “Large-field-of-view imaging by multi-pupil adaptive optics,” Nat. Methods 14, 581–583 (2017).
[Crossref]

APL Photonics (1)

P. Song, S. Jiang, H. Zhang, X. Huang, Y. Zhang, and G. Zheng, “Full-field Fourier ptychography (FFP): spatially varying pupil modeling and its application for rapid field-dependent aberration metrology,” APL Photonics 4, 050802 (2019).
[Crossref]

Appl. Opt. (3)

Chin. Opt. Lett. (1)

Comput. J. (1)

R. Fletcher and C. M. Reeves, “Function minimization by conjugate gradients,” Comput. J. 7, 149–154 (1964).
[Crossref]

IEEE Trans. CAD Integr. Circ. Syst. (1)

Y.-H. Su, Y.-C. Huang, L.-C. Tsai, Y.-W. Chang, and S. Banerjee, “Fast lithography mask optimization considering process variation,” IEEE Trans. CAD Integr. Circ. Syst. 35, 1345–1357 (2016).
[Crossref]

IEEE Trans. Image Process. (2)

Y. Peng, J. Zhang, Y. Wang, and Z. Yu, “Gradient-based source and mask optimization in optical lithography,” IEEE Trans. Image Process. 20, 2856–2864 (2011).
[Crossref]

A. Poonawala and P. Milanfar, “Mask design for optical microlithography—an inverse imaging problem,” IEEE Trans. Image Process. 16, 774–778 (2007).
[Crossref]

IEEE Trans. Nanotechnol. (2)

T. Li and Y. Li, “Lithographic source and mask optimization with low aberration sensitivity,” IEEE Trans. Nanotechnol. 16, 1099–1105 (2017).
[Crossref]

H.-F. Kuo, “Ant colony optimization-based freeform sources for enhancing nanolithographic imaging performance,” IEEE Trans. Nanotechnol. 15, 599–606 (2016).
[Crossref]

J. Micro/Nanolithogr. MEMS MOEMS (1)

A. Erdmann and P. Evanschitzky, “Rigorous electromagnetic field mask modeling and related lithographic effects in the low k1 and ultrahigh numerical aperture regime,” J. Micro/Nanolithogr. MEMS MOEMS 6, 031002 (2007).
[Crossref]

J. Opt. Soc. Am. A (2)

J. Vac. Sci. Technol. B (1)

D. O. S. Melville, A. E. Rosenbluth, A. Waechter, M. Millstone, J. Tirapu-Azpiroz, K. Tian, K. Lai, T. Inoue, M. Sakamoto, K. Adam, and A. Tritchkov, “Computational lithography: exhausting the resolution limits of 193-nm projection lithography systems,” J. Vac. Sci. Technol. B 29, 06FH04 (2011).
[Crossref]

Nat. Methods (1)

J.-H. Park, L. Kong, Y. Zhou, and M. Cui, “Large-field-of-view imaging by multi-pupil adaptive optics,” Nat. Methods 14, 581–583 (2017).
[Crossref]

Opt. Express (2)

Proc. SPIE (8)

A. Erdmann, “Mask modeling in the low k1 and ultrahigh NA regime: phase and polarization effects,” Proc. SPIE 5835, 69–81 (2005).
[Crossref]

F. Staals, A. Andryzhyieuskaya, H. Bakker, M. Beems, J. Finders, T. Hollink, J. Mulkens, A. Nachtwein, R. Willekers, P. Engblom, T. Gruner, and Y. Zhang, “Advanced wavefront engineering for improved imaging and overlay applications on a 1.35 NA immersion scanner,” Proc. SPIE 7973, 79731G (2011).
[Crossref]

J. Li and E. Y. Lam, “Joint optimization of source, mask, and pupil in optical lithography,” Proc. SPIE 9052, 90520S (2014).
[Crossref]

M. Bai, L. S. Melvin, Q. Yan, J. P. Shiely, B. J. Falch, C.-C. Fu, and R. Wang, “Approximation of three dimensional mask effects with two dimensional features,” Proc. SPIE 5751, 446–454 (2005).
[Crossref]

M. K. Sears, G. Fenger, J. Mailfert, and B. W. Smith, “Extending SMO into the lens pupil domain,” Proc. SPIE 7973, 79731B (2011).
[Crossref]

M. K. Sears, J. Bekaert, and B. W. Smith, “Pupil wavefront manipulation for optical nanolithography,” Proc. SPIE 8326, 832611 (2012).
[Crossref]

W. Ulrich, H.-J. Rostaiski, and R. Hudyma, “The development of dioptric projection lenses for DUV lithography,” Proc. SPIE 4832, 158–169 (2002).
[Crossref]

P. Dirksen, J. Braat, A. Janssen, and A. Leeuswestein, “Aberration retrieval for high-NA optical systems using the extend Nijboer-Zernike theory,” Proc. SPIE 5754, 262–273 (2005).
[Crossref]

Other (3)

V. N. Mahajan, Optical Imaging and Aberrations: Part I. Ray Geometrical Optics (SPIE, 1998).

ASML, “TWINSCAN NXT: 2000i, 193-nm step and scan,” https://www.asml.com/-/media/asml/files/products/duv-immersion-nxt/twinscan-nxt2000i.pdf .

A. K.-K. Wong, Resolution Enhancement Techniques in Optical Lithography (SPIE, 2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. Principle of the FlexWave manipulator [18].
Fig. 2.
Fig. 2. Imaging process of the immersion lithography system [19].
Fig. 3.
Fig. 3. Wave aberration in the optical system for different field points.
Fig. 4.
Fig. 4. Off-axis rectangle field and the FOV position on the image plane.
Fig. 5.
Fig. 5. Target pattern used in the simulation. The red lines mark the locations for PW calculation.
Fig. 6.
Fig. 6. Layout of projection optics used in simulation.
Fig. 7.
Fig. 7. Optimization results and lithography imaging of conventional PWO. (a) Source pattern; (b) mask pattern; (c) optimized active pupil wavefront; (d) printed image with nonaberration; (e) printed image with aberration at F1 FOV.
Fig. 8.
Fig. 8. Zernike coefficients of the optimized pupil wavefront for different PWO methods.
Fig. 9.
Fig. 9. PAE with different PWO methods at each field point.
Fig. 10.
Fig. 10. Comparison of EL-DOF curve with F1-PWO (red curve), F9-PWO (green curve), and MPWO (blue curve).

Tables (5)

Tables Icon

Table 1. Pseudo-Code of the Proposed MPWO Method

Tables Icon

Table 2. Specifications of Projection Optics Used in Simulation

Tables Icon

Table 3. Statistics of PAE Distribution with Different PWO Methods

Tables Icon

Table 4. Zernike Coefficients of Wave Aberration for Each FOV

Tables Icon

Table 5. RMS and PV Value of Wave Aberration for Each FOV

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

I = 1 J sum x s y s ( J x s y s p = x , y , z | F 1 { C × V x s y s exp ( j 2 π W ) exp ( j 2 π W abe ) G 3 D x s y s E i x s y s } | 2 ) .
F = sig { I ( W , W abe ) } Z ~ 2 2 .
W ( ρ , θ ) = i c i Γ i ( ρ , θ ) ,
c ^ i = arg min c i F .
D = m = 1 9 ω m F m = m = 1 9 ω m sig { I ( W , W abe , m ) } Z ~ 2 2 ,
c ^ i = arg min c i D .
PAE = Z ~ Ξ { I t r } 2 2 ,
I = 1 J sum x s y s ( J x s y s p = x , y , z | T p x s y s Θ | 2 ) ,
T p x s y s = F 1 { 2 π n w × C × V x s y s exp ( j 2 π W abe ) G 3 D x s y s E i x s y s } .
I = 1 J sum x s y s ( J x s y s p = x , y , z | F 1 { C × V x s y s exp ( j 2 π W ) exp ( j 2 π W abe ) G 3 D x s y s E i x s y s } | 2 ) .
D = m = 1 9 ω m F m ,
F m = sig { 1 J sum x s y s ( J x s y s p = x , y , z | T p , m x s y s Θ | 2 ) } Z ~ 2 2 .
D ( c i ) = D c i = m = 1 9 ω m F m c i .

Metrics