Abstract

Spatial light modulators (SLMs), which are devices used to manipulate the phase of an incident wave front, are prolific in fields such as optical trapping, dynamic diffractive optical elements, and display technology. Of the many challenges inherent to using SLMs, one of the most ubiquitous is the calibration of the device’s phase-shifting mechanism. In this paper, we present a new SLM calibration method based on spatial mode projection. We also implement a data processing technique to our data to generate accurate look-up tables from our calibration curves. We then evaluate the success of our method by propagating Laguerre–Gauss beams with computer-generated holograms. Our results show that the qualitative analysis of modes propagated using the SLM is a viable method of assessing performance. On the whole, we show that spatial mode projection provides clear performance improvements in the SLM’s phase-modulating capabilities.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Calibration of a phase-only spatial light modulator for both phase and retardance modulation

Yuanyuan Dai, Jacopo Antonello, and Martin J. Booth
Opt. Express 27(13) 17912-17926 (2019)

Calibration of spatial light modulators suffering from spatially varying phase response

David Engström, Martin Persson, Jörgen Bengtsson, and Mattias Goksör
Opt. Express 21(13) 16086-16103 (2013)

References

  • View by:
  • |
  • |
  • |

  1. P. R. Barbier and G. Moddel, “Spatial light modulators: processing light in real time,” Opt. Photonics News 8(3), 16 (1997).
    [Crossref]
  2. A. Forbes, A. Dudley, and M. McLaren, “Creation and detection of optical modes with spatial light modulators,” Adv. Opt. Photon. 8, 200 (2016).
    [Crossref]
  3. P. L. Hilario, M. J. Villangca, and G. Tapang, “Independent light fields generated using a phase-only spatial light modulator,” Opt. Lett. 39, 2036–2039 (2014).
    [Crossref]
  4. T. Ando, Y. Ohtake, N. Matsumoto, T. Inoue, and N. Fukuchi, “Mode purities of Laguerre-Gaussian beams generated via complex-amplitude modulation using phase-only spatial light modulators,” Opt. Lett. 34, 34–36 (2009).
    [Crossref]
  5. D. Wang, D.-H. Wang, C. Shen, C. Liu, and Q.-H. Wang, “Adjustable aperture based on the phase modulation of spatial light modulator,” J. Disp. Technol. 12, 447–450 (2016).
    [Crossref]
  6. J. Liesener, M. Reicherter, T. Haist, and H. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun. 185, 77–82 (2000).
    [Crossref]
  7. Z. Zhuang, L. Zhang, P. Surman, W. Song, S. Thibault, X. W. Sun, and Y. Zheng, “Addressable spatial light modulators for eye-tracking autostereoscopic three-dimensional display using a scanning laser,” Appl. Opt. 57, 4457–4466 (2018).
    [Crossref]
  8. W. Osten, C. Kohler, and J. Liesener, “Evaluation and application of spatial light modulators for optical metrology,” Optica Pura y Aplicada 38, 12 (2005).
  9. M. Agour, C. Falldorf, and R. B. Bergmann, “Investigation of composite materials using SLM-based phase retrieval,” Opt. Lett. 38, 2203–2205 (2013).
    [Crossref]
  10. P. M. Prieto, E. J. Fernández, S. Manzanera, and P. Artal, “Adaptive optics with a programmable phase modulator: applications in the human eye,” Opt. Express 12, 4059–4071 (2004).
    [Crossref]
  11. Z. Zhang, “Simple method for measuring phase modulation in liquid crystal televisions,” Opt. Eng. 33, 3018–3022 (1994).
    [Crossref]
  12. O. Mendoza-Yero, G. Minguez-Vega, L. Martinez-Leon, M. Carbonell-Leal, M. Fernandez-Alonso, C. Donate-Buendia, J. Perez-Vizcaino, and J. Lancis, “Diffraction-based phase calibration of spatial light modulators with binary phase Fresnel lenses,” J. Display Technol. 12, 1027–1032 (2016).
    [Crossref]
  13. Y. Zhang, L. Y. Wu, and J. Zhang, “Study on the phase modulation characteristics of liquid crystal spatial light modulator,” J. Phys. Conf. Ser. 48, 790–794 (2006).
    [Crossref]
  14. A. Bergeron, J. Gauvin, F. Gagnon, D. Gingras, H. H. Arsenault, and M. Doucet, “Phase calibration and applications of a liquid-crystal spatial light modulator,” Appl. Opt. 34, 5133–5139 (1995).
    [Crossref]
  15. H. Zhang, J. Zhang, and L. Wu, “Evaluation of phase-only liquid crystal spatial light modulator for phase modulation performance using a Twyman-Green interferometer,” Meas. Sci. Technol. 18, 1724–1728 (2007).
    [Crossref]
  16. N. Hermosa, C. Rosales-Guzmán, S. F. Pereira, and J. P. Torres, “Nanostep height measurement via spatial mode projection,” Opt. Lett. 39, 299–302 (2014).
    [Crossref]
  17. N. Matsumoto, T. Ando, T. Inoue, Y. Ohtake, N. Fukuchi, and T. Hara, “Generation of high-quality higher-order Laguerre-Gaussian beams using liquid-crystal-on-silicon spatial light modulators,” J. Opt. Soc. Am. A 25, 1642–1651 (2008).
    [Crossref]

2018 (1)

2016 (3)

2014 (2)

2013 (1)

2009 (1)

2008 (1)

2007 (1)

H. Zhang, J. Zhang, and L. Wu, “Evaluation of phase-only liquid crystal spatial light modulator for phase modulation performance using a Twyman-Green interferometer,” Meas. Sci. Technol. 18, 1724–1728 (2007).
[Crossref]

2006 (1)

Y. Zhang, L. Y. Wu, and J. Zhang, “Study on the phase modulation characteristics of liquid crystal spatial light modulator,” J. Phys. Conf. Ser. 48, 790–794 (2006).
[Crossref]

2005 (1)

W. Osten, C. Kohler, and J. Liesener, “Evaluation and application of spatial light modulators for optical metrology,” Optica Pura y Aplicada 38, 12 (2005).

2004 (1)

2000 (1)

J. Liesener, M. Reicherter, T. Haist, and H. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun. 185, 77–82 (2000).
[Crossref]

1997 (1)

P. R. Barbier and G. Moddel, “Spatial light modulators: processing light in real time,” Opt. Photonics News 8(3), 16 (1997).
[Crossref]

1995 (1)

1994 (1)

Z. Zhang, “Simple method for measuring phase modulation in liquid crystal televisions,” Opt. Eng. 33, 3018–3022 (1994).
[Crossref]

Agour, M.

Ando, T.

Arsenault, H. H.

Artal, P.

Barbier, P. R.

P. R. Barbier and G. Moddel, “Spatial light modulators: processing light in real time,” Opt. Photonics News 8(3), 16 (1997).
[Crossref]

Bergeron, A.

Bergmann, R. B.

Carbonell-Leal, M.

Donate-Buendia, C.

Doucet, M.

Dudley, A.

Falldorf, C.

Fernández, E. J.

Fernandez-Alonso, M.

Forbes, A.

Fukuchi, N.

Gagnon, F.

Gauvin, J.

Gingras, D.

Haist, T.

J. Liesener, M. Reicherter, T. Haist, and H. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun. 185, 77–82 (2000).
[Crossref]

Hara, T.

Hermosa, N.

Hilario, P. L.

Inoue, T.

Kohler, C.

W. Osten, C. Kohler, and J. Liesener, “Evaluation and application of spatial light modulators for optical metrology,” Optica Pura y Aplicada 38, 12 (2005).

Lancis, J.

Liesener, J.

W. Osten, C. Kohler, and J. Liesener, “Evaluation and application of spatial light modulators for optical metrology,” Optica Pura y Aplicada 38, 12 (2005).

J. Liesener, M. Reicherter, T. Haist, and H. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun. 185, 77–82 (2000).
[Crossref]

Liu, C.

D. Wang, D.-H. Wang, C. Shen, C. Liu, and Q.-H. Wang, “Adjustable aperture based on the phase modulation of spatial light modulator,” J. Disp. Technol. 12, 447–450 (2016).
[Crossref]

Manzanera, S.

Martinez-Leon, L.

Matsumoto, N.

McLaren, M.

Mendoza-Yero, O.

Minguez-Vega, G.

Moddel, G.

P. R. Barbier and G. Moddel, “Spatial light modulators: processing light in real time,” Opt. Photonics News 8(3), 16 (1997).
[Crossref]

Ohtake, Y.

Osten, W.

W. Osten, C. Kohler, and J. Liesener, “Evaluation and application of spatial light modulators for optical metrology,” Optica Pura y Aplicada 38, 12 (2005).

Pereira, S. F.

Perez-Vizcaino, J.

Prieto, P. M.

Reicherter, M.

J. Liesener, M. Reicherter, T. Haist, and H. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun. 185, 77–82 (2000).
[Crossref]

Rosales-Guzmán, C.

Shen, C.

D. Wang, D.-H. Wang, C. Shen, C. Liu, and Q.-H. Wang, “Adjustable aperture based on the phase modulation of spatial light modulator,” J. Disp. Technol. 12, 447–450 (2016).
[Crossref]

Song, W.

Sun, X. W.

Surman, P.

Tapang, G.

Thibault, S.

Tiziani, H.

J. Liesener, M. Reicherter, T. Haist, and H. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun. 185, 77–82 (2000).
[Crossref]

Torres, J. P.

Villangca, M. J.

Wang, D.

D. Wang, D.-H. Wang, C. Shen, C. Liu, and Q.-H. Wang, “Adjustable aperture based on the phase modulation of spatial light modulator,” J. Disp. Technol. 12, 447–450 (2016).
[Crossref]

Wang, D.-H.

D. Wang, D.-H. Wang, C. Shen, C. Liu, and Q.-H. Wang, “Adjustable aperture based on the phase modulation of spatial light modulator,” J. Disp. Technol. 12, 447–450 (2016).
[Crossref]

Wang, Q.-H.

D. Wang, D.-H. Wang, C. Shen, C. Liu, and Q.-H. Wang, “Adjustable aperture based on the phase modulation of spatial light modulator,” J. Disp. Technol. 12, 447–450 (2016).
[Crossref]

Wu, L.

H. Zhang, J. Zhang, and L. Wu, “Evaluation of phase-only liquid crystal spatial light modulator for phase modulation performance using a Twyman-Green interferometer,” Meas. Sci. Technol. 18, 1724–1728 (2007).
[Crossref]

Wu, L. Y.

Y. Zhang, L. Y. Wu, and J. Zhang, “Study on the phase modulation characteristics of liquid crystal spatial light modulator,” J. Phys. Conf. Ser. 48, 790–794 (2006).
[Crossref]

Zhang, H.

H. Zhang, J. Zhang, and L. Wu, “Evaluation of phase-only liquid crystal spatial light modulator for phase modulation performance using a Twyman-Green interferometer,” Meas. Sci. Technol. 18, 1724–1728 (2007).
[Crossref]

Zhang, J.

H. Zhang, J. Zhang, and L. Wu, “Evaluation of phase-only liquid crystal spatial light modulator for phase modulation performance using a Twyman-Green interferometer,” Meas. Sci. Technol. 18, 1724–1728 (2007).
[Crossref]

Y. Zhang, L. Y. Wu, and J. Zhang, “Study on the phase modulation characteristics of liquid crystal spatial light modulator,” J. Phys. Conf. Ser. 48, 790–794 (2006).
[Crossref]

Zhang, L.

Zhang, Y.

Y. Zhang, L. Y. Wu, and J. Zhang, “Study on the phase modulation characteristics of liquid crystal spatial light modulator,” J. Phys. Conf. Ser. 48, 790–794 (2006).
[Crossref]

Zhang, Z.

Z. Zhang, “Simple method for measuring phase modulation in liquid crystal televisions,” Opt. Eng. 33, 3018–3022 (1994).
[Crossref]

Zheng, Y.

Zhuang, Z.

Adv. Opt. Photon. (1)

Appl. Opt. (2)

J. Disp. Technol. (1)

D. Wang, D.-H. Wang, C. Shen, C. Liu, and Q.-H. Wang, “Adjustable aperture based on the phase modulation of spatial light modulator,” J. Disp. Technol. 12, 447–450 (2016).
[Crossref]

J. Display Technol. (1)

J. Opt. Soc. Am. A (1)

J. Phys. Conf. Ser. (1)

Y. Zhang, L. Y. Wu, and J. Zhang, “Study on the phase modulation characteristics of liquid crystal spatial light modulator,” J. Phys. Conf. Ser. 48, 790–794 (2006).
[Crossref]

Meas. Sci. Technol. (1)

H. Zhang, J. Zhang, and L. Wu, “Evaluation of phase-only liquid crystal spatial light modulator for phase modulation performance using a Twyman-Green interferometer,” Meas. Sci. Technol. 18, 1724–1728 (2007).
[Crossref]

Opt. Commun. (1)

J. Liesener, M. Reicherter, T. Haist, and H. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun. 185, 77–82 (2000).
[Crossref]

Opt. Eng. (1)

Z. Zhang, “Simple method for measuring phase modulation in liquid crystal televisions,” Opt. Eng. 33, 3018–3022 (1994).
[Crossref]

Opt. Express (1)

Opt. Lett. (4)

Opt. Photonics News (1)

P. R. Barbier and G. Moddel, “Spatial light modulators: processing light in real time,” Opt. Photonics News 8(3), 16 (1997).
[Crossref]

Optica Pura y Aplicada (1)

W. Osten, C. Kohler, and J. Liesener, “Evaluation and application of spatial light modulators for optical metrology,” Optica Pura y Aplicada 38, 12 (2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Experimental setup for calculating the phase response of the SLM. See text for more information. (b) Pattern uploaded to the SLM, corresponding to Eq. (5).
Fig. 2.
Fig. 2. Calibration curves measured using spatial mode projection. (a) Normalized and unprocessed data measured using the photodetector, and (b) same data, but processed with the normalization technique. Unwrapped phase shift for (c) unprocessed data and (d) data processed with the moving normalization technique.
Fig. 3.
Fig. 3. (a) Experimental setup used to create Laguerre–Gauss (LG) modes from computer-generated holograms (CGHs). We also showcase here the effect of calibration on the CGH used, where (b) is the original hologram and (c) is the calibrated hologram. Transverse line scans of the intensity are overlaid on each CGH, where the line cutting across the center represents the area from which the line scan was taken.
Fig. 4.
Fig. 4. Performance comparison using an LG03 beam. (a) Simulated beam. (b), (e), (h) Beams from the uncalibrated SLM. (c), (f), (i) Beams with holograms calibrated using our raw calibration curves. (d), (g), (j) Using the calibrated SLM with our processed LUTs. The first, second, and third rows correspond to incident wavelengths of 604 nm, 612 nm, and 633 nm, respectively.
Fig. 5.
Fig. 5. Performance comparison using an LG03+LG03 petal mode. (a) Simulated beam. (b), (e), (h) Beams from the uncalibrated SLM. (c), (f), (i) Beams with holograms calibrated using our raw calibration curves. (d), (g), (j) Using the calibrated SLM with our processed LUTs. The first, second, and third rows correspond to incident wavelengths of 604 nm, 612 nm, and 633 nm, respectively.
Fig. 6.
Fig. 6. Performance comparison using an LG33 beam. (a) Simulated beam. (b), (e), (h) Beams from the uncalibrated SLM. (c), (f), (i) Beams with holograms calibrated using our raw calibration curves. (d), (g), (j) Using the calibrated SLM with our processed LUTs. The first, second, and third rows correspond to incident wavelengths of 604 nm, 612 nm, and 633 nm, respectively.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

P=|Ef*(x,y)E0(x,y)U(x,y)dxdy|2.
E0(x,y)exp(x2+y2w02),
Ef(x,y)exp(x2+y2wf2),
U(x,y)=exp(iϕ(x,y)),
ϕ(x,y)={0,x0Δφ=φ2φ1,x>0.
P(Δφ)α2π22[1+cos(Δφ)],
α=w02wf2w02+wf2.
LGpl(r,ϕ,z)(r2w2(z))|l|exp(r2w2(z))Lp|l|(2r2w2(z))exp(ikr22R(z))×exp(ilϕ)exp(ikz)exp(iφ(z)),
I(r,ϕ)=|LGpl(r,ϕ)+G(r,ϕ)|2,

Metrics