Abstract

Speckle correlation imaging (SCI) has been considered one of the most promising techniques for computational imaging through a scattering medium. However, the image quality is not always acceptable in conventional SCI, especially when a complex object is involved. In this work, a modified phase retrieval algorithm is introduced to significantly improve the imaging quality of SCI. In the proposed scheme, nonzero-pixel constraints, rather than the real and nonnegative constraints, are employed as the object domain constraints of the iterative algorithm in the image reconstruction process. Experimental results are presented to show the performance enhancement of this scheme, inclusive of less iterations, better image quality, and higher reliability, in comparison with the conventional SCI method.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Simple constraint for phase retrieval with high efficiency

Haifeng He
J. Opt. Soc. Am. A 23(3) 550-556 (2006)

Vulnerability to ciphertext-only attack of optical encryption scheme based on double random phase encoding

Xiaoli Liu, Jiachen Wu, Wenqi He, Meihua Liao, Chenggong Zhang, and Xiang Peng
Opt. Express 23(15) 18955-18968 (2015)

High dynamic range coherent imaging using compressed sensing

Kuan He, Manoj Kumar Sharma, and Oliver Cossairt
Opt. Express 23(24) 30904-30916 (2015)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription