Abstract

For double-pulsed 1.57 μm integrated path differential absorption lidar, the transmitted pulse energy measurement is an important factor that can influence the uncertainty of CO2 concentration measurement. An energy monitoring experiment was performed to determine how to improve the measurement precision of the transmitted pulse energy. Ground glass diffusers were used to reduce the speckle effect during energy monitoring. The roughness and rotational speed of the ground glass diffusers were considered and compared. The normalized energy ratios between on-line and off-line echo pulses and on-line and off-line energy monitoring pulses were analyzed, and the Allan deviation was used to evaluate the energy monitoring results. Averaging 148 shots, the standard deviation of the normalized energy ratio reached 0.0757%, whereas the correlation between the energy ratio of the on-line and off-line energy monitoring pulses and the energy ratio of the on-line and off-line echo pulses was higher than 90%.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Energy calibration of integrated path differential absorption lidars

Andreas Fix, Mathieu Quatrevalet, Axel Amediek, and Martin Wirth
Appl. Opt. 57(26) 7501-7514 (2018)

Development of 1.6  μm DIAL using an OPG/OPA transmitter for measuring atmospheric CO2 concentration profiles

Yasukuni Shibata, Chikao Nagasawa, and Makoto Abo
Appl. Opt. 56(4) 1194-1201 (2017)

Side-line tunable laser transmitter for differential absorption lidar measurements of CO2: design and application to atmospheric measurements

Grady J. Koch, Jeffrey Y. Beyon, Fabien Gibert, Bruce W. Barnes, Syed Ismail, Mulugeta Petros, Paul J. Petzar, Jirong Yu, Edward A. Modlin, Kenneth J. Davis, and Upendra N. Singh
Appl. Opt. 47(7) 944-956 (2008)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (5)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (11)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription