Abstract

We demonstrate a scheme to characterize the localized surface plasmon resonances (LSPRs) of an individual metallic nanorod by employing a focused radially polarized beam (RPB) illumination under normal incidence. The focused RPB has a unique three-dimensional electric field polarization distribution in the focal plane, which can effectively and selectively excite the dipole and multipole plasmon resonances in a metallic nanorod by just moving the nanorod within the focal plane. This performance can be attributed to the mode matching between the excitation electric field of the incident RPB and the LSPRs in a metallic nanorod. Emphatically, in contrast to the commonly used oblique incidence illumination with the linearly polarized light, our proposed scheme is based on the normally incident light illumination and compatible with conventional optical microscopy, which is more scalable for spectroscopic characterization of individual nanostructures.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Nanostructures for surface plasmons

Junxi Zhang and Lide Zhang
Adv. Opt. Photon. 4(2) 157-321 (2012)

Surface plasmon resonance imaging of cell-substrate contacts with radially polarized beams

K.J. Moh, X.-C. Yuan, J. Bu, S. W. Zhu, and Bruce Z. Gao
Opt. Express 16(25) 20734-20741 (2008)

References

  • View by:
  • |
  • |
  • |

  1. N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
    [Crossref]
  2. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
    [Crossref]
  3. M. Premaratne and M. I. Stockman, “Theory and technology of SPASERs,” Adv. Opt. Photon. 9, 79–128 (2017).
    [Crossref]
  4. M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6, 737–748 (2012).
    [Crossref]
  5. K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007).
    [Crossref]
  6. J. Yang, H. Giessen, and P. Lalanne, “Simple analytical expression for the peak-frequency shifts of plasmonic resonances for sensing,” Nano Lett. 15, 3439–3444 (2015).
    [Crossref]
  7. E. S. C. Ching, P. T. Leung, A. Maassen van den Brink, W. M. Suen, S. S. Tong, and K. Young, “Quasinormal-mode expansion for waves in open systems,” Rev. Mod. Phys. 70, 1545–1554 (1998).
    [Crossref]
  8. C. Sauvan, J. P. Hugonin, I. S. Maksymov, and P. Lalanne, “Theory of the spontaneous optical emission of nanosize photonic and plasmon resonators,” Phys. Rev. Lett. 110, 237401 (2013).
    [Crossref]
  9. H. Jia, F. Yang, Y. Zhong, and H. Liu, “Understanding localized surface plasmon resonance with propagative surface plasmon polaritons in optical nanogap antennas,” Photon. Res. 4, 293–305 (2016).
    [Crossref]
  10. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
    [Crossref]
  11. A. S. Kumbhar, M. K. Kinnan, and G. Chumanov, “Multipole plasmon resonances of submicron silver particles,” J. Am. Chem. Soc. 127, 12444–12445 (2005).
    [Crossref]
  12. E. K. Payne, K. L. Shuford, S. Park, G. C. Schatz, and C. A. Mirkin, “Multipole plasmon resonances in gold nanorods,” J. Phys. Chem. B 110, 2150–2154 (2006).
    [Crossref]
  13. T. K. Hakala, H. T. Rekola, A. I. Vakevainen, J. P. Martikainen, M. Necada, A. J. Moilanen, and P. Torma, “Lasing in dark and bright modes of a finite-sized plasmonic lattice,” Nat. Commun. 8, 13687 (2017).
    [Crossref]
  14. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
    [Crossref]
  15. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
    [Crossref]
  16. S. Zhang, L. Chen, Y. Huang, and H. Xu, “Reduced linewidth multipolar plasmon resonances in metal nanorods and related applications,” Nanoscale 5, 6985–6991 (2013).
    [Crossref]
  17. H. Chen, L. Shao, Q. Li, and J. Wang, “Gold nanorods and their plasmonic properties,” Chem. Soc. Rev. 42, 2679–2724 (2013).
    [Crossref]
  18. Y. Wu, G. Li, and J. P. Camden, “Probing nanoparticle plasmons with electron energy loss spectroscopy,” Chem. Rev. 118, 2994–3031 (2018).
    [Crossref]
  19. J. Olson, S. Dominguez-Medina, A. Hoggard, L. Y. Wang, W. S. Chang, and S. Link, “Optical characterization of single plasmonic nanoparticles,” Chem. Soc. Rev. 44, 40–57 (2015).
    [Crossref]
  20. M. W. Chu, V. Myroshnychenko, C. H. Chen, J. P. Deng, C. Y. Mou, and F. J. Garcia de Abajo, “Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam,” Nano Lett. 9, 399–404 (2009).
    [Crossref]
  21. S. M. Collins, O. Nicoletti, D. Rossouw, T. Ostasevicius, and P. A. Midgley, “Excitation dependent Fano-like interference effects in plasmonic silver nanorods,” Phys. Rev. B 90, 155419 (2014).
    [Crossref]
  22. D. Rossouw, M. Couillard, J. Vickery, E. Kumacheva, and G. A. Botton, “Multipolar plasmonic resonances in silver nanowire antennas imaged with a subnanometer electron probe,” Nano Lett. 11, 1499–1504 (2011).
    [Crossref]
  23. B. S. Guiton, V. Iberi, S. Li, D. N. Leonard, C. M. Parish, P. G. Kotula, M. Varela, G. C. Schatz, S. J. Pennycook, and J. P. Camden, “Correlated optical measurements and plasmon mapping of silver nanorods,” Nano Lett. 11, 3482–3488 (2011).
    [Crossref]
  24. H. Wei, A. Reyes-Coronado, P. Nordlander, J. Aizpurua, and H. Xu, “Multipolar plasmon resonances in individual ag nanorice,” ACS Nano 4, 2649–2654 (2010).
    [Crossref]
  25. L. S. Slaughter, W.-S. Chang, P. Swanglap, A. Tcherniak, B. P. Khanal, E. R. Zubarev, and S. Link, “Single-particle spectroscopy of gold nanorods beyond the quasi-static limit: varying the width at constant aspect ratio,” J. Phys. Chem. C 114, 4934–4938 (2010).
    [Crossref]
  26. N. Verellen, F. Lopez-Tejeira, R. Paniagua-Dominguez, D. Vercruysse, D. Denkova, L. Lagae, P. Van Dorpe, V. V. Moshchalkov, and J. A. Sanchez-Gil, “Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14, 2322–2329 (2014).
    [Crossref]
  27. L. Wei, Z. Xi, N. Bhattacharya, and H. P. Urbach, “Excitation of the radiationless anapole mode,” Optica 3, 799–802 (2016).
    [Crossref]
  28. W. Y. Shang, F. J. Xiao, W. R. Zhu, H. S. He, M. Premaratne, T. Mei, and J. L. Zhao, “Fano resonance with high local field enhancement under azimuthally polarized excitation,” Sci. Rep. 7, 1049 (2017).
    [Crossref]
  29. T. Das, P. P. Iyer, R. A. DeCrescent, and J. A. Schuller, “Beam engineering for selective and enhanced coupling to multipolar resonances,” Phys. Rev. B 92, 241110 (2015).
    [Crossref]
  30. W. Shang, F. Xiao, W. Zhu, L. Han, M. Premaratne, T. Mei, and J. Zhao, “Unidirectional scattering exploited transverse displacement sensor with tunable measuring range,” Opt. Express 27, 4944–4955 (2019).
    [Crossref]
  31. K. Sendur and A. Sahinöz, “Interaction of radially polarized focused light with a prolate spheroidal nanoparticle,” Opt. Express 17, 10910–10925 (2009).
    [Crossref]
  32. F. J. Xiao, W. Y. Shang, W. R. Zhu, L. Han, M. Premaratne, T. Mei, and J. L. Zhao, “Cylindrical vector beam-excited frequency-tunable second harmonic generation in a plasmonic octamer,” Photon. Res. 6, 157–161 (2018).
    [Crossref]
  33. E. V. Melik-Gaykazyan, S. S. Kruk, R. Camacho-Morales, L. Xu, M. Rahmani, K. Zangeneh Kamali, A. Lamprianidis, A. E. Miroshnichenko, A. A. Fedyanin, D. N. Neshev, and Y. S. Kivshar, “Selective third-harmonic generation by structured light in Mie-resonant nanoparticles,” ACS Photon. 5, 728–733 (2017).
    [Crossref]
  34. F. J. Xiao, Y. X. Ren, W. Y. Shang, W. R. Zhu, L. Han, H. Lu, T. Mei, M. Premaratne, and J. L. Zhao, “Sub-10  nm particle trapping enabled by a plasmonic dark mode,” Opt. Lett. 43, 3413–3416 (2018).
    [Crossref]
  35. K. Sakai, K. Nomura, T. Yamamoto, and K. Sasaki, “Excitation of multipole plasmons by optical vortex beams,” Sci. Rep. 5, 8431 (2015).
    [Crossref]
  36. P. Woźniak, P. Banzer, and G. Leuchs, “Selective switching of individual multipole resonances in single dielectric nanoparticles,” Laser Photon. Rev. 9, 231–240 (2015).
    [Crossref]
  37. U. Manna, J. H. Lee, T. S. Deng, J. Parker, N. Shepherd, Y. Weizmann, and N. F. Scherer, “Selective induction of optical magnetism,” Nano Lett. 17, 7196–7206 (2017).
    [Crossref]
  38. W. Zhang, B. Gallinet, and O. J. F. Martin, “Symmetry and selection rules for localized surface plasmon resonances in nanostructures,” Phys. Rev. B 81, 233407 (2010).
    [Crossref]
  39. Q. W. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon. 1, 1–57 (2009).
    [Crossref]
  40. P. Li, Y. Zhang, S. Liu, C. J. Ma, L. Han, H. C. Cheng, and J. L. Zhao, “Generation of perfect vectorial vortex beams,” Opt. Lett. 41, 2205–2208 (2016).
    [Crossref]
  41. K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7, 77–87 (2000).
    [Crossref]
  42. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
    [Crossref]
  43. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [Crossref]
  44. F. López-Tejeira, R. Paniagua-Domínguez, R. Rodríguez-Oliveros, and J. A. Sánchez-Gil, “Fano-like interference of plasmon resonances at a single rod-shaped nanoantenna,” New J. Phys. 14, 023035 (2012).
    [Crossref]
  45. A. V. Failla, H. Qian, H. Qian, A. Hartschuh, and A. J. Meixner, “Orientational imaging of subwavelength Au particles with higher order laser modes,” Nano Lett. 6, 1374–1378 (2006).
    [Crossref]
  46. K. H. Fung, A. Kumar, and N. X. Fang, “Electron-photon scattering mediated by localized plasmons: A quantitative analysis by Eigen-response theory,” Phys. Rev. B 89, 045408 (2014).
    [Crossref]

2019 (1)

2018 (3)

2017 (5)

T. K. Hakala, H. T. Rekola, A. I. Vakevainen, J. P. Martikainen, M. Necada, A. J. Moilanen, and P. Torma, “Lasing in dark and bright modes of a finite-sized plasmonic lattice,” Nat. Commun. 8, 13687 (2017).
[Crossref]

W. Y. Shang, F. J. Xiao, W. R. Zhu, H. S. He, M. Premaratne, T. Mei, and J. L. Zhao, “Fano resonance with high local field enhancement under azimuthally polarized excitation,” Sci. Rep. 7, 1049 (2017).
[Crossref]

E. V. Melik-Gaykazyan, S. S. Kruk, R. Camacho-Morales, L. Xu, M. Rahmani, K. Zangeneh Kamali, A. Lamprianidis, A. E. Miroshnichenko, A. A. Fedyanin, D. N. Neshev, and Y. S. Kivshar, “Selective third-harmonic generation by structured light in Mie-resonant nanoparticles,” ACS Photon. 5, 728–733 (2017).
[Crossref]

U. Manna, J. H. Lee, T. S. Deng, J. Parker, N. Shepherd, Y. Weizmann, and N. F. Scherer, “Selective induction of optical magnetism,” Nano Lett. 17, 7196–7206 (2017).
[Crossref]

M. Premaratne and M. I. Stockman, “Theory and technology of SPASERs,” Adv. Opt. Photon. 9, 79–128 (2017).
[Crossref]

2016 (3)

2015 (5)

K. Sakai, K. Nomura, T. Yamamoto, and K. Sasaki, “Excitation of multipole plasmons by optical vortex beams,” Sci. Rep. 5, 8431 (2015).
[Crossref]

P. Woźniak, P. Banzer, and G. Leuchs, “Selective switching of individual multipole resonances in single dielectric nanoparticles,” Laser Photon. Rev. 9, 231–240 (2015).
[Crossref]

T. Das, P. P. Iyer, R. A. DeCrescent, and J. A. Schuller, “Beam engineering for selective and enhanced coupling to multipolar resonances,” Phys. Rev. B 92, 241110 (2015).
[Crossref]

J. Yang, H. Giessen, and P. Lalanne, “Simple analytical expression for the peak-frequency shifts of plasmonic resonances for sensing,” Nano Lett. 15, 3439–3444 (2015).
[Crossref]

J. Olson, S. Dominguez-Medina, A. Hoggard, L. Y. Wang, W. S. Chang, and S. Link, “Optical characterization of single plasmonic nanoparticles,” Chem. Soc. Rev. 44, 40–57 (2015).
[Crossref]

2014 (3)

N. Verellen, F. Lopez-Tejeira, R. Paniagua-Dominguez, D. Vercruysse, D. Denkova, L. Lagae, P. Van Dorpe, V. V. Moshchalkov, and J. A. Sanchez-Gil, “Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14, 2322–2329 (2014).
[Crossref]

S. M. Collins, O. Nicoletti, D. Rossouw, T. Ostasevicius, and P. A. Midgley, “Excitation dependent Fano-like interference effects in plasmonic silver nanorods,” Phys. Rev. B 90, 155419 (2014).
[Crossref]

K. H. Fung, A. Kumar, and N. X. Fang, “Electron-photon scattering mediated by localized plasmons: A quantitative analysis by Eigen-response theory,” Phys. Rev. B 89, 045408 (2014).
[Crossref]

2013 (3)

C. Sauvan, J. P. Hugonin, I. S. Maksymov, and P. Lalanne, “Theory of the spontaneous optical emission of nanosize photonic and plasmon resonators,” Phys. Rev. Lett. 110, 237401 (2013).
[Crossref]

S. Zhang, L. Chen, Y. Huang, and H. Xu, “Reduced linewidth multipolar plasmon resonances in metal nanorods and related applications,” Nanoscale 5, 6985–6991 (2013).
[Crossref]

H. Chen, L. Shao, Q. Li, and J. Wang, “Gold nanorods and their plasmonic properties,” Chem. Soc. Rev. 42, 2679–2724 (2013).
[Crossref]

2012 (2)

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6, 737–748 (2012).
[Crossref]

F. López-Tejeira, R. Paniagua-Domínguez, R. Rodríguez-Oliveros, and J. A. Sánchez-Gil, “Fano-like interference of plasmon resonances at a single rod-shaped nanoantenna,” New J. Phys. 14, 023035 (2012).
[Crossref]

2011 (3)

N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[Crossref]

D. Rossouw, M. Couillard, J. Vickery, E. Kumacheva, and G. A. Botton, “Multipolar plasmonic resonances in silver nanowire antennas imaged with a subnanometer electron probe,” Nano Lett. 11, 1499–1504 (2011).
[Crossref]

B. S. Guiton, V. Iberi, S. Li, D. N. Leonard, C. M. Parish, P. G. Kotula, M. Varela, G. C. Schatz, S. J. Pennycook, and J. P. Camden, “Correlated optical measurements and plasmon mapping of silver nanorods,” Nano Lett. 11, 3482–3488 (2011).
[Crossref]

2010 (5)

H. Wei, A. Reyes-Coronado, P. Nordlander, J. Aizpurua, and H. Xu, “Multipolar plasmon resonances in individual ag nanorice,” ACS Nano 4, 2649–2654 (2010).
[Crossref]

L. S. Slaughter, W.-S. Chang, P. Swanglap, A. Tcherniak, B. P. Khanal, E. R. Zubarev, and S. Link, “Single-particle spectroscopy of gold nanorods beyond the quasi-static limit: varying the width at constant aspect ratio,” J. Phys. Chem. C 114, 4934–4938 (2010).
[Crossref]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref]

W. Zhang, B. Gallinet, and O. J. F. Martin, “Symmetry and selection rules for localized surface plasmon resonances in nanostructures,” Phys. Rev. B 81, 233407 (2010).
[Crossref]

2009 (3)

M. W. Chu, V. Myroshnychenko, C. H. Chen, J. P. Deng, C. Y. Mou, and F. J. Garcia de Abajo, “Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam,” Nano Lett. 9, 399–404 (2009).
[Crossref]

Q. W. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon. 1, 1–57 (2009).
[Crossref]

K. Sendur and A. Sahinöz, “Interaction of radially polarized focused light with a prolate spheroidal nanoparticle,” Opt. Express 17, 10910–10925 (2009).
[Crossref]

2008 (1)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

2007 (1)

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007).
[Crossref]

2006 (2)

E. K. Payne, K. L. Shuford, S. Park, G. C. Schatz, and C. A. Mirkin, “Multipole plasmon resonances in gold nanorods,” J. Phys. Chem. B 110, 2150–2154 (2006).
[Crossref]

A. V. Failla, H. Qian, H. Qian, A. Hartschuh, and A. J. Meixner, “Orientational imaging of subwavelength Au particles with higher order laser modes,” Nano Lett. 6, 1374–1378 (2006).
[Crossref]

2005 (1)

A. S. Kumbhar, M. K. Kinnan, and G. Chumanov, “Multipole plasmon resonances of submicron silver particles,” J. Am. Chem. Soc. 127, 12444–12445 (2005).
[Crossref]

2003 (2)

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[Crossref]

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[Crossref]

2000 (1)

1998 (1)

E. S. C. Ching, P. T. Leung, A. Maassen van den Brink, W. M. Suen, S. S. Tong, and K. Young, “Quasinormal-mode expansion for waves in open systems,” Rev. Mod. Phys. 70, 1545–1554 (1998).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Aizpurua, J.

H. Wei, A. Reyes-Coronado, P. Nordlander, J. Aizpurua, and H. Xu, “Multipolar plasmon resonances in individual ag nanorice,” ACS Nano 4, 2649–2654 (2010).
[Crossref]

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

Banzer, P.

P. Woźniak, P. Banzer, and G. Leuchs, “Selective switching of individual multipole resonances in single dielectric nanoparticles,” Laser Photon. Rev. 9, 231–240 (2015).
[Crossref]

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref]

Bhattacharya, N.

Botton, G. A.

D. Rossouw, M. Couillard, J. Vickery, E. Kumacheva, and G. A. Botton, “Multipolar plasmonic resonances in silver nanowire antennas imaged with a subnanometer electron probe,” Nano Lett. 11, 1499–1504 (2011).
[Crossref]

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref]

Brown, T. G.

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref]

Camacho-Morales, R.

E. V. Melik-Gaykazyan, S. S. Kruk, R. Camacho-Morales, L. Xu, M. Rahmani, K. Zangeneh Kamali, A. Lamprianidis, A. E. Miroshnichenko, A. A. Fedyanin, D. N. Neshev, and Y. S. Kivshar, “Selective third-harmonic generation by structured light in Mie-resonant nanoparticles,” ACS Photon. 5, 728–733 (2017).
[Crossref]

Camden, J. P.

Y. Wu, G. Li, and J. P. Camden, “Probing nanoparticle plasmons with electron energy loss spectroscopy,” Chem. Rev. 118, 2994–3031 (2018).
[Crossref]

B. S. Guiton, V. Iberi, S. Li, D. N. Leonard, C. M. Parish, P. G. Kotula, M. Varela, G. C. Schatz, S. J. Pennycook, and J. P. Camden, “Correlated optical measurements and plasmon mapping of silver nanorods,” Nano Lett. 11, 3482–3488 (2011).
[Crossref]

Chang, W. S.

J. Olson, S. Dominguez-Medina, A. Hoggard, L. Y. Wang, W. S. Chang, and S. Link, “Optical characterization of single plasmonic nanoparticles,” Chem. Soc. Rev. 44, 40–57 (2015).
[Crossref]

N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[Crossref]

Chang, W.-S.

L. S. Slaughter, W.-S. Chang, P. Swanglap, A. Tcherniak, B. P. Khanal, E. R. Zubarev, and S. Link, “Single-particle spectroscopy of gold nanorods beyond the quasi-static limit: varying the width at constant aspect ratio,” J. Phys. Chem. C 114, 4934–4938 (2010).
[Crossref]

Chen, C. H.

M. W. Chu, V. Myroshnychenko, C. H. Chen, J. P. Deng, C. Y. Mou, and F. J. Garcia de Abajo, “Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam,” Nano Lett. 9, 399–404 (2009).
[Crossref]

Chen, H.

H. Chen, L. Shao, Q. Li, and J. Wang, “Gold nanorods and their plasmonic properties,” Chem. Soc. Rev. 42, 2679–2724 (2013).
[Crossref]

Chen, L.

S. Zhang, L. Chen, Y. Huang, and H. Xu, “Reduced linewidth multipolar plasmon resonances in metal nanorods and related applications,” Nanoscale 5, 6985–6991 (2013).
[Crossref]

Cheng, H. C.

Ching, E. S. C.

E. S. C. Ching, P. T. Leung, A. Maassen van den Brink, W. M. Suen, S. S. Tong, and K. Young, “Quasinormal-mode expansion for waves in open systems,” Rev. Mod. Phys. 70, 1545–1554 (1998).
[Crossref]

Chong, C. T.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Chu, M. W.

M. W. Chu, V. Myroshnychenko, C. H. Chen, J. P. Deng, C. Y. Mou, and F. J. Garcia de Abajo, “Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam,” Nano Lett. 9, 399–404 (2009).
[Crossref]

Chumanov, G.

A. S. Kumbhar, M. K. Kinnan, and G. Chumanov, “Multipole plasmon resonances of submicron silver particles,” J. Am. Chem. Soc. 127, 12444–12445 (2005).
[Crossref]

Collins, S. M.

S. M. Collins, O. Nicoletti, D. Rossouw, T. Ostasevicius, and P. A. Midgley, “Excitation dependent Fano-like interference effects in plasmonic silver nanorods,” Phys. Rev. B 90, 155419 (2014).
[Crossref]

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[Crossref]

Couillard, M.

D. Rossouw, M. Couillard, J. Vickery, E. Kumacheva, and G. A. Botton, “Multipolar plasmonic resonances in silver nanowire antennas imaged with a subnanometer electron probe,” Nano Lett. 11, 1499–1504 (2011).
[Crossref]

Das, T.

T. Das, P. P. Iyer, R. A. DeCrescent, and J. A. Schuller, “Beam engineering for selective and enhanced coupling to multipolar resonances,” Phys. Rev. B 92, 241110 (2015).
[Crossref]

DeCrescent, R. A.

T. Das, P. P. Iyer, R. A. DeCrescent, and J. A. Schuller, “Beam engineering for selective and enhanced coupling to multipolar resonances,” Phys. Rev. B 92, 241110 (2015).
[Crossref]

Deng, J. P.

M. W. Chu, V. Myroshnychenko, C. H. Chen, J. P. Deng, C. Y. Mou, and F. J. Garcia de Abajo, “Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam,” Nano Lett. 9, 399–404 (2009).
[Crossref]

Deng, T. S.

U. Manna, J. H. Lee, T. S. Deng, J. Parker, N. Shepherd, Y. Weizmann, and N. F. Scherer, “Selective induction of optical magnetism,” Nano Lett. 17, 7196–7206 (2017).
[Crossref]

Denkova, D.

N. Verellen, F. Lopez-Tejeira, R. Paniagua-Dominguez, D. Vercruysse, D. Denkova, L. Lagae, P. Van Dorpe, V. V. Moshchalkov, and J. A. Sanchez-Gil, “Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14, 2322–2329 (2014).
[Crossref]

Dominguez-Medina, S.

J. Olson, S. Dominguez-Medina, A. Hoggard, L. Y. Wang, W. S. Chang, and S. Link, “Optical characterization of single plasmonic nanoparticles,” Chem. Soc. Rev. 44, 40–57 (2015).
[Crossref]

Dorn, R.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[Crossref]

Failla, A. V.

A. V. Failla, H. Qian, H. Qian, A. Hartschuh, and A. J. Meixner, “Orientational imaging of subwavelength Au particles with higher order laser modes,” Nano Lett. 6, 1374–1378 (2006).
[Crossref]

Fang, N. X.

K. H. Fung, A. Kumar, and N. X. Fang, “Electron-photon scattering mediated by localized plasmons: A quantitative analysis by Eigen-response theory,” Phys. Rev. B 89, 045408 (2014).
[Crossref]

Fedyanin, A. A.

E. V. Melik-Gaykazyan, S. S. Kruk, R. Camacho-Morales, L. Xu, M. Rahmani, K. Zangeneh Kamali, A. Lamprianidis, A. E. Miroshnichenko, A. A. Fedyanin, D. N. Neshev, and Y. S. Kivshar, “Selective third-harmonic generation by structured light in Mie-resonant nanoparticles,” ACS Photon. 5, 728–733 (2017).
[Crossref]

Fung, K. H.

K. H. Fung, A. Kumar, and N. X. Fang, “Electron-photon scattering mediated by localized plasmons: A quantitative analysis by Eigen-response theory,” Phys. Rev. B 89, 045408 (2014).
[Crossref]

Gallinet, B.

W. Zhang, B. Gallinet, and O. J. F. Martin, “Symmetry and selection rules for localized surface plasmon resonances in nanostructures,” Phys. Rev. B 81, 233407 (2010).
[Crossref]

Garcia de Abajo, F. J.

M. W. Chu, V. Myroshnychenko, C. H. Chen, J. P. Deng, C. Y. Mou, and F. J. Garcia de Abajo, “Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam,” Nano Lett. 9, 399–404 (2009).
[Crossref]

Giessen, H.

J. Yang, H. Giessen, and P. Lalanne, “Simple analytical expression for the peak-frequency shifts of plasmonic resonances for sensing,” Nano Lett. 15, 3439–3444 (2015).
[Crossref]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

Guiton, B. S.

B. S. Guiton, V. Iberi, S. Li, D. N. Leonard, C. M. Parish, P. G. Kotula, M. Varela, G. C. Schatz, S. J. Pennycook, and J. P. Camden, “Correlated optical measurements and plasmon mapping of silver nanorods,” Nano Lett. 11, 3482–3488 (2011).
[Crossref]

Hakala, T. K.

T. K. Hakala, H. T. Rekola, A. I. Vakevainen, J. P. Martikainen, M. Necada, A. J. Moilanen, and P. Torma, “Lasing in dark and bright modes of a finite-sized plasmonic lattice,” Nat. Commun. 8, 13687 (2017).
[Crossref]

Halas, N. J.

N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[Crossref]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

Han, L.

Hartschuh, A.

A. V. Failla, H. Qian, H. Qian, A. Hartschuh, and A. J. Meixner, “Orientational imaging of subwavelength Au particles with higher order laser modes,” Nano Lett. 6, 1374–1378 (2006).
[Crossref]

He, H. S.

W. Y. Shang, F. J. Xiao, W. R. Zhu, H. S. He, M. Premaratne, T. Mei, and J. L. Zhao, “Fano resonance with high local field enhancement under azimuthally polarized excitation,” Sci. Rep. 7, 1049 (2017).
[Crossref]

Hoggard, A.

J. Olson, S. Dominguez-Medina, A. Hoggard, L. Y. Wang, W. S. Chang, and S. Link, “Optical characterization of single plasmonic nanoparticles,” Chem. Soc. Rev. 44, 40–57 (2015).
[Crossref]

Huang, Y.

S. Zhang, L. Chen, Y. Huang, and H. Xu, “Reduced linewidth multipolar plasmon resonances in metal nanorods and related applications,” Nanoscale 5, 6985–6991 (2013).
[Crossref]

Hugonin, J. P.

C. Sauvan, J. P. Hugonin, I. S. Maksymov, and P. Lalanne, “Theory of the spontaneous optical emission of nanosize photonic and plasmon resonators,” Phys. Rev. Lett. 110, 237401 (2013).
[Crossref]

Iberi, V.

B. S. Guiton, V. Iberi, S. Li, D. N. Leonard, C. M. Parish, P. G. Kotula, M. Varela, G. C. Schatz, S. J. Pennycook, and J. P. Camden, “Correlated optical measurements and plasmon mapping of silver nanorods,” Nano Lett. 11, 3482–3488 (2011).
[Crossref]

Iyer, P. P.

T. Das, P. P. Iyer, R. A. DeCrescent, and J. A. Schuller, “Beam engineering for selective and enhanced coupling to multipolar resonances,” Phys. Rev. B 92, 241110 (2015).
[Crossref]

Jia, H.

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref]

Kauranen, M.

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6, 737–748 (2012).
[Crossref]

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[Crossref]

Khanal, B. P.

L. S. Slaughter, W.-S. Chang, P. Swanglap, A. Tcherniak, B. P. Khanal, E. R. Zubarev, and S. Link, “Single-particle spectroscopy of gold nanorods beyond the quasi-static limit: varying the width at constant aspect ratio,” J. Phys. Chem. C 114, 4934–4938 (2010).
[Crossref]

Kinnan, M. K.

A. S. Kumbhar, M. K. Kinnan, and G. Chumanov, “Multipole plasmon resonances of submicron silver particles,” J. Am. Chem. Soc. 127, 12444–12445 (2005).
[Crossref]

Kivshar, Y. S.

E. V. Melik-Gaykazyan, S. S. Kruk, R. Camacho-Morales, L. Xu, M. Rahmani, K. Zangeneh Kamali, A. Lamprianidis, A. E. Miroshnichenko, A. A. Fedyanin, D. N. Neshev, and Y. S. Kivshar, “Selective third-harmonic generation by structured light in Mie-resonant nanoparticles,” ACS Photon. 5, 728–733 (2017).
[Crossref]

Kotula, P. G.

B. S. Guiton, V. Iberi, S. Li, D. N. Leonard, C. M. Parish, P. G. Kotula, M. Varela, G. C. Schatz, S. J. Pennycook, and J. P. Camden, “Correlated optical measurements and plasmon mapping of silver nanorods,” Nano Lett. 11, 3482–3488 (2011).
[Crossref]

Kruk, S. S.

E. V. Melik-Gaykazyan, S. S. Kruk, R. Camacho-Morales, L. Xu, M. Rahmani, K. Zangeneh Kamali, A. Lamprianidis, A. E. Miroshnichenko, A. A. Fedyanin, D. N. Neshev, and Y. S. Kivshar, “Selective third-harmonic generation by structured light in Mie-resonant nanoparticles,” ACS Photon. 5, 728–733 (2017).
[Crossref]

Kumacheva, E.

D. Rossouw, M. Couillard, J. Vickery, E. Kumacheva, and G. A. Botton, “Multipolar plasmonic resonances in silver nanowire antennas imaged with a subnanometer electron probe,” Nano Lett. 11, 1499–1504 (2011).
[Crossref]

Kumar, A.

K. H. Fung, A. Kumar, and N. X. Fang, “Electron-photon scattering mediated by localized plasmons: A quantitative analysis by Eigen-response theory,” Phys. Rev. B 89, 045408 (2014).
[Crossref]

Kumbhar, A. S.

A. S. Kumbhar, M. K. Kinnan, and G. Chumanov, “Multipole plasmon resonances of submicron silver particles,” J. Am. Chem. Soc. 127, 12444–12445 (2005).
[Crossref]

Lagae, L.

N. Verellen, F. Lopez-Tejeira, R. Paniagua-Dominguez, D. Vercruysse, D. Denkova, L. Lagae, P. Van Dorpe, V. V. Moshchalkov, and J. A. Sanchez-Gil, “Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14, 2322–2329 (2014).
[Crossref]

Lal, S.

N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[Crossref]

Lalanne, P.

J. Yang, H. Giessen, and P. Lalanne, “Simple analytical expression for the peak-frequency shifts of plasmonic resonances for sensing,” Nano Lett. 15, 3439–3444 (2015).
[Crossref]

C. Sauvan, J. P. Hugonin, I. S. Maksymov, and P. Lalanne, “Theory of the spontaneous optical emission of nanosize photonic and plasmon resonators,” Phys. Rev. Lett. 110, 237401 (2013).
[Crossref]

Lamprianidis, A.

E. V. Melik-Gaykazyan, S. S. Kruk, R. Camacho-Morales, L. Xu, M. Rahmani, K. Zangeneh Kamali, A. Lamprianidis, A. E. Miroshnichenko, A. A. Fedyanin, D. N. Neshev, and Y. S. Kivshar, “Selective third-harmonic generation by structured light in Mie-resonant nanoparticles,” ACS Photon. 5, 728–733 (2017).
[Crossref]

Lee, J. H.

U. Manna, J. H. Lee, T. S. Deng, J. Parker, N. Shepherd, Y. Weizmann, and N. F. Scherer, “Selective induction of optical magnetism,” Nano Lett. 17, 7196–7206 (2017).
[Crossref]

Leonard, D. N.

B. S. Guiton, V. Iberi, S. Li, D. N. Leonard, C. M. Parish, P. G. Kotula, M. Varela, G. C. Schatz, S. J. Pennycook, and J. P. Camden, “Correlated optical measurements and plasmon mapping of silver nanorods,” Nano Lett. 11, 3482–3488 (2011).
[Crossref]

Leuchs, G.

P. Woźniak, P. Banzer, and G. Leuchs, “Selective switching of individual multipole resonances in single dielectric nanoparticles,” Laser Photon. Rev. 9, 231–240 (2015).
[Crossref]

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[Crossref]

Leung, P. T.

E. S. C. Ching, P. T. Leung, A. Maassen van den Brink, W. M. Suen, S. S. Tong, and K. Young, “Quasinormal-mode expansion for waves in open systems,” Rev. Mod. Phys. 70, 1545–1554 (1998).
[Crossref]

Li, G.

Y. Wu, G. Li, and J. P. Camden, “Probing nanoparticle plasmons with electron energy loss spectroscopy,” Chem. Rev. 118, 2994–3031 (2018).
[Crossref]

Li, P.

Li, Q.

H. Chen, L. Shao, Q. Li, and J. Wang, “Gold nanorods and their plasmonic properties,” Chem. Soc. Rev. 42, 2679–2724 (2013).
[Crossref]

Li, S.

B. S. Guiton, V. Iberi, S. Li, D. N. Leonard, C. M. Parish, P. G. Kotula, M. Varela, G. C. Schatz, S. J. Pennycook, and J. P. Camden, “Correlated optical measurements and plasmon mapping of silver nanorods,” Nano Lett. 11, 3482–3488 (2011).
[Crossref]

Link, S.

J. Olson, S. Dominguez-Medina, A. Hoggard, L. Y. Wang, W. S. Chang, and S. Link, “Optical characterization of single plasmonic nanoparticles,” Chem. Soc. Rev. 44, 40–57 (2015).
[Crossref]

N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[Crossref]

L. S. Slaughter, W.-S. Chang, P. Swanglap, A. Tcherniak, B. P. Khanal, E. R. Zubarev, and S. Link, “Single-particle spectroscopy of gold nanorods beyond the quasi-static limit: varying the width at constant aspect ratio,” J. Phys. Chem. C 114, 4934–4938 (2010).
[Crossref]

Liu, H.

Liu, S.

Lopez-Tejeira, F.

N. Verellen, F. Lopez-Tejeira, R. Paniagua-Dominguez, D. Vercruysse, D. Denkova, L. Lagae, P. Van Dorpe, V. V. Moshchalkov, and J. A. Sanchez-Gil, “Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14, 2322–2329 (2014).
[Crossref]

López-Tejeira, F.

F. López-Tejeira, R. Paniagua-Domínguez, R. Rodríguez-Oliveros, and J. A. Sánchez-Gil, “Fano-like interference of plasmon resonances at a single rod-shaped nanoantenna,” New J. Phys. 14, 023035 (2012).
[Crossref]

Lu, H.

Luk’yanchuk, B.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

Ma, C. J.

Maassen van den Brink, A.

E. S. C. Ching, P. T. Leung, A. Maassen van den Brink, W. M. Suen, S. S. Tong, and K. Young, “Quasinormal-mode expansion for waves in open systems,” Rev. Mod. Phys. 70, 1545–1554 (1998).
[Crossref]

Maier, S. A.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

Maksymov, I. S.

C. Sauvan, J. P. Hugonin, I. S. Maksymov, and P. Lalanne, “Theory of the spontaneous optical emission of nanosize photonic and plasmon resonators,” Phys. Rev. Lett. 110, 237401 (2013).
[Crossref]

Manna, U.

U. Manna, J. H. Lee, T. S. Deng, J. Parker, N. Shepherd, Y. Weizmann, and N. F. Scherer, “Selective induction of optical magnetism,” Nano Lett. 17, 7196–7206 (2017).
[Crossref]

Martikainen, J. P.

T. K. Hakala, H. T. Rekola, A. I. Vakevainen, J. P. Martikainen, M. Necada, A. J. Moilanen, and P. Torma, “Lasing in dark and bright modes of a finite-sized plasmonic lattice,” Nat. Commun. 8, 13687 (2017).
[Crossref]

Martin, O. J. F.

W. Zhang, B. Gallinet, and O. J. F. Martin, “Symmetry and selection rules for localized surface plasmon resonances in nanostructures,” Phys. Rev. B 81, 233407 (2010).
[Crossref]

Mei, T.

Meixner, A. J.

A. V. Failla, H. Qian, H. Qian, A. Hartschuh, and A. J. Meixner, “Orientational imaging of subwavelength Au particles with higher order laser modes,” Nano Lett. 6, 1374–1378 (2006).
[Crossref]

Melik-Gaykazyan, E. V.

E. V. Melik-Gaykazyan, S. S. Kruk, R. Camacho-Morales, L. Xu, M. Rahmani, K. Zangeneh Kamali, A. Lamprianidis, A. E. Miroshnichenko, A. A. Fedyanin, D. N. Neshev, and Y. S. Kivshar, “Selective third-harmonic generation by structured light in Mie-resonant nanoparticles,” ACS Photon. 5, 728–733 (2017).
[Crossref]

Midgley, P. A.

S. M. Collins, O. Nicoletti, D. Rossouw, T. Ostasevicius, and P. A. Midgley, “Excitation dependent Fano-like interference effects in plasmonic silver nanorods,” Phys. Rev. B 90, 155419 (2014).
[Crossref]

Mirkin, C. A.

E. K. Payne, K. L. Shuford, S. Park, G. C. Schatz, and C. A. Mirkin, “Multipole plasmon resonances in gold nanorods,” J. Phys. Chem. B 110, 2150–2154 (2006).
[Crossref]

Miroshnichenko, A. E.

E. V. Melik-Gaykazyan, S. S. Kruk, R. Camacho-Morales, L. Xu, M. Rahmani, K. Zangeneh Kamali, A. Lamprianidis, A. E. Miroshnichenko, A. A. Fedyanin, D. N. Neshev, and Y. S. Kivshar, “Selective third-harmonic generation by structured light in Mie-resonant nanoparticles,” ACS Photon. 5, 728–733 (2017).
[Crossref]

Moilanen, A. J.

T. K. Hakala, H. T. Rekola, A. I. Vakevainen, J. P. Martikainen, M. Necada, A. J. Moilanen, and P. Torma, “Lasing in dark and bright modes of a finite-sized plasmonic lattice,” Nat. Commun. 8, 13687 (2017).
[Crossref]

Moshchalkov, V. V.

N. Verellen, F. Lopez-Tejeira, R. Paniagua-Dominguez, D. Vercruysse, D. Denkova, L. Lagae, P. Van Dorpe, V. V. Moshchalkov, and J. A. Sanchez-Gil, “Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14, 2322–2329 (2014).
[Crossref]

Mou, C. Y.

M. W. Chu, V. Myroshnychenko, C. H. Chen, J. P. Deng, C. Y. Mou, and F. J. Garcia de Abajo, “Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam,” Nano Lett. 9, 399–404 (2009).
[Crossref]

Myroshnychenko, V.

M. W. Chu, V. Myroshnychenko, C. H. Chen, J. P. Deng, C. Y. Mou, and F. J. Garcia de Abajo, “Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam,” Nano Lett. 9, 399–404 (2009).
[Crossref]

Necada, M.

T. K. Hakala, H. T. Rekola, A. I. Vakevainen, J. P. Martikainen, M. Necada, A. J. Moilanen, and P. Torma, “Lasing in dark and bright modes of a finite-sized plasmonic lattice,” Nat. Commun. 8, 13687 (2017).
[Crossref]

Neshev, D. N.

E. V. Melik-Gaykazyan, S. S. Kruk, R. Camacho-Morales, L. Xu, M. Rahmani, K. Zangeneh Kamali, A. Lamprianidis, A. E. Miroshnichenko, A. A. Fedyanin, D. N. Neshev, and Y. S. Kivshar, “Selective third-harmonic generation by structured light in Mie-resonant nanoparticles,” ACS Photon. 5, 728–733 (2017).
[Crossref]

Nicoletti, O.

S. M. Collins, O. Nicoletti, D. Rossouw, T. Ostasevicius, and P. A. Midgley, “Excitation dependent Fano-like interference effects in plasmonic silver nanorods,” Phys. Rev. B 90, 155419 (2014).
[Crossref]

Nomura, K.

K. Sakai, K. Nomura, T. Yamamoto, and K. Sasaki, “Excitation of multipole plasmons by optical vortex beams,” Sci. Rep. 5, 8431 (2015).
[Crossref]

Nordlander, P.

N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[Crossref]

H. Wei, A. Reyes-Coronado, P. Nordlander, J. Aizpurua, and H. Xu, “Multipolar plasmon resonances in individual ag nanorice,” ACS Nano 4, 2649–2654 (2010).
[Crossref]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

Olson, J.

J. Olson, S. Dominguez-Medina, A. Hoggard, L. Y. Wang, W. S. Chang, and S. Link, “Optical characterization of single plasmonic nanoparticles,” Chem. Soc. Rev. 44, 40–57 (2015).
[Crossref]

Ostasevicius, T.

S. M. Collins, O. Nicoletti, D. Rossouw, T. Ostasevicius, and P. A. Midgley, “Excitation dependent Fano-like interference effects in plasmonic silver nanorods,” Phys. Rev. B 90, 155419 (2014).
[Crossref]

Paniagua-Dominguez, R.

N. Verellen, F. Lopez-Tejeira, R. Paniagua-Dominguez, D. Vercruysse, D. Denkova, L. Lagae, P. Van Dorpe, V. V. Moshchalkov, and J. A. Sanchez-Gil, “Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14, 2322–2329 (2014).
[Crossref]

Paniagua-Domínguez, R.

F. López-Tejeira, R. Paniagua-Domínguez, R. Rodríguez-Oliveros, and J. A. Sánchez-Gil, “Fano-like interference of plasmon resonances at a single rod-shaped nanoantenna,” New J. Phys. 14, 023035 (2012).
[Crossref]

Parish, C. M.

B. S. Guiton, V. Iberi, S. Li, D. N. Leonard, C. M. Parish, P. G. Kotula, M. Varela, G. C. Schatz, S. J. Pennycook, and J. P. Camden, “Correlated optical measurements and plasmon mapping of silver nanorods,” Nano Lett. 11, 3482–3488 (2011).
[Crossref]

Park, S.

E. K. Payne, K. L. Shuford, S. Park, G. C. Schatz, and C. A. Mirkin, “Multipole plasmon resonances in gold nanorods,” J. Phys. Chem. B 110, 2150–2154 (2006).
[Crossref]

Parker, J.

U. Manna, J. H. Lee, T. S. Deng, J. Parker, N. Shepherd, Y. Weizmann, and N. F. Scherer, “Selective induction of optical magnetism,” Nano Lett. 17, 7196–7206 (2017).
[Crossref]

Payne, E. K.

E. K. Payne, K. L. Shuford, S. Park, G. C. Schatz, and C. A. Mirkin, “Multipole plasmon resonances in gold nanorods,” J. Phys. Chem. B 110, 2150–2154 (2006).
[Crossref]

Pennycook, S. J.

B. S. Guiton, V. Iberi, S. Li, D. N. Leonard, C. M. Parish, P. G. Kotula, M. Varela, G. C. Schatz, S. J. Pennycook, and J. P. Camden, “Correlated optical measurements and plasmon mapping of silver nanorods,” Nano Lett. 11, 3482–3488 (2011).
[Crossref]

Premaratne, M.

Qian, H.

A. V. Failla, H. Qian, H. Qian, A. Hartschuh, and A. J. Meixner, “Orientational imaging of subwavelength Au particles with higher order laser modes,” Nano Lett. 6, 1374–1378 (2006).
[Crossref]

A. V. Failla, H. Qian, H. Qian, A. Hartschuh, and A. J. Meixner, “Orientational imaging of subwavelength Au particles with higher order laser modes,” Nano Lett. 6, 1374–1378 (2006).
[Crossref]

Quabis, S.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[Crossref]

Rahmani, M.

E. V. Melik-Gaykazyan, S. S. Kruk, R. Camacho-Morales, L. Xu, M. Rahmani, K. Zangeneh Kamali, A. Lamprianidis, A. E. Miroshnichenko, A. A. Fedyanin, D. N. Neshev, and Y. S. Kivshar, “Selective third-harmonic generation by structured light in Mie-resonant nanoparticles,” ACS Photon. 5, 728–733 (2017).
[Crossref]

Rekola, H. T.

T. K. Hakala, H. T. Rekola, A. I. Vakevainen, J. P. Martikainen, M. Necada, A. J. Moilanen, and P. Torma, “Lasing in dark and bright modes of a finite-sized plasmonic lattice,” Nat. Commun. 8, 13687 (2017).
[Crossref]

Ren, Y. X.

Reyes-Coronado, A.

H. Wei, A. Reyes-Coronado, P. Nordlander, J. Aizpurua, and H. Xu, “Multipolar plasmon resonances in individual ag nanorice,” ACS Nano 4, 2649–2654 (2010).
[Crossref]

Rodríguez-Oliveros, R.

F. López-Tejeira, R. Paniagua-Domínguez, R. Rodríguez-Oliveros, and J. A. Sánchez-Gil, “Fano-like interference of plasmon resonances at a single rod-shaped nanoantenna,” New J. Phys. 14, 023035 (2012).
[Crossref]

Rossouw, D.

S. M. Collins, O. Nicoletti, D. Rossouw, T. Ostasevicius, and P. A. Midgley, “Excitation dependent Fano-like interference effects in plasmonic silver nanorods,” Phys. Rev. B 90, 155419 (2014).
[Crossref]

D. Rossouw, M. Couillard, J. Vickery, E. Kumacheva, and G. A. Botton, “Multipolar plasmonic resonances in silver nanowire antennas imaged with a subnanometer electron probe,” Nano Lett. 11, 1499–1504 (2011).
[Crossref]

Sahinöz, A.

Sakai, K.

K. Sakai, K. Nomura, T. Yamamoto, and K. Sasaki, “Excitation of multipole plasmons by optical vortex beams,” Sci. Rep. 5, 8431 (2015).
[Crossref]

Sanchez-Gil, J. A.

N. Verellen, F. Lopez-Tejeira, R. Paniagua-Dominguez, D. Vercruysse, D. Denkova, L. Lagae, P. Van Dorpe, V. V. Moshchalkov, and J. A. Sanchez-Gil, “Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14, 2322–2329 (2014).
[Crossref]

Sánchez-Gil, J. A.

F. López-Tejeira, R. Paniagua-Domínguez, R. Rodríguez-Oliveros, and J. A. Sánchez-Gil, “Fano-like interference of plasmon resonances at a single rod-shaped nanoantenna,” New J. Phys. 14, 023035 (2012).
[Crossref]

Sasaki, K.

K. Sakai, K. Nomura, T. Yamamoto, and K. Sasaki, “Excitation of multipole plasmons by optical vortex beams,” Sci. Rep. 5, 8431 (2015).
[Crossref]

Sauvan, C.

C. Sauvan, J. P. Hugonin, I. S. Maksymov, and P. Lalanne, “Theory of the spontaneous optical emission of nanosize photonic and plasmon resonators,” Phys. Rev. Lett. 110, 237401 (2013).
[Crossref]

Schatz, G. C.

B. S. Guiton, V. Iberi, S. Li, D. N. Leonard, C. M. Parish, P. G. Kotula, M. Varela, G. C. Schatz, S. J. Pennycook, and J. P. Camden, “Correlated optical measurements and plasmon mapping of silver nanorods,” Nano Lett. 11, 3482–3488 (2011).
[Crossref]

E. K. Payne, K. L. Shuford, S. Park, G. C. Schatz, and C. A. Mirkin, “Multipole plasmon resonances in gold nanorods,” J. Phys. Chem. B 110, 2150–2154 (2006).
[Crossref]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[Crossref]

Scherer, N. F.

U. Manna, J. H. Lee, T. S. Deng, J. Parker, N. Shepherd, Y. Weizmann, and N. F. Scherer, “Selective induction of optical magnetism,” Nano Lett. 17, 7196–7206 (2017).
[Crossref]

Schuller, J. A.

T. Das, P. P. Iyer, R. A. DeCrescent, and J. A. Schuller, “Beam engineering for selective and enhanced coupling to multipolar resonances,” Phys. Rev. B 92, 241110 (2015).
[Crossref]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref]

Sendur, K.

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

Shang, W.

Shang, W. Y.

Shao, L.

H. Chen, L. Shao, Q. Li, and J. Wang, “Gold nanorods and their plasmonic properties,” Chem. Soc. Rev. 42, 2679–2724 (2013).
[Crossref]

Shepherd, N.

U. Manna, J. H. Lee, T. S. Deng, J. Parker, N. Shepherd, Y. Weizmann, and N. F. Scherer, “Selective induction of optical magnetism,” Nano Lett. 17, 7196–7206 (2017).
[Crossref]

Shuford, K. L.

E. K. Payne, K. L. Shuford, S. Park, G. C. Schatz, and C. A. Mirkin, “Multipole plasmon resonances in gold nanorods,” J. Phys. Chem. B 110, 2150–2154 (2006).
[Crossref]

Slaughter, L. S.

L. S. Slaughter, W.-S. Chang, P. Swanglap, A. Tcherniak, B. P. Khanal, E. R. Zubarev, and S. Link, “Single-particle spectroscopy of gold nanorods beyond the quasi-static limit: varying the width at constant aspect ratio,” J. Phys. Chem. C 114, 4934–4938 (2010).
[Crossref]

Stockman, M. I.

Suen, W. M.

E. S. C. Ching, P. T. Leung, A. Maassen van den Brink, W. M. Suen, S. S. Tong, and K. Young, “Quasinormal-mode expansion for waves in open systems,” Rev. Mod. Phys. 70, 1545–1554 (1998).
[Crossref]

Swanglap, P.

L. S. Slaughter, W.-S. Chang, P. Swanglap, A. Tcherniak, B. P. Khanal, E. R. Zubarev, and S. Link, “Single-particle spectroscopy of gold nanorods beyond the quasi-static limit: varying the width at constant aspect ratio,” J. Phys. Chem. C 114, 4934–4938 (2010).
[Crossref]

Tcherniak, A.

L. S. Slaughter, W.-S. Chang, P. Swanglap, A. Tcherniak, B. P. Khanal, E. R. Zubarev, and S. Link, “Single-particle spectroscopy of gold nanorods beyond the quasi-static limit: varying the width at constant aspect ratio,” J. Phys. Chem. C 114, 4934–4938 (2010).
[Crossref]

Tong, S. S.

E. S. C. Ching, P. T. Leung, A. Maassen van den Brink, W. M. Suen, S. S. Tong, and K. Young, “Quasinormal-mode expansion for waves in open systems,” Rev. Mod. Phys. 70, 1545–1554 (1998).
[Crossref]

Torma, P.

T. K. Hakala, H. T. Rekola, A. I. Vakevainen, J. P. Martikainen, M. Necada, A. J. Moilanen, and P. Torma, “Lasing in dark and bright modes of a finite-sized plasmonic lattice,” Nat. Commun. 8, 13687 (2017).
[Crossref]

Urbach, H. P.

Vakevainen, A. I.

T. K. Hakala, H. T. Rekola, A. I. Vakevainen, J. P. Martikainen, M. Necada, A. J. Moilanen, and P. Torma, “Lasing in dark and bright modes of a finite-sized plasmonic lattice,” Nat. Commun. 8, 13687 (2017).
[Crossref]

Van Dorpe, P.

N. Verellen, F. Lopez-Tejeira, R. Paniagua-Dominguez, D. Vercruysse, D. Denkova, L. Lagae, P. Van Dorpe, V. V. Moshchalkov, and J. A. Sanchez-Gil, “Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14, 2322–2329 (2014).
[Crossref]

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007).
[Crossref]

Varela, M.

B. S. Guiton, V. Iberi, S. Li, D. N. Leonard, C. M. Parish, P. G. Kotula, M. Varela, G. C. Schatz, S. J. Pennycook, and J. P. Camden, “Correlated optical measurements and plasmon mapping of silver nanorods,” Nano Lett. 11, 3482–3488 (2011).
[Crossref]

Vercruysse, D.

N. Verellen, F. Lopez-Tejeira, R. Paniagua-Dominguez, D. Vercruysse, D. Denkova, L. Lagae, P. Van Dorpe, V. V. Moshchalkov, and J. A. Sanchez-Gil, “Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14, 2322–2329 (2014).
[Crossref]

Verellen, N.

N. Verellen, F. Lopez-Tejeira, R. Paniagua-Dominguez, D. Vercruysse, D. Denkova, L. Lagae, P. Van Dorpe, V. V. Moshchalkov, and J. A. Sanchez-Gil, “Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14, 2322–2329 (2014).
[Crossref]

Vickery, J.

D. Rossouw, M. Couillard, J. Vickery, E. Kumacheva, and G. A. Botton, “Multipolar plasmonic resonances in silver nanowire antennas imaged with a subnanometer electron probe,” Nano Lett. 11, 1499–1504 (2011).
[Crossref]

Wang, J.

H. Chen, L. Shao, Q. Li, and J. Wang, “Gold nanorods and their plasmonic properties,” Chem. Soc. Rev. 42, 2679–2724 (2013).
[Crossref]

Wang, L. Y.

J. Olson, S. Dominguez-Medina, A. Hoggard, L. Y. Wang, W. S. Chang, and S. Link, “Optical characterization of single plasmonic nanoparticles,” Chem. Soc. Rev. 44, 40–57 (2015).
[Crossref]

Wei, H.

H. Wei, A. Reyes-Coronado, P. Nordlander, J. Aizpurua, and H. Xu, “Multipolar plasmon resonances in individual ag nanorice,” ACS Nano 4, 2649–2654 (2010).
[Crossref]

Wei, L.

Weizmann, Y.

U. Manna, J. H. Lee, T. S. Deng, J. Parker, N. Shepherd, Y. Weizmann, and N. F. Scherer, “Selective induction of optical magnetism,” Nano Lett. 17, 7196–7206 (2017).
[Crossref]

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref]

Willets, K. A.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007).
[Crossref]

Wozniak, P.

P. Woźniak, P. Banzer, and G. Leuchs, “Selective switching of individual multipole resonances in single dielectric nanoparticles,” Laser Photon. Rev. 9, 231–240 (2015).
[Crossref]

Wu, Y.

Y. Wu, G. Li, and J. P. Camden, “Probing nanoparticle plasmons with electron energy loss spectroscopy,” Chem. Rev. 118, 2994–3031 (2018).
[Crossref]

Xi, Z.

Xiao, F.

Xiao, F. J.

Xu, H.

S. Zhang, L. Chen, Y. Huang, and H. Xu, “Reduced linewidth multipolar plasmon resonances in metal nanorods and related applications,” Nanoscale 5, 6985–6991 (2013).
[Crossref]

H. Wei, A. Reyes-Coronado, P. Nordlander, J. Aizpurua, and H. Xu, “Multipolar plasmon resonances in individual ag nanorice,” ACS Nano 4, 2649–2654 (2010).
[Crossref]

Xu, L.

E. V. Melik-Gaykazyan, S. S. Kruk, R. Camacho-Morales, L. Xu, M. Rahmani, K. Zangeneh Kamali, A. Lamprianidis, A. E. Miroshnichenko, A. A. Fedyanin, D. N. Neshev, and Y. S. Kivshar, “Selective third-harmonic generation by structured light in Mie-resonant nanoparticles,” ACS Photon. 5, 728–733 (2017).
[Crossref]

Yamamoto, T.

K. Sakai, K. Nomura, T. Yamamoto, and K. Sasaki, “Excitation of multipole plasmons by optical vortex beams,” Sci. Rep. 5, 8431 (2015).
[Crossref]

Yang, F.

Yang, J.

J. Yang, H. Giessen, and P. Lalanne, “Simple analytical expression for the peak-frequency shifts of plasmonic resonances for sensing,” Nano Lett. 15, 3439–3444 (2015).
[Crossref]

Young, K.

E. S. C. Ching, P. T. Leung, A. Maassen van den Brink, W. M. Suen, S. S. Tong, and K. Young, “Quasinormal-mode expansion for waves in open systems,” Rev. Mod. Phys. 70, 1545–1554 (1998).
[Crossref]

Youngworth, K. S.

Zangeneh Kamali, K.

E. V. Melik-Gaykazyan, S. S. Kruk, R. Camacho-Morales, L. Xu, M. Rahmani, K. Zangeneh Kamali, A. Lamprianidis, A. E. Miroshnichenko, A. A. Fedyanin, D. N. Neshev, and Y. S. Kivshar, “Selective third-harmonic generation by structured light in Mie-resonant nanoparticles,” ACS Photon. 5, 728–733 (2017).
[Crossref]

Zayats, A. V.

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6, 737–748 (2012).
[Crossref]

Zhan, Q. W.

Zhang, S.

S. Zhang, L. Chen, Y. Huang, and H. Xu, “Reduced linewidth multipolar plasmon resonances in metal nanorods and related applications,” Nanoscale 5, 6985–6991 (2013).
[Crossref]

Zhang, W.

W. Zhang, B. Gallinet, and O. J. F. Martin, “Symmetry and selection rules for localized surface plasmon resonances in nanostructures,” Phys. Rev. B 81, 233407 (2010).
[Crossref]

Zhang, Y.

Zhao, J.

W. Shang, F. Xiao, W. Zhu, L. Han, M. Premaratne, T. Mei, and J. Zhao, “Unidirectional scattering exploited transverse displacement sensor with tunable measuring range,” Opt. Express 27, 4944–4955 (2019).
[Crossref]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

Zhao, J. L.

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[Crossref]

Zheludev, N. I.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

Zhong, Y.

Zhu, W.

Zhu, W. R.

Zubarev, E. R.

L. S. Slaughter, W.-S. Chang, P. Swanglap, A. Tcherniak, B. P. Khanal, E. R. Zubarev, and S. Link, “Single-particle spectroscopy of gold nanorods beyond the quasi-static limit: varying the width at constant aspect ratio,” J. Phys. Chem. C 114, 4934–4938 (2010).
[Crossref]

ACS Nano (1)

H. Wei, A. Reyes-Coronado, P. Nordlander, J. Aizpurua, and H. Xu, “Multipolar plasmon resonances in individual ag nanorice,” ACS Nano 4, 2649–2654 (2010).
[Crossref]

ACS Photon. (1)

E. V. Melik-Gaykazyan, S. S. Kruk, R. Camacho-Morales, L. Xu, M. Rahmani, K. Zangeneh Kamali, A. Lamprianidis, A. E. Miroshnichenko, A. A. Fedyanin, D. N. Neshev, and Y. S. Kivshar, “Selective third-harmonic generation by structured light in Mie-resonant nanoparticles,” ACS Photon. 5, 728–733 (2017).
[Crossref]

Adv. Opt. Photon. (2)

Annu. Rev. Phys. Chem. (1)

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007).
[Crossref]

Chem. Rev. (2)

N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[Crossref]

Y. Wu, G. Li, and J. P. Camden, “Probing nanoparticle plasmons with electron energy loss spectroscopy,” Chem. Rev. 118, 2994–3031 (2018).
[Crossref]

Chem. Soc. Rev. (2)

J. Olson, S. Dominguez-Medina, A. Hoggard, L. Y. Wang, W. S. Chang, and S. Link, “Optical characterization of single plasmonic nanoparticles,” Chem. Soc. Rev. 44, 40–57 (2015).
[Crossref]

H. Chen, L. Shao, Q. Li, and J. Wang, “Gold nanorods and their plasmonic properties,” Chem. Soc. Rev. 42, 2679–2724 (2013).
[Crossref]

J. Am. Chem. Soc. (1)

A. S. Kumbhar, M. K. Kinnan, and G. Chumanov, “Multipole plasmon resonances of submicron silver particles,” J. Am. Chem. Soc. 127, 12444–12445 (2005).
[Crossref]

J. Phys. Chem. B (2)

E. K. Payne, K. L. Shuford, S. Park, G. C. Schatz, and C. A. Mirkin, “Multipole plasmon resonances in gold nanorods,” J. Phys. Chem. B 110, 2150–2154 (2006).
[Crossref]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[Crossref]

J. Phys. Chem. C (1)

L. S. Slaughter, W.-S. Chang, P. Swanglap, A. Tcherniak, B. P. Khanal, E. R. Zubarev, and S. Link, “Single-particle spectroscopy of gold nanorods beyond the quasi-static limit: varying the width at constant aspect ratio,” J. Phys. Chem. C 114, 4934–4938 (2010).
[Crossref]

Laser Photon. Rev. (1)

P. Woźniak, P. Banzer, and G. Leuchs, “Selective switching of individual multipole resonances in single dielectric nanoparticles,” Laser Photon. Rev. 9, 231–240 (2015).
[Crossref]

Nano Lett. (7)

U. Manna, J. H. Lee, T. S. Deng, J. Parker, N. Shepherd, Y. Weizmann, and N. F. Scherer, “Selective induction of optical magnetism,” Nano Lett. 17, 7196–7206 (2017).
[Crossref]

A. V. Failla, H. Qian, H. Qian, A. Hartschuh, and A. J. Meixner, “Orientational imaging of subwavelength Au particles with higher order laser modes,” Nano Lett. 6, 1374–1378 (2006).
[Crossref]

J. Yang, H. Giessen, and P. Lalanne, “Simple analytical expression for the peak-frequency shifts of plasmonic resonances for sensing,” Nano Lett. 15, 3439–3444 (2015).
[Crossref]

N. Verellen, F. Lopez-Tejeira, R. Paniagua-Dominguez, D. Vercruysse, D. Denkova, L. Lagae, P. Van Dorpe, V. V. Moshchalkov, and J. A. Sanchez-Gil, “Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14, 2322–2329 (2014).
[Crossref]

D. Rossouw, M. Couillard, J. Vickery, E. Kumacheva, and G. A. Botton, “Multipolar plasmonic resonances in silver nanowire antennas imaged with a subnanometer electron probe,” Nano Lett. 11, 1499–1504 (2011).
[Crossref]

B. S. Guiton, V. Iberi, S. Li, D. N. Leonard, C. M. Parish, P. G. Kotula, M. Varela, G. C. Schatz, S. J. Pennycook, and J. P. Camden, “Correlated optical measurements and plasmon mapping of silver nanorods,” Nano Lett. 11, 3482–3488 (2011).
[Crossref]

M. W. Chu, V. Myroshnychenko, C. H. Chen, J. P. Deng, C. Y. Mou, and F. J. Garcia de Abajo, “Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam,” Nano Lett. 9, 399–404 (2009).
[Crossref]

Nanoscale (1)

S. Zhang, L. Chen, Y. Huang, and H. Xu, “Reduced linewidth multipolar plasmon resonances in metal nanorods and related applications,” Nanoscale 5, 6985–6991 (2013).
[Crossref]

Nat. Commun. (1)

T. K. Hakala, H. T. Rekola, A. I. Vakevainen, J. P. Martikainen, M. Necada, A. J. Moilanen, and P. Torma, “Lasing in dark and bright modes of a finite-sized plasmonic lattice,” Nat. Commun. 8, 13687 (2017).
[Crossref]

Nat. Mater. (3)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref]

Nat. Photonics (1)

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6, 737–748 (2012).
[Crossref]

New J. Phys. (1)

F. López-Tejeira, R. Paniagua-Domínguez, R. Rodríguez-Oliveros, and J. A. Sánchez-Gil, “Fano-like interference of plasmon resonances at a single rod-shaped nanoantenna,” New J. Phys. 14, 023035 (2012).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Optica (1)

Photon. Res. (2)

Phys. Rev. B (5)

S. M. Collins, O. Nicoletti, D. Rossouw, T. Ostasevicius, and P. A. Midgley, “Excitation dependent Fano-like interference effects in plasmonic silver nanorods,” Phys. Rev. B 90, 155419 (2014).
[Crossref]

K. H. Fung, A. Kumar, and N. X. Fang, “Electron-photon scattering mediated by localized plasmons: A quantitative analysis by Eigen-response theory,” Phys. Rev. B 89, 045408 (2014).
[Crossref]

T. Das, P. P. Iyer, R. A. DeCrescent, and J. A. Schuller, “Beam engineering for selective and enhanced coupling to multipolar resonances,” Phys. Rev. B 92, 241110 (2015).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

W. Zhang, B. Gallinet, and O. J. F. Martin, “Symmetry and selection rules for localized surface plasmon resonances in nanostructures,” Phys. Rev. B 81, 233407 (2010).
[Crossref]

Phys. Rev. Lett. (2)

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[Crossref]

C. Sauvan, J. P. Hugonin, I. S. Maksymov, and P. Lalanne, “Theory of the spontaneous optical emission of nanosize photonic and plasmon resonators,” Phys. Rev. Lett. 110, 237401 (2013).
[Crossref]

Rev. Mod. Phys. (1)

E. S. C. Ching, P. T. Leung, A. Maassen van den Brink, W. M. Suen, S. S. Tong, and K. Young, “Quasinormal-mode expansion for waves in open systems,” Rev. Mod. Phys. 70, 1545–1554 (1998).
[Crossref]

Sci. Rep. (2)

W. Y. Shang, F. J. Xiao, W. R. Zhu, H. S. He, M. Premaratne, T. Mei, and J. L. Zhao, “Fano resonance with high local field enhancement under azimuthally polarized excitation,” Sci. Rep. 7, 1049 (2017).
[Crossref]

K. Sakai, K. Nomura, T. Yamamoto, and K. Sasaki, “Excitation of multipole plasmons by optical vortex beams,” Sci. Rep. 5, 8431 (2015).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. (a) Transverse |E|2=|Ex|2+|Ey|2 and (b) longitudinal |Ez|2 electric field intensity distributions at the focal plane of a focused RPB (NA=0.9, λ=600nm). (c) The corresponding total electric field intensity |E|2=|Ex|2+|Ey|2+|Ez|2 distribution in the xz plane. The electric field intensities are all normalized to the maximum value of total electric field intensity. The black arrows indicate the corresponding polarization distributions. (d) Schematic view of the studied gold nanorod that is placed on a glass substrate with length of L and diameter of D.
Fig. 2.
Fig. 2. (a) Scattering cross sections of the gold nanorod under the illumination of a linearly polarized plane wave with specific polarizations for normal and oblique incidence. The plasmon resonance modes are indicated with TD, VD, l=2, and l=3, associated to the corresponding peaks. The inset schematically shows the excitation configuration with the incident angle of θ. (b) Electric field intensity and (c) charge distributions of the corresponding plasmon resonance modes. The scattering cross section for y-polarized plane wave illumination at normal incidence (θ=0°, y-pol.) in (a) is multiplied by 5 for clear comparison. The electric field intensities for TD, VD, and l=3 modes in (b) are magnified by 6, 6, and 2 for clear display. The orange and blue arrows in (c) schematically show the dipole moments along the nanorod.
Fig. 3.
Fig. 3. (a) Schematic view of the gold nanorod located within the RPB focal plane at the optical axis or with a displacement along the y axis. (b) Scattering cross sections of the gold nanorod under the illumination of a focused RPB as the nanorod moved from the optical axis to a displacement of Δy=300nm along the y axis. The plasmon resonance modes of TD, VD, and l=2 are indicated on the top of corresponding peaks. The curves for the displacements of 100 nm, 200 nm, and 300 nm are shifted vertically for clarity. (c) Electric field intensity and (d) charge distributions of the corresponding plasmon resonance modes of the gold nanorod. (e) Change of the charge distributions in the yz plane of the nanorod’s dipole plasmon resonance modes along its short axis. The corresponding orientations of the dipole moments with respect to the z axis are indicated on the top of each charge distribution. The electric field intensities for TD and VD modes in (c) are magnified by 6 and 3 for clear display. The orange and blue arrows in (d) and (e) schematically show the dipole moments along the nanorod.
Fig. 4.
Fig. 4. (a) Schematic view of the gold nanorod located within the RPB focal plane with a displacement along the x axis. (b) Scattering cross sections of the gold nanorod under the illumination of a focused RPB as the nanorod moved from the optical axis to a displacement of Δx=300nm along the x axis. The plasmon resonance modes of VD, l=2, and l=3 are indicated on the top of corresponding peaks. The curves for the displacements of 100, 200, and 300 nm are shifted vertically for clarity. (c) Electric field intensity and (d) charge distributions of the l=3 mode. The orange and blue arrows in (d) schematically show the dipole moments along the nanorod.

Metrics