Abstract

We evaluate the retrieval performance of the automated, unsupervised inversion algorithm, Tikhonov Advanced Regularization Algorithm (TiARA), which is used for the autonomous retrieval of microphysical parameters of anthropogenic and natural pollution particles. TiARA (version 1.0) has been developed in the past 10 years and builds on the legacy of a data-operator-controlled inversion algorithm used since 1998 for the analysis of data from multiwavelength Raman lidar. The development of TiARA has been driven by the need to analyze in (near) real time large volumes of data collected with NASA Langley Research Center’s high-spectral-resolution lidar (HSRL-2). HSRL-2 was envisioned as part of the NASA Aerosols-Clouds-Ecosystems mission in response to the National Academy of Sciences (NAS) Decadal Study mission recommendations 2007. TiARA could thus also serve as an inversion algorithm in the context of a future space-borne lidar. We summarize key properties of TiARA on the basis of simulations with monomodal logarithmic-normal particle size distributions that cover particle radii from approximately 0.05 μm to 10 μm. The real and imaginary parts of the complex refractive index cover the range from non-absorbing to highly light-absorbing pollutants. Our simulations include up to 25% measurement uncertainty. The goal of our study is to provide guidance with respect to technical features of future space-borne lidars, if such lidars will be used for retrievals of microphysical data products, absorption coefficients, and single-scattering albedo. We investigate the impact of two different measurement-error models on the quality of the data products. We also obtain for the first time, to the best of our knowledge, a statistical view on systematic and statistical uncertainties, if a large volume of data is processed. Effective radius is retrieved to 50% accuracy for 58% of cases with an imaginary part up to 0.01i and up to 100% of cases with an imaginary part of 0.05i. Similarly, volume concentration, surface-area concentration, and number concentrations are retrieved to 50% accuracy in 56%–100% of cases, 99%–100% of cases, and 54%–87% of cases, respectively, depending on the imaginary part. The numbers represent measurement uncertainties of up to 15%. If we target 20% retrieval accuracy, the numbers of cases that fall within that threshold are 36%–76% for effective radius, 36%–73% for volume concentration, 98%–100% for surface-area concentration, and 37%–61% for number concentration. That range of numbers again represents a spread in results for different values of the imaginary part. At present, we obtain an accuracy of (on average) 0.1 for the real part. A case study from the ORCALES field campaign is used to illustrate data products obtained with TiARA.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Arrange and average algorithm for the retrieval of aerosol parameters from multiwavelength high-spectral-resolution lidar/Raman lidar data

Eduard Chemyakin, Detlef Müller, Sharon Burton, Alexei Kolgotin, Chris Hostetler, and Richard Ferrare
Appl. Opt. 53(31) 7252-7266 (2014)

Inversion of multiwavelength Raman lidar data for retrieval of bimodal aerosol size distribution

Igor Veselovskii, Alexei Kolgotin, Vadim Griaznov, Detlef Müller, Kathleen Franke, and David N. Whiteman
Appl. Opt. 43(5) 1180-1195 (2004)

References

  • View by:
  • |
  • |
  • |

  1. A. N. Tikhonov and V. Y. Arsenin, eds., Solutions of Ill-Posed Problems (Wiley, 1977).
  2. D. Müller, “Inversionsalgorithmus zur Bestimmung Physikalischer Partikeleigenschaften aus Mehrwellenlängen-Lidarmessungen (inversion algorithm for the determination of particle properties from multiwavelength lidar measurements),” Ph.D. thesis (Universität1997).
  3. D. Müller, U. Wandinger, D. Althausen, I. Mattis, and A. Ansmann, “Retrieval of physical particle properties from lidar observations of extinction and backscatter at multiple wavelengths,” Appl. Opt. 37, 2260–2263 (1998).
    [Crossref]
  4. D. Müller, U. Wandinger, and A. Ansmann, “Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: experiment,” Appl. Opt. 39, 1879–1892 (2000).
    [Crossref]
  5. T. Murayama, D. Müller, K. Wada, A. Shimizu, M. Sekigushi, and T. Tsukamato, “Characterization of Asian dust and Siberian smoke with multi-wavelength Raman lidar over Tokyo, Japan in spring 2003,” Geophys. Res. Lett. 31, L23103 (2004).
    [Crossref]
  6. Y. M. Noh, D. Müller, I. Mattis, H. Lee, and Y. J. Kim, “Vertically resolved light-absorption characteristics and the influence of relative humidity on particle properties: multiwavelength Raman lidar observations of East Asian aerosol types over Korea,” J. Geophys. Res. 116, D06206 (2011).
    [Crossref]
  7. H. Baars, A. Ansmann, D. Althausen, R. Engelmann, B. Heese, D. Müller, P. Artaxo, M. Paixao, T. Pauliquevis, and R. Souza, “Aerosol profiling with lidar in the Amazon Basin during the wet and dry season,” J. Geophys. Res. 117, D21201 (2005).
    [Crossref]
  8. I. Veselovskii, A. Kolgotin, V. Griaznov, D. Müller, U. Wandinger, and D. N. Whiteman, “Inversion with regularization for the retrieval of tropospheric aerosol parameters from multiwavelength lidar sounding,” Appl. Opt. 41, 3685–3699 (2002).
    [Crossref]
  9. I. Veselovskii, A. Kolgotin, V. Griaznov, D. Müller, K. Franke, and D. N. Whiteman, “Inversion of multiwavelength Raman lidar data for retrieval of bimodal aerosol size distribution,” Appl. Opt. 43, 1180–1195 (2004).
    [Crossref]
  10. C. Böckmann, I. Miranova, D. Müller, L. Scheidenbach, and R. Nessler, “Microphysical aerosol parameters from multiwavelength lidar,” J. Opt. Soc. Am. A 22, 518–528 (2005).
    [Crossref]
  11. J. Bösenberg, V. Matthias, A. Amodeo, V. Amoiridi, A. Ansmann, J. M. Baldasano, I. Balin, D. Balis, C. Böckmann, A. Boselli, G. Carlson, A. Chaikovsky, G. Chourdakis, A. Comerón, F. D. Tomasi, R. Eixmann, V. Freudenthaler, H. Giehl, I. Grigorov, A. Hågård, M. Iarlori, A. Kirsche, G. Kolarov, L. Komguem, S. Kreipl, W. Kumpf, G. Larchevêque, H. Linné, R. Matthey, I. Mattis, L. Mona, D. Müller, S. Music, S. Nickovic, M. Pandolfi, A. Papayannis, G. Pappalardo, J. Pelon, C. Pérez, R. M. Perrone, R. Persson, D. P. Resendes, V. Rizi, R. Rocadenbosch, J. A. Rodriguez, L. Sauvage, L. Schneidenbach, R. Schumacher, V. Shcherbakov, V. Simeonov, P. Sobolewsky, N. Spinelli, I. Stachlewska, D. Stoyanov, T. Trickl, G. Tsaknakis, G. Vaughan, U. Wandinger, X. Wang, M. Wiegner, M. Zavrtanik, and C. Zerefos, “EARLINET: A European aerosol research lidar network to establish an aerosol climatology,” (2003).
  12. D. Müller, U. Wandinger, and A. Ansmann, “Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: simulation,” Appl. Opt. 38, 2358–2368 (1999).
    [Crossref]
  13. E. Chemyakin, D. Müller, S. Burton, A. Kolgotin, C. Hostetler, and R. Ferrare, “Arrange and average algorithm for the retrieval of aerosol parameters from multiwavelength high-spectral-resolution lidar/Raman lidar data,” Appl. Opt. 53, 7252–7266 (2014).
    [Crossref]
  14. A. Kolgotin, D. Müller, E. Chemyakin, and A. Romanov, “Improved identification of the solution space of aerosol microphysical properties derived from the inversion of profiles of lidar optical data, part 1: theory,” Appl. Opt. 55, 9839–9849 (2016).
    [Crossref]
  15. A. Kolgotin, D. Müller, E. Chemyakin, and A. Romanov, “Improved identification of the solution space of aerosol microphysical properties derived from the inversion of profiles of lidar optical data, part 2: simulations with synthetic data,” Appl. Opt. 55, 9850–9865 (2016).
    [Crossref]
  16. A. Kolgotin, D. Müller, E. Chemyakin, A. Romanov, and V. Alehnovich, “Improved identification of the solution space of aerosol microphysical properties derived from the inversion of profiles of lidar optical data, part 3: case studies,” Appl. Opt. 57, 2499–2513 (2018).
    [Crossref]
  17. D. Müller, C. A. Hostetler, R. A. Ferrare, S. P. Burton, E. Chemyakin, A. Kolgotin, J. W. Hair, A. L. Cook, D. B. Harper, R. R. Rogers, R. W. Hare, C. S. Cleckner, M. D. Obland, J. Tomlinson, L. K. Berg, and B. Schmid, “Airborne multiwavelength high spectral resolution lidar (HSRL-2) observations during TCAP 2012: vertical profiles of optical and microphysical properties of a smoke/urban haze plume over the northeastern coast of the US,” Atmos. Meas. Tech. 7, 3487–3496 (2014).
    [Crossref]
  18. P. Sawamura, R. H. Moore, S. P. Burton, E. Chemyakin, D. Müller, A. Kolgotin, R. A. Ferrare, C. A. Hostetler, L. D. Ziemba, A. J. Beyersdorf, and B. E. Anderson, “HSRL-2 aerosol optical measurements and microphysical retrievals vs. airborne in situ measurements during DISCOVER-AQ 2013: an intercomparison study,” Atmos. Chem. Phys. 17, 7229–7243 (2017).
    [Crossref]
  19. A. Ansmann and D. Müller, “Lidar and atmospheric aerosol particles,” in Lidar Range-Resolved Optical Remote Sensing of the Atmosphere, C. Weitkamp, ed. (Springer, 2005), pp. 105–141.
  20. D. Müller, U. Wandinger, and A. Ansmann, “Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: theory,” Appl. Opt. 38, 2346–2357 (1999).
    [Crossref]
  21. C. F. Bohren and D. R. Huffman, eds., Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  22. D. Müller, U. Wandinger, D. Althausen, and M. Fiebig, “Comprehensive particle characterization from three-wavelength Raman-lidar observations,” Appl. Opt. 40, 4863–4869 (2001).
    [Crossref]
  23. D. L. Phillips, “A technique for the numerical solution of certain integral equations of the first kind,” J. Assoc. Comput. Mach. 9, 84–97 (1962).
    [Crossref]
  24. S. Twomey, “The application of numerical filtering to the solution of integral equations encountered in indirect sensing measurements,” J. Franklin Inst. 279, 95–109 (1965).
    [Crossref]
  25. V. E. Zuev and I. E. Naats, eds., Inverse Problems of Lidar Sensing of the Atmosphere (Springer, 1983).
  26. S. Twomey, ed., Introduction to the Mathematics of Inversion in Remote Sensing and Indirect Measurements (Elsevier, 1977).
  27. R. A. Horn and C. R. Johnson, eds., Matrix Analysis (Cambridge University, 1985).
  28. I. Veselovskii, A. Kolgotin, V. Griaznov, D. Müller, and D. N. Whiteman, “Information content of multiwavelength lidar data with respect to microphysical particle properties derived from eigenvalue analysis,” Appl. Opt. 44, 5292–5303 (2005).
    [Crossref]
  29. S. P. Burton, R. A. Ferrare, C. A. Hostetler, J. W. Hair, R. R. Rogers, M. D. Obland, C. F. Butler, A. L. Cook, D. B. Harper, and K. D. Froyd, “Aerosol classification using airborne high spectral resolution lidar measurements—methodology and examples,” Atmos. Meas. Tech. 5, 73–98 (2012).
    [Crossref]
  30. D. Pérez-Ramírez, D. N. Whiteman, I. Veselovskii, A. Kolgotin, M. Korenskiy, and L. Alados-Arboledas, “Effects of systematic and random errors on the retrieval of particle microphysical properties from multiwavelength lidar measurements using inversion with regularization,” Atmos. Meas. Tech. 6, 3039–3054 (2013).
    [Crossref]
  31. S. P. Burton, E. Chemyakin, X. Liu, K. Knobelspiesse, S. Stamnes, P. Sawamura, R. H. Moore, C. A. Hostetler, and R. A. Ferrare, “Information content and sensitivity of the 3β + 2α lidar measurement system for aerosol microphysical retrievals,” Atmos. Meas. Tech. 9, 5555–5574 (2016).
    [Crossref]
  32. U. Wandinger, D. Müller, C. Böckmann, D. Althausen, V. Matthias, J. Bösenberg, V. Weiss, M. Fiebig, M. Wendisch, A. Stohl, and A. Ansmann, “Optical and microphysical characterization of biomass-burning and industrial-pollution aerosols from multiwavelength lidar and aircraft measurements,” J. Geophys. Res. 107, D21 (2002).
    [Crossref]
  33. C. D. Rodgers, ed., Inverse Methods for Atmospheric Sounding: Theory and Practice (World Scientific, 2000).
  34. V. Bovchaliuk, P. Goloub, T. Podvin, I. Veselovskii, D. Tanré, A. Chaikovsky, O. Dubovik, A. Mortier, A. Lopatin, M. Korenskiy, and S. Victori, “Comparison of aerosol properties retrieved using GARRLiC, LIRIC, and Raman algorithms applied to multi-wavelength lidar and sun/sky-photometer data,” Atmos. Meas. Tech. 9, 3391–3405 (2016).
    [Crossref]
  35. P. Sawamura, D. Müller, R. M. Hoff, C. A. Hostetler, R. A. Ferrare, J. W. Hair, R. R. Rogers, B. E. Anderson, L. D. Ziemba, A. J. Beyersdorf, K. L. Thornhill, E. L. Winstead, and B. N. Holben, “Aerosol optical and microphysical retrievals from a hybrid multiwavelength lidar dataset – DISCOVER-AQ 2011,” Atmos. Meas. Tech. 7, 3095–3112 (2014).
    [Crossref]
  36. D. Müller, C. Böckmann, A. Kolgotin, L. Schneidenbach, E. Chemyakin, J. J. Rosemann, P. Znak, and A. Romanov, “Microphysical particle properties derived from inversion algorithms developed in the framework of EARLINET,” Atmos. Meas. Tech. 9, 5007–5035 (2016).
    [Crossref]
  37. M. Tesche, A. Ansmann, D. Müller, D. Althausen, R. Engelmann, V. Freudenthaler, and S. Groß, “Vertically resolved separation of dust and smoke over Cape Verde by using multiwavelength Raman and polarization lidar during SAMUM 2008,” J. Geophys. Res. 114, D13202 (2009).
    [Crossref]
  38. R. E. Mamouri and A. Ansmann, “Separating mixtures of aerosol types in airborne HSRL data,” Atmos. Meas. Tech. 7, 419–436 (2013).
    [Crossref]
  39. I. Veselovskii, O. Dubovik, A. Kolgotin, M. Korenskiy, D. Whiteman, K. Allakhverdiev, and F. Huseyinoglu, “Linear estimation of particle bulk parameters from multi-wavelength lidar measurements,” Atmos. Meas. Tech. 5, 1135–1145 (2012).
    [Crossref]
  40. D. Müller, I. Veselovskii, A. Kolgotin, M. Tesche, A. Ansmann, and O. Dubovik, “Vertical profiles of pure dust and mixed smoke-dust plumes inferred from inversion of multiwavelength Raman/polarization lidar data and comparison to AERONET retrievals and in situ observations,” Appl. Opt. 52, 3178–3202 (2013).
    [Crossref]
  41. M. de Graaf, A. Apituley, and D. Donovan, “Feasibility study of integral property retrieval for tropospheric aerosol from Raman lidar data using principle component analysis,” Appl. Opt. 52, 2173–2186 (2013).
    [Crossref]
  42. O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Muñoz, B. Veihelmann, W. J. van der Zande, J.-F. Leon, M. Sorokin, and I. Slutsker, “The application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111, D11208 (2006).
    [Crossref]

2018 (1)

2017 (1)

P. Sawamura, R. H. Moore, S. P. Burton, E. Chemyakin, D. Müller, A. Kolgotin, R. A. Ferrare, C. A. Hostetler, L. D. Ziemba, A. J. Beyersdorf, and B. E. Anderson, “HSRL-2 aerosol optical measurements and microphysical retrievals vs. airborne in situ measurements during DISCOVER-AQ 2013: an intercomparison study,” Atmos. Chem. Phys. 17, 7229–7243 (2017).
[Crossref]

2016 (5)

A. Kolgotin, D. Müller, E. Chemyakin, and A. Romanov, “Improved identification of the solution space of aerosol microphysical properties derived from the inversion of profiles of lidar optical data, part 1: theory,” Appl. Opt. 55, 9839–9849 (2016).
[Crossref]

A. Kolgotin, D. Müller, E. Chemyakin, and A. Romanov, “Improved identification of the solution space of aerosol microphysical properties derived from the inversion of profiles of lidar optical data, part 2: simulations with synthetic data,” Appl. Opt. 55, 9850–9865 (2016).
[Crossref]

S. P. Burton, E. Chemyakin, X. Liu, K. Knobelspiesse, S. Stamnes, P. Sawamura, R. H. Moore, C. A. Hostetler, and R. A. Ferrare, “Information content and sensitivity of the 3β + 2α lidar measurement system for aerosol microphysical retrievals,” Atmos. Meas. Tech. 9, 5555–5574 (2016).
[Crossref]

V. Bovchaliuk, P. Goloub, T. Podvin, I. Veselovskii, D. Tanré, A. Chaikovsky, O. Dubovik, A. Mortier, A. Lopatin, M. Korenskiy, and S. Victori, “Comparison of aerosol properties retrieved using GARRLiC, LIRIC, and Raman algorithms applied to multi-wavelength lidar and sun/sky-photometer data,” Atmos. Meas. Tech. 9, 3391–3405 (2016).
[Crossref]

D. Müller, C. Böckmann, A. Kolgotin, L. Schneidenbach, E. Chemyakin, J. J. Rosemann, P. Znak, and A. Romanov, “Microphysical particle properties derived from inversion algorithms developed in the framework of EARLINET,” Atmos. Meas. Tech. 9, 5007–5035 (2016).
[Crossref]

2014 (3)

P. Sawamura, D. Müller, R. M. Hoff, C. A. Hostetler, R. A. Ferrare, J. W. Hair, R. R. Rogers, B. E. Anderson, L. D. Ziemba, A. J. Beyersdorf, K. L. Thornhill, E. L. Winstead, and B. N. Holben, “Aerosol optical and microphysical retrievals from a hybrid multiwavelength lidar dataset – DISCOVER-AQ 2011,” Atmos. Meas. Tech. 7, 3095–3112 (2014).
[Crossref]

E. Chemyakin, D. Müller, S. Burton, A. Kolgotin, C. Hostetler, and R. Ferrare, “Arrange and average algorithm for the retrieval of aerosol parameters from multiwavelength high-spectral-resolution lidar/Raman lidar data,” Appl. Opt. 53, 7252–7266 (2014).
[Crossref]

D. Müller, C. A. Hostetler, R. A. Ferrare, S. P. Burton, E. Chemyakin, A. Kolgotin, J. W. Hair, A. L. Cook, D. B. Harper, R. R. Rogers, R. W. Hare, C. S. Cleckner, M. D. Obland, J. Tomlinson, L. K. Berg, and B. Schmid, “Airborne multiwavelength high spectral resolution lidar (HSRL-2) observations during TCAP 2012: vertical profiles of optical and microphysical properties of a smoke/urban haze plume over the northeastern coast of the US,” Atmos. Meas. Tech. 7, 3487–3496 (2014).
[Crossref]

2013 (4)

R. E. Mamouri and A. Ansmann, “Separating mixtures of aerosol types in airborne HSRL data,” Atmos. Meas. Tech. 7, 419–436 (2013).
[Crossref]

D. Müller, I. Veselovskii, A. Kolgotin, M. Tesche, A. Ansmann, and O. Dubovik, “Vertical profiles of pure dust and mixed smoke-dust plumes inferred from inversion of multiwavelength Raman/polarization lidar data and comparison to AERONET retrievals and in situ observations,” Appl. Opt. 52, 3178–3202 (2013).
[Crossref]

M. de Graaf, A. Apituley, and D. Donovan, “Feasibility study of integral property retrieval for tropospheric aerosol from Raman lidar data using principle component analysis,” Appl. Opt. 52, 2173–2186 (2013).
[Crossref]

D. Pérez-Ramírez, D. N. Whiteman, I. Veselovskii, A. Kolgotin, M. Korenskiy, and L. Alados-Arboledas, “Effects of systematic and random errors on the retrieval of particle microphysical properties from multiwavelength lidar measurements using inversion with regularization,” Atmos. Meas. Tech. 6, 3039–3054 (2013).
[Crossref]

2012 (2)

I. Veselovskii, O. Dubovik, A. Kolgotin, M. Korenskiy, D. Whiteman, K. Allakhverdiev, and F. Huseyinoglu, “Linear estimation of particle bulk parameters from multi-wavelength lidar measurements,” Atmos. Meas. Tech. 5, 1135–1145 (2012).
[Crossref]

S. P. Burton, R. A. Ferrare, C. A. Hostetler, J. W. Hair, R. R. Rogers, M. D. Obland, C. F. Butler, A. L. Cook, D. B. Harper, and K. D. Froyd, “Aerosol classification using airborne high spectral resolution lidar measurements—methodology and examples,” Atmos. Meas. Tech. 5, 73–98 (2012).
[Crossref]

2011 (1)

Y. M. Noh, D. Müller, I. Mattis, H. Lee, and Y. J. Kim, “Vertically resolved light-absorption characteristics and the influence of relative humidity on particle properties: multiwavelength Raman lidar observations of East Asian aerosol types over Korea,” J. Geophys. Res. 116, D06206 (2011).
[Crossref]

2009 (1)

M. Tesche, A. Ansmann, D. Müller, D. Althausen, R. Engelmann, V. Freudenthaler, and S. Groß, “Vertically resolved separation of dust and smoke over Cape Verde by using multiwavelength Raman and polarization lidar during SAMUM 2008,” J. Geophys. Res. 114, D13202 (2009).
[Crossref]

2006 (1)

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Muñoz, B. Veihelmann, W. J. van der Zande, J.-F. Leon, M. Sorokin, and I. Slutsker, “The application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111, D11208 (2006).
[Crossref]

2005 (3)

2004 (2)

T. Murayama, D. Müller, K. Wada, A. Shimizu, M. Sekigushi, and T. Tsukamato, “Characterization of Asian dust and Siberian smoke with multi-wavelength Raman lidar over Tokyo, Japan in spring 2003,” Geophys. Res. Lett. 31, L23103 (2004).
[Crossref]

I. Veselovskii, A. Kolgotin, V. Griaznov, D. Müller, K. Franke, and D. N. Whiteman, “Inversion of multiwavelength Raman lidar data for retrieval of bimodal aerosol size distribution,” Appl. Opt. 43, 1180–1195 (2004).
[Crossref]

2002 (2)

I. Veselovskii, A. Kolgotin, V. Griaznov, D. Müller, U. Wandinger, and D. N. Whiteman, “Inversion with regularization for the retrieval of tropospheric aerosol parameters from multiwavelength lidar sounding,” Appl. Opt. 41, 3685–3699 (2002).
[Crossref]

U. Wandinger, D. Müller, C. Böckmann, D. Althausen, V. Matthias, J. Bösenberg, V. Weiss, M. Fiebig, M. Wendisch, A. Stohl, and A. Ansmann, “Optical and microphysical characterization of biomass-burning and industrial-pollution aerosols from multiwavelength lidar and aircraft measurements,” J. Geophys. Res. 107, D21 (2002).
[Crossref]

2001 (1)

2000 (1)

1999 (2)

1998 (1)

1965 (1)

S. Twomey, “The application of numerical filtering to the solution of integral equations encountered in indirect sensing measurements,” J. Franklin Inst. 279, 95–109 (1965).
[Crossref]

1962 (1)

D. L. Phillips, “A technique for the numerical solution of certain integral equations of the first kind,” J. Assoc. Comput. Mach. 9, 84–97 (1962).
[Crossref]

Alados-Arboledas, L.

D. Pérez-Ramírez, D. N. Whiteman, I. Veselovskii, A. Kolgotin, M. Korenskiy, and L. Alados-Arboledas, “Effects of systematic and random errors on the retrieval of particle microphysical properties from multiwavelength lidar measurements using inversion with regularization,” Atmos. Meas. Tech. 6, 3039–3054 (2013).
[Crossref]

Alehnovich, V.

Allakhverdiev, K.

I. Veselovskii, O. Dubovik, A. Kolgotin, M. Korenskiy, D. Whiteman, K. Allakhverdiev, and F. Huseyinoglu, “Linear estimation of particle bulk parameters from multi-wavelength lidar measurements,” Atmos. Meas. Tech. 5, 1135–1145 (2012).
[Crossref]

Althausen, D.

M. Tesche, A. Ansmann, D. Müller, D. Althausen, R. Engelmann, V. Freudenthaler, and S. Groß, “Vertically resolved separation of dust and smoke over Cape Verde by using multiwavelength Raman and polarization lidar during SAMUM 2008,” J. Geophys. Res. 114, D13202 (2009).
[Crossref]

H. Baars, A. Ansmann, D. Althausen, R. Engelmann, B. Heese, D. Müller, P. Artaxo, M. Paixao, T. Pauliquevis, and R. Souza, “Aerosol profiling with lidar in the Amazon Basin during the wet and dry season,” J. Geophys. Res. 117, D21201 (2005).
[Crossref]

U. Wandinger, D. Müller, C. Böckmann, D. Althausen, V. Matthias, J. Bösenberg, V. Weiss, M. Fiebig, M. Wendisch, A. Stohl, and A. Ansmann, “Optical and microphysical characterization of biomass-burning and industrial-pollution aerosols from multiwavelength lidar and aircraft measurements,” J. Geophys. Res. 107, D21 (2002).
[Crossref]

D. Müller, U. Wandinger, D. Althausen, and M. Fiebig, “Comprehensive particle characterization from three-wavelength Raman-lidar observations,” Appl. Opt. 40, 4863–4869 (2001).
[Crossref]

D. Müller, U. Wandinger, D. Althausen, I. Mattis, and A. Ansmann, “Retrieval of physical particle properties from lidar observations of extinction and backscatter at multiple wavelengths,” Appl. Opt. 37, 2260–2263 (1998).
[Crossref]

Amodeo, A.

J. Bösenberg, V. Matthias, A. Amodeo, V. Amoiridi, A. Ansmann, J. M. Baldasano, I. Balin, D. Balis, C. Böckmann, A. Boselli, G. Carlson, A. Chaikovsky, G. Chourdakis, A. Comerón, F. D. Tomasi, R. Eixmann, V. Freudenthaler, H. Giehl, I. Grigorov, A. Hågård, M. Iarlori, A. Kirsche, G. Kolarov, L. Komguem, S. Kreipl, W. Kumpf, G. Larchevêque, H. Linné, R. Matthey, I. Mattis, L. Mona, D. Müller, S. Music, S. Nickovic, M. Pandolfi, A. Papayannis, G. Pappalardo, J. Pelon, C. Pérez, R. M. Perrone, R. Persson, D. P. Resendes, V. Rizi, R. Rocadenbosch, J. A. Rodriguez, L. Sauvage, L. Schneidenbach, R. Schumacher, V. Shcherbakov, V. Simeonov, P. Sobolewsky, N. Spinelli, I. Stachlewska, D. Stoyanov, T. Trickl, G. Tsaknakis, G. Vaughan, U. Wandinger, X. Wang, M. Wiegner, M. Zavrtanik, and C. Zerefos, “EARLINET: A European aerosol research lidar network to establish an aerosol climatology,” (2003).

Amoiridi, V.

J. Bösenberg, V. Matthias, A. Amodeo, V. Amoiridi, A. Ansmann, J. M. Baldasano, I. Balin, D. Balis, C. Böckmann, A. Boselli, G. Carlson, A. Chaikovsky, G. Chourdakis, A. Comerón, F. D. Tomasi, R. Eixmann, V. Freudenthaler, H. Giehl, I. Grigorov, A. Hågård, M. Iarlori, A. Kirsche, G. Kolarov, L. Komguem, S. Kreipl, W. Kumpf, G. Larchevêque, H. Linné, R. Matthey, I. Mattis, L. Mona, D. Müller, S. Music, S. Nickovic, M. Pandolfi, A. Papayannis, G. Pappalardo, J. Pelon, C. Pérez, R. M. Perrone, R. Persson, D. P. Resendes, V. Rizi, R. Rocadenbosch, J. A. Rodriguez, L. Sauvage, L. Schneidenbach, R. Schumacher, V. Shcherbakov, V. Simeonov, P. Sobolewsky, N. Spinelli, I. Stachlewska, D. Stoyanov, T. Trickl, G. Tsaknakis, G. Vaughan, U. Wandinger, X. Wang, M. Wiegner, M. Zavrtanik, and C. Zerefos, “EARLINET: A European aerosol research lidar network to establish an aerosol climatology,” (2003).

Anderson, B. E.

P. Sawamura, R. H. Moore, S. P. Burton, E. Chemyakin, D. Müller, A. Kolgotin, R. A. Ferrare, C. A. Hostetler, L. D. Ziemba, A. J. Beyersdorf, and B. E. Anderson, “HSRL-2 aerosol optical measurements and microphysical retrievals vs. airborne in situ measurements during DISCOVER-AQ 2013: an intercomparison study,” Atmos. Chem. Phys. 17, 7229–7243 (2017).
[Crossref]

P. Sawamura, D. Müller, R. M. Hoff, C. A. Hostetler, R. A. Ferrare, J. W. Hair, R. R. Rogers, B. E. Anderson, L. D. Ziemba, A. J. Beyersdorf, K. L. Thornhill, E. L. Winstead, and B. N. Holben, “Aerosol optical and microphysical retrievals from a hybrid multiwavelength lidar dataset – DISCOVER-AQ 2011,” Atmos. Meas. Tech. 7, 3095–3112 (2014).
[Crossref]

Ansmann, A.

R. E. Mamouri and A. Ansmann, “Separating mixtures of aerosol types in airborne HSRL data,” Atmos. Meas. Tech. 7, 419–436 (2013).
[Crossref]

D. Müller, I. Veselovskii, A. Kolgotin, M. Tesche, A. Ansmann, and O. Dubovik, “Vertical profiles of pure dust and mixed smoke-dust plumes inferred from inversion of multiwavelength Raman/polarization lidar data and comparison to AERONET retrievals and in situ observations,” Appl. Opt. 52, 3178–3202 (2013).
[Crossref]

M. Tesche, A. Ansmann, D. Müller, D. Althausen, R. Engelmann, V. Freudenthaler, and S. Groß, “Vertically resolved separation of dust and smoke over Cape Verde by using multiwavelength Raman and polarization lidar during SAMUM 2008,” J. Geophys. Res. 114, D13202 (2009).
[Crossref]

H. Baars, A. Ansmann, D. Althausen, R. Engelmann, B. Heese, D. Müller, P. Artaxo, M. Paixao, T. Pauliquevis, and R. Souza, “Aerosol profiling with lidar in the Amazon Basin during the wet and dry season,” J. Geophys. Res. 117, D21201 (2005).
[Crossref]

U. Wandinger, D. Müller, C. Böckmann, D. Althausen, V. Matthias, J. Bösenberg, V. Weiss, M. Fiebig, M. Wendisch, A. Stohl, and A. Ansmann, “Optical and microphysical characterization of biomass-burning and industrial-pollution aerosols from multiwavelength lidar and aircraft measurements,” J. Geophys. Res. 107, D21 (2002).
[Crossref]

D. Müller, U. Wandinger, and A. Ansmann, “Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: experiment,” Appl. Opt. 39, 1879–1892 (2000).
[Crossref]

D. Müller, U. Wandinger, and A. Ansmann, “Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: theory,” Appl. Opt. 38, 2346–2357 (1999).
[Crossref]

D. Müller, U. Wandinger, and A. Ansmann, “Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: simulation,” Appl. Opt. 38, 2358–2368 (1999).
[Crossref]

D. Müller, U. Wandinger, D. Althausen, I. Mattis, and A. Ansmann, “Retrieval of physical particle properties from lidar observations of extinction and backscatter at multiple wavelengths,” Appl. Opt. 37, 2260–2263 (1998).
[Crossref]

A. Ansmann and D. Müller, “Lidar and atmospheric aerosol particles,” in Lidar Range-Resolved Optical Remote Sensing of the Atmosphere, C. Weitkamp, ed. (Springer, 2005), pp. 105–141.

J. Bösenberg, V. Matthias, A. Amodeo, V. Amoiridi, A. Ansmann, J. M. Baldasano, I. Balin, D. Balis, C. Böckmann, A. Boselli, G. Carlson, A. Chaikovsky, G. Chourdakis, A. Comerón, F. D. Tomasi, R. Eixmann, V. Freudenthaler, H. Giehl, I. Grigorov, A. Hågård, M. Iarlori, A. Kirsche, G. Kolarov, L. Komguem, S. Kreipl, W. Kumpf, G. Larchevêque, H. Linné, R. Matthey, I. Mattis, L. Mona, D. Müller, S. Music, S. Nickovic, M. Pandolfi, A. Papayannis, G. Pappalardo, J. Pelon, C. Pérez, R. M. Perrone, R. Persson, D. P. Resendes, V. Rizi, R. Rocadenbosch, J. A. Rodriguez, L. Sauvage, L. Schneidenbach, R. Schumacher, V. Shcherbakov, V. Simeonov, P. Sobolewsky, N. Spinelli, I. Stachlewska, D. Stoyanov, T. Trickl, G. Tsaknakis, G. Vaughan, U. Wandinger, X. Wang, M. Wiegner, M. Zavrtanik, and C. Zerefos, “EARLINET: A European aerosol research lidar network to establish an aerosol climatology,” (2003).

Apituley, A.

Artaxo, P.

H. Baars, A. Ansmann, D. Althausen, R. Engelmann, B. Heese, D. Müller, P. Artaxo, M. Paixao, T. Pauliquevis, and R. Souza, “Aerosol profiling with lidar in the Amazon Basin during the wet and dry season,” J. Geophys. Res. 117, D21201 (2005).
[Crossref]

Baars, H.

H. Baars, A. Ansmann, D. Althausen, R. Engelmann, B. Heese, D. Müller, P. Artaxo, M. Paixao, T. Pauliquevis, and R. Souza, “Aerosol profiling with lidar in the Amazon Basin during the wet and dry season,” J. Geophys. Res. 117, D21201 (2005).
[Crossref]

Baldasano, J. M.

J. Bösenberg, V. Matthias, A. Amodeo, V. Amoiridi, A. Ansmann, J. M. Baldasano, I. Balin, D. Balis, C. Böckmann, A. Boselli, G. Carlson, A. Chaikovsky, G. Chourdakis, A. Comerón, F. D. Tomasi, R. Eixmann, V. Freudenthaler, H. Giehl, I. Grigorov, A. Hågård, M. Iarlori, A. Kirsche, G. Kolarov, L. Komguem, S. Kreipl, W. Kumpf, G. Larchevêque, H. Linné, R. Matthey, I. Mattis, L. Mona, D. Müller, S. Music, S. Nickovic, M. Pandolfi, A. Papayannis, G. Pappalardo, J. Pelon, C. Pérez, R. M. Perrone, R. Persson, D. P. Resendes, V. Rizi, R. Rocadenbosch, J. A. Rodriguez, L. Sauvage, L. Schneidenbach, R. Schumacher, V. Shcherbakov, V. Simeonov, P. Sobolewsky, N. Spinelli, I. Stachlewska, D. Stoyanov, T. Trickl, G. Tsaknakis, G. Vaughan, U. Wandinger, X. Wang, M. Wiegner, M. Zavrtanik, and C. Zerefos, “EARLINET: A European aerosol research lidar network to establish an aerosol climatology,” (2003).

Balin, I.

J. Bösenberg, V. Matthias, A. Amodeo, V. Amoiridi, A. Ansmann, J. M. Baldasano, I. Balin, D. Balis, C. Böckmann, A. Boselli, G. Carlson, A. Chaikovsky, G. Chourdakis, A. Comerón, F. D. Tomasi, R. Eixmann, V. Freudenthaler, H. Giehl, I. Grigorov, A. Hågård, M. Iarlori, A. Kirsche, G. Kolarov, L. Komguem, S. Kreipl, W. Kumpf, G. Larchevêque, H. Linné, R. Matthey, I. Mattis, L. Mona, D. Müller, S. Music, S. Nickovic, M. Pandolfi, A. Papayannis, G. Pappalardo, J. Pelon, C. Pérez, R. M. Perrone, R. Persson, D. P. Resendes, V. Rizi, R. Rocadenbosch, J. A. Rodriguez, L. Sauvage, L. Schneidenbach, R. Schumacher, V. Shcherbakov, V. Simeonov, P. Sobolewsky, N. Spinelli, I. Stachlewska, D. Stoyanov, T. Trickl, G. Tsaknakis, G. Vaughan, U. Wandinger, X. Wang, M. Wiegner, M. Zavrtanik, and C. Zerefos, “EARLINET: A European aerosol research lidar network to establish an aerosol climatology,” (2003).

Balis, D.

J. Bösenberg, V. Matthias, A. Amodeo, V. Amoiridi, A. Ansmann, J. M. Baldasano, I. Balin, D. Balis, C. Böckmann, A. Boselli, G. Carlson, A. Chaikovsky, G. Chourdakis, A. Comerón, F. D. Tomasi, R. Eixmann, V. Freudenthaler, H. Giehl, I. Grigorov, A. Hågård, M. Iarlori, A. Kirsche, G. Kolarov, L. Komguem, S. Kreipl, W. Kumpf, G. Larchevêque, H. Linné, R. Matthey, I. Mattis, L. Mona, D. Müller, S. Music, S. Nickovic, M. Pandolfi, A. Papayannis, G. Pappalardo, J. Pelon, C. Pérez, R. M. Perrone, R. Persson, D. P. Resendes, V. Rizi, R. Rocadenbosch, J. A. Rodriguez, L. Sauvage, L. Schneidenbach, R. Schumacher, V. Shcherbakov, V. Simeonov, P. Sobolewsky, N. Spinelli, I. Stachlewska, D. Stoyanov, T. Trickl, G. Tsaknakis, G. Vaughan, U. Wandinger, X. Wang, M. Wiegner, M. Zavrtanik, and C. Zerefos, “EARLINET: A European aerosol research lidar network to establish an aerosol climatology,” (2003).

Berg, L. K.

D. Müller, C. A. Hostetler, R. A. Ferrare, S. P. Burton, E. Chemyakin, A. Kolgotin, J. W. Hair, A. L. Cook, D. B. Harper, R. R. Rogers, R. W. Hare, C. S. Cleckner, M. D. Obland, J. Tomlinson, L. K. Berg, and B. Schmid, “Airborne multiwavelength high spectral resolution lidar (HSRL-2) observations during TCAP 2012: vertical profiles of optical and microphysical properties of a smoke/urban haze plume over the northeastern coast of the US,” Atmos. Meas. Tech. 7, 3487–3496 (2014).
[Crossref]

Beyersdorf, A. J.

P. Sawamura, R. H. Moore, S. P. Burton, E. Chemyakin, D. Müller, A. Kolgotin, R. A. Ferrare, C. A. Hostetler, L. D. Ziemba, A. J. Beyersdorf, and B. E. Anderson, “HSRL-2 aerosol optical measurements and microphysical retrievals vs. airborne in situ measurements during DISCOVER-AQ 2013: an intercomparison study,” Atmos. Chem. Phys. 17, 7229–7243 (2017).
[Crossref]

P. Sawamura, D. Müller, R. M. Hoff, C. A. Hostetler, R. A. Ferrare, J. W. Hair, R. R. Rogers, B. E. Anderson, L. D. Ziemba, A. J. Beyersdorf, K. L. Thornhill, E. L. Winstead, and B. N. Holben, “Aerosol optical and microphysical retrievals from a hybrid multiwavelength lidar dataset – DISCOVER-AQ 2011,” Atmos. Meas. Tech. 7, 3095–3112 (2014).
[Crossref]

Böckmann, C.

D. Müller, C. Böckmann, A. Kolgotin, L. Schneidenbach, E. Chemyakin, J. J. Rosemann, P. Znak, and A. Romanov, “Microphysical particle properties derived from inversion algorithms developed in the framework of EARLINET,” Atmos. Meas. Tech. 9, 5007–5035 (2016).
[Crossref]

C. Böckmann, I. Miranova, D. Müller, L. Scheidenbach, and R. Nessler, “Microphysical aerosol parameters from multiwavelength lidar,” J. Opt. Soc. Am. A 22, 518–528 (2005).
[Crossref]

U. Wandinger, D. Müller, C. Böckmann, D. Althausen, V. Matthias, J. Bösenberg, V. Weiss, M. Fiebig, M. Wendisch, A. Stohl, and A. Ansmann, “Optical and microphysical characterization of biomass-burning and industrial-pollution aerosols from multiwavelength lidar and aircraft measurements,” J. Geophys. Res. 107, D21 (2002).
[Crossref]

J. Bösenberg, V. Matthias, A. Amodeo, V. Amoiridi, A. Ansmann, J. M. Baldasano, I. Balin, D. Balis, C. Böckmann, A. Boselli, G. Carlson, A. Chaikovsky, G. Chourdakis, A. Comerón, F. D. Tomasi, R. Eixmann, V. Freudenthaler, H. Giehl, I. Grigorov, A. Hågård, M. Iarlori, A. Kirsche, G. Kolarov, L. Komguem, S. Kreipl, W. Kumpf, G. Larchevêque, H. Linné, R. Matthey, I. Mattis, L. Mona, D. Müller, S. Music, S. Nickovic, M. Pandolfi, A. Papayannis, G. Pappalardo, J. Pelon, C. Pérez, R. M. Perrone, R. Persson, D. P. Resendes, V. Rizi, R. Rocadenbosch, J. A. Rodriguez, L. Sauvage, L. Schneidenbach, R. Schumacher, V. Shcherbakov, V. Simeonov, P. Sobolewsky, N. Spinelli, I. Stachlewska, D. Stoyanov, T. Trickl, G. Tsaknakis, G. Vaughan, U. Wandinger, X. Wang, M. Wiegner, M. Zavrtanik, and C. Zerefos, “EARLINET: A European aerosol research lidar network to establish an aerosol climatology,” (2003).

Boselli, A.

J. Bösenberg, V. Matthias, A. Amodeo, V. Amoiridi, A. Ansmann, J. M. Baldasano, I. Balin, D. Balis, C. Böckmann, A. Boselli, G. Carlson, A. Chaikovsky, G. Chourdakis, A. Comerón, F. D. Tomasi, R. Eixmann, V. Freudenthaler, H. Giehl, I. Grigorov, A. Hågård, M. Iarlori, A. Kirsche, G. Kolarov, L. Komguem, S. Kreipl, W. Kumpf, G. Larchevêque, H. Linné, R. Matthey, I. Mattis, L. Mona, D. Müller, S. Music, S. Nickovic, M. Pandolfi, A. Papayannis, G. Pappalardo, J. Pelon, C. Pérez, R. M. Perrone, R. Persson, D. P. Resendes, V. Rizi, R. Rocadenbosch, J. A. Rodriguez, L. Sauvage, L. Schneidenbach, R. Schumacher, V. Shcherbakov, V. Simeonov, P. Sobolewsky, N. Spinelli, I. Stachlewska, D. Stoyanov, T. Trickl, G. Tsaknakis, G. Vaughan, U. Wandinger, X. Wang, M. Wiegner, M. Zavrtanik, and C. Zerefos, “EARLINET: A European aerosol research lidar network to establish an aerosol climatology,” (2003).

Bösenberg, J.

U. Wandinger, D. Müller, C. Böckmann, D. Althausen, V. Matthias, J. Bösenberg, V. Weiss, M. Fiebig, M. Wendisch, A. Stohl, and A. Ansmann, “Optical and microphysical characterization of biomass-burning and industrial-pollution aerosols from multiwavelength lidar and aircraft measurements,” J. Geophys. Res. 107, D21 (2002).
[Crossref]

J. Bösenberg, V. Matthias, A. Amodeo, V. Amoiridi, A. Ansmann, J. M. Baldasano, I. Balin, D. Balis, C. Böckmann, A. Boselli, G. Carlson, A. Chaikovsky, G. Chourdakis, A. Comerón, F. D. Tomasi, R. Eixmann, V. Freudenthaler, H. Giehl, I. Grigorov, A. Hågård, M. Iarlori, A. Kirsche, G. Kolarov, L. Komguem, S. Kreipl, W. Kumpf, G. Larchevêque, H. Linné, R. Matthey, I. Mattis, L. Mona, D. Müller, S. Music, S. Nickovic, M. Pandolfi, A. Papayannis, G. Pappalardo, J. Pelon, C. Pérez, R. M. Perrone, R. Persson, D. P. Resendes, V. Rizi, R. Rocadenbosch, J. A. Rodriguez, L. Sauvage, L. Schneidenbach, R. Schumacher, V. Shcherbakov, V. Simeonov, P. Sobolewsky, N. Spinelli, I. Stachlewska, D. Stoyanov, T. Trickl, G. Tsaknakis, G. Vaughan, U. Wandinger, X. Wang, M. Wiegner, M. Zavrtanik, and C. Zerefos, “EARLINET: A European aerosol research lidar network to establish an aerosol climatology,” (2003).

Bovchaliuk, V.

V. Bovchaliuk, P. Goloub, T. Podvin, I. Veselovskii, D. Tanré, A. Chaikovsky, O. Dubovik, A. Mortier, A. Lopatin, M. Korenskiy, and S. Victori, “Comparison of aerosol properties retrieved using GARRLiC, LIRIC, and Raman algorithms applied to multi-wavelength lidar and sun/sky-photometer data,” Atmos. Meas. Tech. 9, 3391–3405 (2016).
[Crossref]

Burton, S.

Burton, S. P.

P. Sawamura, R. H. Moore, S. P. Burton, E. Chemyakin, D. Müller, A. Kolgotin, R. A. Ferrare, C. A. Hostetler, L. D. Ziemba, A. J. Beyersdorf, and B. E. Anderson, “HSRL-2 aerosol optical measurements and microphysical retrievals vs. airborne in situ measurements during DISCOVER-AQ 2013: an intercomparison study,” Atmos. Chem. Phys. 17, 7229–7243 (2017).
[Crossref]

S. P. Burton, E. Chemyakin, X. Liu, K. Knobelspiesse, S. Stamnes, P. Sawamura, R. H. Moore, C. A. Hostetler, and R. A. Ferrare, “Information content and sensitivity of the 3β + 2α lidar measurement system for aerosol microphysical retrievals,” Atmos. Meas. Tech. 9, 5555–5574 (2016).
[Crossref]

D. Müller, C. A. Hostetler, R. A. Ferrare, S. P. Burton, E. Chemyakin, A. Kolgotin, J. W. Hair, A. L. Cook, D. B. Harper, R. R. Rogers, R. W. Hare, C. S. Cleckner, M. D. Obland, J. Tomlinson, L. K. Berg, and B. Schmid, “Airborne multiwavelength high spectral resolution lidar (HSRL-2) observations during TCAP 2012: vertical profiles of optical and microphysical properties of a smoke/urban haze plume over the northeastern coast of the US,” Atmos. Meas. Tech. 7, 3487–3496 (2014).
[Crossref]

S. P. Burton, R. A. Ferrare, C. A. Hostetler, J. W. Hair, R. R. Rogers, M. D. Obland, C. F. Butler, A. L. Cook, D. B. Harper, and K. D. Froyd, “Aerosol classification using airborne high spectral resolution lidar measurements—methodology and examples,” Atmos. Meas. Tech. 5, 73–98 (2012).
[Crossref]

Butler, C. F.

S. P. Burton, R. A. Ferrare, C. A. Hostetler, J. W. Hair, R. R. Rogers, M. D. Obland, C. F. Butler, A. L. Cook, D. B. Harper, and K. D. Froyd, “Aerosol classification using airborne high spectral resolution lidar measurements—methodology and examples,” Atmos. Meas. Tech. 5, 73–98 (2012).
[Crossref]

Carlson, G.

J. Bösenberg, V. Matthias, A. Amodeo, V. Amoiridi, A. Ansmann, J. M. Baldasano, I. Balin, D. Balis, C. Böckmann, A. Boselli, G. Carlson, A. Chaikovsky, G. Chourdakis, A. Comerón, F. D. Tomasi, R. Eixmann, V. Freudenthaler, H. Giehl, I. Grigorov, A. Hågård, M. Iarlori, A. Kirsche, G. Kolarov, L. Komguem, S. Kreipl, W. Kumpf, G. Larchevêque, H. Linné, R. Matthey, I. Mattis, L. Mona, D. Müller, S. Music, S. Nickovic, M. Pandolfi, A. Papayannis, G. Pappalardo, J. Pelon, C. Pérez, R. M. Perrone, R. Persson, D. P. Resendes, V. Rizi, R. Rocadenbosch, J. A. Rodriguez, L. Sauvage, L. Schneidenbach, R. Schumacher, V. Shcherbakov, V. Simeonov, P. Sobolewsky, N. Spinelli, I. Stachlewska, D. Stoyanov, T. Trickl, G. Tsaknakis, G. Vaughan, U. Wandinger, X. Wang, M. Wiegner, M. Zavrtanik, and C. Zerefos, “EARLINET: A European aerosol research lidar network to establish an aerosol climatology,” (2003).

Chaikovsky, A.

V. Bovchaliuk, P. Goloub, T. Podvin, I. Veselovskii, D. Tanré, A. Chaikovsky, O. Dubovik, A. Mortier, A. Lopatin, M. Korenskiy, and S. Victori, “Comparison of aerosol properties retrieved using GARRLiC, LIRIC, and Raman algorithms applied to multi-wavelength lidar and sun/sky-photometer data,” Atmos. Meas. Tech. 9, 3391–3405 (2016).
[Crossref]

J. Bösenberg, V. Matthias, A. Amodeo, V. Amoiridi, A. Ansmann, J. M. Baldasano, I. Balin, D. Balis, C. Böckmann, A. Boselli, G. Carlson, A. Chaikovsky, G. Chourdakis, A. Comerón, F. D. Tomasi, R. Eixmann, V. Freudenthaler, H. Giehl, I. Grigorov, A. Hågård, M. Iarlori, A. Kirsche, G. Kolarov, L. Komguem, S. Kreipl, W. Kumpf, G. Larchevêque, H. Linné, R. Matthey, I. Mattis, L. Mona, D. Müller, S. Music, S. Nickovic, M. Pandolfi, A. Papayannis, G. Pappalardo, J. Pelon, C. Pérez, R. M. Perrone, R. Persson, D. P. Resendes, V. Rizi, R. Rocadenbosch, J. A. Rodriguez, L. Sauvage, L. Schneidenbach, R. Schumacher, V. Shcherbakov, V. Simeonov, P. Sobolewsky, N. Spinelli, I. Stachlewska, D. Stoyanov, T. Trickl, G. Tsaknakis, G. Vaughan, U. Wandinger, X. Wang, M. Wiegner, M. Zavrtanik, and C. Zerefos, “EARLINET: A European aerosol research lidar network to establish an aerosol climatology,” (2003).

Chemyakin, E.

A. Kolgotin, D. Müller, E. Chemyakin, A. Romanov, and V. Alehnovich, “Improved identification of the solution space of aerosol microphysical properties derived from the inversion of profiles of lidar optical data, part 3: case studies,” Appl. Opt. 57, 2499–2513 (2018).
[Crossref]

P. Sawamura, R. H. Moore, S. P. Burton, E. Chemyakin, D. Müller, A. Kolgotin, R. A. Ferrare, C. A. Hostetler, L. D. Ziemba, A. J. Beyersdorf, and B. E. Anderson, “HSRL-2 aerosol optical measurements and microphysical retrievals vs. airborne in situ measurements during DISCOVER-AQ 2013: an intercomparison study,” Atmos. Chem. Phys. 17, 7229–7243 (2017).
[Crossref]

S. P. Burton, E. Chemyakin, X. Liu, K. Knobelspiesse, S. Stamnes, P. Sawamura, R. H. Moore, C. A. Hostetler, and R. A. Ferrare, “Information content and sensitivity of the 3β + 2α lidar measurement system for aerosol microphysical retrievals,” Atmos. Meas. Tech. 9, 5555–5574 (2016).
[Crossref]

A. Kolgotin, D. Müller, E. Chemyakin, and A. Romanov, “Improved identification of the solution space of aerosol microphysical properties derived from the inversion of profiles of lidar optical data, part 1: theory,” Appl. Opt. 55, 9839–9849 (2016).
[Crossref]

A. Kolgotin, D. Müller, E. Chemyakin, and A. Romanov, “Improved identification of the solution space of aerosol microphysical properties derived from the inversion of profiles of lidar optical data, part 2: simulations with synthetic data,” Appl. Opt. 55, 9850–9865 (2016).
[Crossref]

D. Müller, C. Böckmann, A. Kolgotin, L. Schneidenbach, E. Chemyakin, J. J. Rosemann, P. Znak, and A. Romanov, “Microphysical particle properties derived from inversion algorithms developed in the framework of EARLINET,” Atmos. Meas. Tech. 9, 5007–5035 (2016).
[Crossref]

E. Chemyakin, D. Müller, S. Burton, A. Kolgotin, C. Hostetler, and R. Ferrare, “Arrange and average algorithm for the retrieval of aerosol parameters from multiwavelength high-spectral-resolution lidar/Raman lidar data,” Appl. Opt. 53, 7252–7266 (2014).
[Crossref]

D. Müller, C. A. Hostetler, R. A. Ferrare, S. P. Burton, E. Chemyakin, A. Kolgotin, J. W. Hair, A. L. Cook, D. B. Harper, R. R. Rogers, R. W. Hare, C. S. Cleckner, M. D. Obland, J. Tomlinson, L. K. Berg, and B. Schmid, “Airborne multiwavelength high spectral resolution lidar (HSRL-2) observations during TCAP 2012: vertical profiles of optical and microphysical properties of a smoke/urban haze plume over the northeastern coast of the US,” Atmos. Meas. Tech. 7, 3487–3496 (2014).
[Crossref]

Chourdakis, G.

J. Bösenberg, V. Matthias, A. Amodeo, V. Amoiridi, A. Ansmann, J. M. Baldasano, I. Balin, D. Balis, C. Böckmann, A. Boselli, G. Carlson, A. Chaikovsky, G. Chourdakis, A. Comerón, F. D. Tomasi, R. Eixmann, V. Freudenthaler, H. Giehl, I. Grigorov, A. Hågård, M. Iarlori, A. Kirsche, G. Kolarov, L. Komguem, S. Kreipl, W. Kumpf, G. Larchevêque, H. Linné, R. Matthey, I. Mattis, L. Mona, D. Müller, S. Music, S. Nickovic, M. Pandolfi, A. Papayannis, G. Pappalardo, J. Pelon, C. Pérez, R. M. Perrone, R. Persson, D. P. Resendes, V. Rizi, R. Rocadenbosch, J. A. Rodriguez, L. Sauvage, L. Schneidenbach, R. Schumacher, V. Shcherbakov, V. Simeonov, P. Sobolewsky, N. Spinelli, I. Stachlewska, D. Stoyanov, T. Trickl, G. Tsaknakis, G. Vaughan, U. Wandinger, X. Wang, M. Wiegner, M. Zavrtanik, and C. Zerefos, “EARLINET: A European aerosol research lidar network to establish an aerosol climatology,” (2003).

Cleckner, C. S.

D. Müller, C. A. Hostetler, R. A. Ferrare, S. P. Burton, E. Chemyakin, A. Kolgotin, J. W. Hair, A. L. Cook, D. B. Harper, R. R. Rogers, R. W. Hare, C. S. Cleckner, M. D. Obland, J. Tomlinson, L. K. Berg, and B. Schmid, “Airborne multiwavelength high spectral resolution lidar (HSRL-2) observations during TCAP 2012: vertical profiles of optical and microphysical properties of a smoke/urban haze plume over the northeastern coast of the US,” Atmos. Meas. Tech. 7, 3487–3496 (2014).
[Crossref]

Comerón, A.

J. Bösenberg, V. Matthias, A. Amodeo, V. Amoiridi, A. Ansmann, J. M. Baldasano, I. Balin, D. Balis, C. Böckmann, A. Boselli, G. Carlson, A. Chaikovsky, G. Chourdakis, A. Comerón, F. D. Tomasi, R. Eixmann, V. Freudenthaler, H. Giehl, I. Grigorov, A. Hågård, M. Iarlori, A. Kirsche, G. Kolarov, L. Komguem, S. Kreipl, W. Kumpf, G. Larchevêque, H. Linné, R. Matthey, I. Mattis, L. Mona, D. Müller, S. Music, S. Nickovic, M. Pandolfi, A. Papayannis, G. Pappalardo, J. Pelon, C. Pérez, R. M. Perrone, R. Persson, D. P. Resendes, V. Rizi, R. Rocadenbosch, J. A. Rodriguez, L. Sauvage, L. Schneidenbach, R. Schumacher, V. Shcherbakov, V. Simeonov, P. Sobolewsky, N. Spinelli, I. Stachlewska, D. Stoyanov, T. Trickl, G. Tsaknakis, G. Vaughan, U. Wandinger, X. Wang, M. Wiegner, M. Zavrtanik, and C. Zerefos, “EARLINET: A European aerosol research lidar network to establish an aerosol climatology,” (2003).

Cook, A. L.

D. Müller, C. A. Hostetler, R. A. Ferrare, S. P. Burton, E. Chemyakin, A. Kolgotin, J. W. Hair, A. L. Cook, D. B. Harper, R. R. Rogers, R. W. Hare, C. S. Cleckner, M. D. Obland, J. Tomlinson, L. K. Berg, and B. Schmid, “Airborne multiwavelength high spectral resolution lidar (HSRL-2) observations during TCAP 2012: vertical profiles of optical and microphysical properties of a smoke/urban haze plume over the northeastern coast of the US,” Atmos. Meas. Tech. 7, 3487–3496 (2014).
[Crossref]

S. P. Burton, R. A. Ferrare, C. A. Hostetler, J. W. Hair, R. R. Rogers, M. D. Obland, C. F. Butler, A. L. Cook, D. B. Harper, and K. D. Froyd, “Aerosol classification using airborne high spectral resolution lidar measurements—methodology and examples,” Atmos. Meas. Tech. 5, 73–98 (2012).
[Crossref]

de Graaf, M.

Donovan, D.

Dubovik, O.

V. Bovchaliuk, P. Goloub, T. Podvin, I. Veselovskii, D. Tanré, A. Chaikovsky, O. Dubovik, A. Mortier, A. Lopatin, M. Korenskiy, and S. Victori, “Comparison of aerosol properties retrieved using GARRLiC, LIRIC, and Raman algorithms applied to multi-wavelength lidar and sun/sky-photometer data,” Atmos. Meas. Tech. 9, 3391–3405 (2016).
[Crossref]

D. Müller, I. Veselovskii, A. Kolgotin, M. Tesche, A. Ansmann, and O. Dubovik, “Vertical profiles of pure dust and mixed smoke-dust plumes inferred from inversion of multiwavelength Raman/polarization lidar data and comparison to AERONET retrievals and in situ observations,” Appl. Opt. 52, 3178–3202 (2013).
[Crossref]

I. Veselovskii, O. Dubovik, A. Kolgotin, M. Korenskiy, D. Whiteman, K. Allakhverdiev, and F. Huseyinoglu, “Linear estimation of particle bulk parameters from multi-wavelength lidar measurements,” Atmos. Meas. Tech. 5, 1135–1145 (2012).
[Crossref]

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Muñoz, B. Veihelmann, W. J. van der Zande, J.-F. Leon, M. Sorokin, and I. Slutsker, “The application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111, D11208 (2006).
[Crossref]

Eck, T. F.

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Muñoz, B. Veihelmann, W. J. van der Zande, J.-F. Leon, M. Sorokin, and I. Slutsker, “The application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111, D11208 (2006).
[Crossref]

Eixmann, R.

J. Bösenberg, V. Matthias, A. Amodeo, V. Amoiridi, A. Ansmann, J. M. Baldasano, I. Balin, D. Balis, C. Böckmann, A. Boselli, G. Carlson, A. Chaikovsky, G. Chourdakis, A. Comerón, F. D. Tomasi, R. Eixmann, V. Freudenthaler, H. Giehl, I. Grigorov, A. Hågård, M. Iarlori, A. Kirsche, G. Kolarov, L. Komguem, S. Kreipl, W. Kumpf, G. Larchevêque, H. Linné, R. Matthey, I. Mattis, L. Mona, D. Müller, S. Music, S. Nickovic, M. Pandolfi, A. Papayannis, G. Pappalardo, J. Pelon, C. Pérez, R. M. Perrone, R. Persson, D. P. Resendes, V. Rizi, R. Rocadenbosch, J. A. Rodriguez, L. Sauvage, L. Schneidenbach, R. Schumacher, V. Shcherbakov, V. Simeonov, P. Sobolewsky, N. Spinelli, I. Stachlewska, D. Stoyanov, T. Trickl, G. Tsaknakis, G. Vaughan, U. Wandinger, X. Wang, M. Wiegner, M. Zavrtanik, and C. Zerefos, “EARLINET: A European aerosol research lidar network to establish an aerosol climatology,” (2003).

Engelmann, R.

M. Tesche, A. Ansmann, D. Müller, D. Althausen, R. Engelmann, V. Freudenthaler, and S. Groß, “Vertically resolved separation of dust and smoke over Cape Verde by using multiwavelength Raman and polarization lidar during SAMUM 2008,” J. Geophys. Res. 114, D13202 (2009).
[Crossref]

H. Baars, A. Ansmann, D. Althausen, R. Engelmann, B. Heese, D. Müller, P. Artaxo, M. Paixao, T. Pauliquevis, and R. Souza, “Aerosol profiling with lidar in the Amazon Basin during the wet and dry season,” J. Geophys. Res. 117, D21201 (2005).
[Crossref]

Ferrare, R.

Ferrare, R. A.

P. Sawamura, R. H. Moore, S. P. Burton, E. Chemyakin, D. Müller, A. Kolgotin, R. A. Ferrare, C. A. Hostetler, L. D. Ziemba, A. J. Beyersdorf, and B. E. Anderson, “HSRL-2 aerosol optical measurements and microphysical retrievals vs. airborne in situ measurements during DISCOVER-AQ 2013: an intercomparison study,” Atmos. Chem. Phys. 17, 7229–7243 (2017).
[Crossref]

S. P. Burton, E. Chemyakin, X. Liu, K. Knobelspiesse, S. Stamnes, P. Sawamura, R. H. Moore, C. A. Hostetler, and R. A. Ferrare, “Information content and sensitivity of the 3β + 2α lidar measurement system for aerosol microphysical retrievals,” Atmos. Meas. Tech. 9, 5555–5574 (2016).
[Crossref]

D. Müller, C. A. Hostetler, R. A. Ferrare, S. P. Burton, E. Chemyakin, A. Kolgotin, J. W. Hair, A. L. Cook, D. B. Harper, R. R. Rogers, R. W. Hare, C. S. Cleckner, M. D. Obland, J. Tomlinson, L. K. Berg, and B. Schmid, “Airborne multiwavelength high spectral resolution lidar (HSRL-2) observations during TCAP 2012: vertical profiles of optical and microphysical properties of a smoke/urban haze plume over the northeastern coast of the US,” Atmos. Meas. Tech. 7, 3487–3496 (2014).
[Crossref]

P. Sawamura, D. Müller, R. M. Hoff, C. A. Hostetler, R. A. Ferrare, J. W. Hair, R. R. Rogers, B. E. Anderson, L. D. Ziemba, A. J. Beyersdorf, K. L. Thornhill, E. L. Winstead, and B. N. Holben, “Aerosol optical and microphysical retrievals from a hybrid multiwavelength lidar dataset – DISCOVER-AQ 2011,” Atmos. Meas. Tech. 7, 3095–3112 (2014).
[Crossref]

S. P. Burton, R. A. Ferrare, C. A. Hostetler, J. W. Hair, R. R. Rogers, M. D. Obland, C. F. Butler, A. L. Cook, D. B. Harper, and K. D. Froyd, “Aerosol classification using airborne high spectral resolution lidar measurements—methodology and examples,” Atmos. Meas. Tech. 5, 73–98 (2012).
[Crossref]

Fiebig, M.

U. Wandinger, D. Müller, C. Böckmann, D. Althausen, V. Matthias, J. Bösenberg, V. Weiss, M. Fiebig, M. Wendisch, A. Stohl, and A. Ansmann, “Optical and microphysical characterization of biomass-burning and industrial-pollution aerosols from multiwavelength lidar and aircraft measurements,” J. Geophys. Res. 107, D21 (2002).
[Crossref]

D. Müller, U. Wandinger, D. Althausen, and M. Fiebig, “Comprehensive particle characterization from three-wavelength Raman-lidar observations,” Appl. Opt. 40, 4863–4869 (2001).
[Crossref]

Franke, K.

Freudenthaler, V.

M. Tesche, A. Ansmann, D. Müller, D. Althausen, R. Engelmann, V. Freudenthaler, and S. Groß, “Vertically resolved separation of dust and smoke over Cape Verde by using multiwavelength Raman and polarization lidar during SAMUM 2008,” J. Geophys. Res. 114, D13202 (2009).
[Crossref]

J. Bösenberg, V. Matthias, A. Amodeo, V. Amoiridi, A. Ansmann, J. M. Baldasano, I. Balin, D. Balis, C. Böckmann, A. Boselli, G. Carlson, A. Chaikovsky, G. Chourdakis, A. Comerón, F. D. Tomasi, R. Eixmann, V. Freudenthaler, H. Giehl, I. Grigorov, A. Hågård, M. Iarlori, A. Kirsche, G. Kolarov, L. Komguem, S. Kreipl, W. Kumpf, G. Larchevêque, H. Linné, R. Matthey, I. Mattis, L. Mona, D. Müller, S. Music, S. Nickovic, M. Pandolfi, A. Papayannis, G. Pappalardo, J. Pelon, C. Pérez, R. M. Perrone, R. Persson, D. P. Resendes, V. Rizi, R. Rocadenbosch, J. A. Rodriguez, L. Sauvage, L. Schneidenbach, R. Schumacher, V. Shcherbakov, V. Simeonov, P. Sobolewsky, N. Spinelli, I. Stachlewska, D. Stoyanov, T. Trickl, G. Tsaknakis, G. Vaughan, U. Wandinger, X. Wang, M. Wiegner, M. Zavrtanik, and C. Zerefos, “EARLINET: A European aerosol research lidar network to establish an aerosol climatology,” (2003).

Froyd, K. D.

S. P. Burton, R. A. Ferrare, C. A. Hostetler, J. W. Hair, R. R. Rogers, M. D. Obland, C. F. Butler, A. L. Cook, D. B. Harper, and K. D. Froyd, “Aerosol classification using airborne high spectral resolution lidar measurements—methodology and examples,” Atmos. Meas. Tech. 5, 73–98 (2012).
[Crossref]

Giehl, H.

J. Bösenberg, V. Matthias, A. Amodeo, V. Amoiridi, A. Ansmann, J. M. Baldasano, I. Balin, D. Balis, C. Böckmann, A. Boselli, G. Carlson, A. Chaikovsky, G. Chourdakis, A. Comerón, F. D. Tomasi, R. Eixmann, V. Freudenthaler, H. Giehl, I. Grigorov, A. Hågård, M. Iarlori, A. Kirsche, G. Kolarov, L. Komguem, S. Kreipl, W. Kumpf, G. Larchevêque, H. Linné, R. Matthey, I. Mattis, L. Mona, D. Müller, S. Music, S. Nickovic, M. Pandolfi, A. Papayannis, G. Pappalardo, J. Pelon, C. Pérez, R. M. Perrone, R. Persson, D. P. Resendes, V. Rizi, R. Rocadenbosch, J. A. Rodriguez, L. Sauvage, L. Schneidenbach, R. Schumacher, V. Shcherbakov, V. Simeonov, P. Sobolewsky, N. Spinelli, I. Stachlewska, D. Stoyanov, T. Trickl, G. Tsaknakis, G. Vaughan, U. Wandinger, X. Wang, M. Wiegner, M. Zavrtanik, and C. Zerefos, “EARLINET: A European aerosol research lidar network to establish an aerosol climatology,” (2003).

Goloub, P.

V. Bovchaliuk, P. Goloub, T. Podvin, I. Veselovskii, D. Tanré, A. Chaikovsky, O. Dubovik, A. Mortier, A. Lopatin, M. Korenskiy, and S. Victori, “Comparison of aerosol properties retrieved using GARRLiC, LIRIC, and Raman algorithms applied to multi-wavelength lidar and sun/sky-photometer data,” Atmos. Meas. Tech. 9, 3391–3405 (2016).
[Crossref]

Griaznov, V.

Grigorov, I.

J. Bösenberg, V. Matthias, A. Amodeo, V. Amoiridi, A. Ansmann, J. M. Baldasano, I. Balin, D. Balis, C. Böckmann, A. Boselli, G. Carlson, A. Chaikovsky, G. Chourdakis, A. Comerón, F. D. Tomasi, R. Eixmann, V. Freudenthaler, H. Giehl, I. Grigorov, A. Hågård, M. Iarlori, A. Kirsche, G. Kolarov, L. Komguem, S. Kreipl, W. Kumpf, G. Larchevêque, H. Linné, R. Matthey, I. Mattis, L. Mona, D. Müller, S. Music, S. Nickovic, M. Pandolfi, A. Papayannis, G. Pappalardo, J. Pelon, C. Pérez, R. M. Perrone, R. Persson, D. P. Resendes, V. Rizi, R. Rocadenbosch, J. A. Rodriguez, L. Sauvage, L. Schneidenbach, R. Schumacher, V. Shcherbakov, V. Simeonov, P. Sobolewsky, N. Spinelli, I. Stachlewska, D. Stoyanov, T. Trickl, G. Tsaknakis, G. Vaughan, U. Wandinger, X. Wang, M. Wiegner, M. Zavrtanik, and C. Zerefos, “EARLINET: A European aerosol research lidar network to establish an aerosol climatology,” (2003).

Groß, S.

M. Tesche, A. Ansmann, D. Müller, D. Althausen, R. Engelmann, V. Freudenthaler, and S. Groß, “Vertically resolved separation of dust and smoke over Cape Verde by using multiwavelength Raman and polarization lidar during SAMUM 2008,” J. Geophys. Res. 114, D13202 (2009).
[Crossref]

Hågård, A.

J. Bösenberg, V. Matthias, A. Amodeo, V. Amoiridi, A. Ansmann, J. M. Baldasano, I. Balin, D. Balis, C. Böckmann, A. Boselli, G. Carlson, A. Chaikovsky, G. Chourdakis, A. Comerón, F. D. Tomasi, R. Eixmann, V. Freudenthaler, H. Giehl, I. Grigorov, A. Hågård, M. Iarlori, A. Kirsche, G. Kolarov, L. Komguem, S. Kreipl, W. Kumpf, G. Larchevêque, H. Linné, R. Matthey, I. Mattis, L. Mona, D. Müller, S. Music, S. Nickovic, M. Pandolfi, A. Papayannis, G. Pappalardo, J. Pelon, C. Pérez, R. M. Perrone, R. Persson, D. P. Resendes, V. Rizi, R. Rocadenbosch, J. A. Rodriguez, L. Sauvage, L. Schneidenbach, R. Schumacher, V. Shcherbakov, V. Simeonov, P. Sobolewsky, N. Spinelli, I. Stachlewska, D. Stoyanov, T. Trickl, G. Tsaknakis, G. Vaughan, U. Wandinger, X. Wang, M. Wiegner, M. Zavrtanik, and C. Zerefos, “EARLINET: A European aerosol research lidar network to establish an aerosol climatology,” (2003).

Hair, J. W.

D. Müller, C. A. Hostetler, R. A. Ferrare, S. P. Burton, E. Chemyakin, A. Kolgotin, J. W. Hair, A. L. Cook, D. B. Harper, R. R. Rogers, R. W. Hare, C. S. Cleckner, M. D. Obland, J. Tomlinson, L. K. Berg, and B. Schmid, “Airborne multiwavelength high spectral resolution lidar (HSRL-2) observations during TCAP 2012: vertical profiles of optical and microphysical properties of a smoke/urban haze plume over the northeastern coast of the US,” Atmos. Meas. Tech. 7, 3487–3496 (2014).
[Crossref]

P. Sawamura, D. Müller, R. M. Hoff, C. A. Hostetler, R. A. Ferrare, J. W. Hair, R. R. Rogers, B. E. Anderson, L. D. Ziemba, A. J. Beyersdorf, K. L. Thornhill, E. L. Winstead, and B. N. Holben, “Aerosol optical and microphysical retrievals from a hybrid multiwavelength lidar dataset – DISCOVER-AQ 2011,” Atmos. Meas. Tech. 7, 3095–3112 (2014).
[Crossref]

S. P. Burton, R. A. Ferrare, C. A. Hostetler, J. W. Hair, R. R. Rogers, M. D. Obland, C. F. Butler, A. L. Cook, D. B. Harper, and K. D. Froyd, “Aerosol classification using airborne high spectral resolution lidar measurements—methodology and examples,” Atmos. Meas. Tech. 5, 73–98 (2012).
[Crossref]

Hare, R. W.

D. Müller, C. A. Hostetler, R. A. Ferrare, S. P. Burton, E. Chemyakin, A. Kolgotin, J. W. Hair, A. L. Cook, D. B. Harper, R. R. Rogers, R. W. Hare, C. S. Cleckner, M. D. Obland, J. Tomlinson, L. K. Berg, and B. Schmid, “Airborne multiwavelength high spectral resolution lidar (HSRL-2) observations during TCAP 2012: vertical profiles of optical and microphysical properties of a smoke/urban haze plume over the northeastern coast of the US,” Atmos. Meas. Tech. 7, 3487–3496 (2014).
[Crossref]

Harper, D. B.

D. Müller, C. A. Hostetler, R. A. Ferrare, S. P. Burton, E. Chemyakin, A. Kolgotin, J. W. Hair, A. L. Cook, D. B. Harper, R. R. Rogers, R. W. Hare, C. S. Cleckner, M. D. Obland, J. Tomlinson, L. K. Berg, and B. Schmid, “Airborne multiwavelength high spectral resolution lidar (HSRL-2) observations during TCAP 2012: vertical profiles of optical and microphysical properties of a smoke/urban haze plume over the northeastern coast of the US,” Atmos. Meas. Tech. 7, 3487–3496 (2014).
[Crossref]

S. P. Burton, R. A. Ferrare, C. A. Hostetler, J. W. Hair, R. R. Rogers, M. D. Obland, C. F. Butler, A. L. Cook, D. B. Harper, and K. D. Froyd, “Aerosol classification using airborne high spectral resolution lidar measurements—methodology and examples,” Atmos. Meas. Tech. 5, 73–98 (2012).
[Crossref]

Heese, B.

H. Baars, A. Ansmann, D. Althausen, R. Engelmann, B. Heese, D. Müller, P. Artaxo, M. Paixao, T. Pauliquevis, and R. Souza, “Aerosol profiling with lidar in the Amazon Basin during the wet and dry season,” J. Geophys. Res. 117, D21201 (2005).
[Crossref]

Hoff, R. M.

P. Sawamura, D. Müller, R. M. Hoff, C. A. Hostetler, R. A. Ferrare, J. W. Hair, R. R. Rogers, B. E. Anderson, L. D. Ziemba, A. J. Beyersdorf, K. L. Thornhill, E. L. Winstead, and B. N. Holben, “Aerosol optical and microphysical retrievals from a hybrid multiwavelength lidar dataset – DISCOVER-AQ 2011,” Atmos. Meas. Tech. 7, 3095–3112 (2014).
[Crossref]

Holben, B. N.

P. Sawamura, D. Müller, R. M. Hoff, C. A. Hostetler, R. A. Ferrare, J. W. Hair, R. R. Rogers, B. E. Anderson, L. D. Ziemba, A. J. Beyersdorf, K. L. Thornhill, E. L. Winstead, and B. N. Holben, “Aerosol optical and microphysical retrievals from a hybrid multiwavelength lidar dataset – DISCOVER-AQ 2011,” Atmos. Meas. Tech. 7, 3095–3112 (2014).
[Crossref]

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Muñoz, B. Veihelmann, W. J. van der Zande, J.-F. Leon, M. Sorokin, and I. Slutsker, “The application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111, D11208 (2006).
[Crossref]

Hostetler, C.

Hostetler, C. A.

P. Sawamura, R. H. Moore, S. P. Burton, E. Chemyakin, D. Müller, A. Kolgotin, R. A. Ferrare, C. A. Hostetler, L. D. Ziemba, A. J. Beyersdorf, and B. E. Anderson, “HSRL-2 aerosol optical measurements and microphysical retrievals vs. airborne in situ measurements during DISCOVER-AQ 2013: an intercomparison study,” Atmos. Chem. Phys. 17, 7229–7243 (2017).
[Crossref]

S. P. Burton, E. Chemyakin, X. Liu, K. Knobelspiesse, S. Stamnes, P. Sawamura, R. H. Moore, C. A. Hostetler, and R. A. Ferrare, “Information content and sensitivity of the 3β + 2α lidar measurement system for aerosol microphysical retrievals,” Atmos. Meas. Tech. 9, 5555–5574 (2016).
[Crossref]

D. Müller, C. A. Hostetler, R. A. Ferrare, S. P. Burton, E. Chemyakin, A. Kolgotin, J. W. Hair, A. L. Cook, D. B. Harper, R. R. Rogers, R. W. Hare, C. S. Cleckner, M. D. Obland, J. Tomlinson, L. K. Berg, and B. Schmid, “Airborne multiwavelength high spectral resolution lidar (HSRL-2) observations during TCAP 2012: vertical profiles of optical and microphysical properties of a smoke/urban haze plume over the northeastern coast of the US,” Atmos. Meas. Tech. 7, 3487–3496 (2014).
[Crossref]

P. Sawamura, D. Müller, R. M. Hoff, C. A. Hostetler, R. A. Ferrare, J. W. Hair, R. R. Rogers, B. E. Anderson, L. D. Ziemba, A. J. Beyersdorf, K. L. Thornhill, E. L. Winstead, and B. N. Holben, “Aerosol optical and microphysical retrievals from a hybrid multiwavelength lidar dataset – DISCOVER-AQ 2011,” Atmos. Meas. Tech. 7, 3095–3112 (2014).
[Crossref]

S. P. Burton, R. A. Ferrare, C. A. Hostetler, J. W. Hair, R. R. Rogers, M. D. Obland, C. F. Butler, A. L. Cook, D. B. Harper, and K. D. Froyd, “Aerosol classification using airborne high spectral resolution lidar measurements—methodology and examples,” Atmos. Meas. Tech. 5, 73–98 (2012).
[Crossref]

Huseyinoglu, F.

I. Veselovskii, O. Dubovik, A. Kolgotin, M. Korenskiy, D. Whiteman, K. Allakhverdiev, and F. Huseyinoglu, “Linear estimation of particle bulk parameters from multi-wavelength lidar measurements,” Atmos. Meas. Tech. 5, 1135–1145 (2012).
[Crossref]

Iarlori, M.

J. Bösenberg, V. Matthias, A. Amodeo, V. Amoiridi, A. Ansmann, J. M. Baldasano, I. Balin, D. Balis, C. Böckmann, A. Boselli, G. Carlson, A. Chaikovsky, G. Chourdakis, A. Comerón, F. D. Tomasi, R. Eixmann, V. Freudenthaler, H. Giehl, I. Grigorov, A. Hågård, M. Iarlori, A. Kirsche, G. Kolarov, L. Komguem, S. Kreipl, W. Kumpf, G. Larchevêque, H. Linné, R. Matthey, I. Mattis, L. Mona, D. Müller, S. Music, S. Nickovic, M. Pandolfi, A. Papayannis, G. Pappalardo, J. Pelon, C. Pérez, R. M. Perrone, R. Persson, D. P. Resendes, V. Rizi, R. Rocadenbosch, J. A. Rodriguez, L. Sauvage, L. Schneidenbach, R. Schumacher, V. Shcherbakov, V. Simeonov, P. Sobolewsky, N. Spinelli, I. Stachlewska, D. Stoyanov, T. Trickl, G. Tsaknakis, G. Vaughan, U. Wandinger, X. Wang, M. Wiegner, M. Zavrtanik, and C. Zerefos, “EARLINET: A European aerosol research lidar network to establish an aerosol climatology,” (2003).

Kim, Y. J.

Y. M. Noh, D. Müller, I. Mattis, H. Lee, and Y. J. Kim, “Vertically resolved light-absorption characteristics and the influence of relative humidity on particle properties: multiwavelength Raman lidar observations of East Asian aerosol types over Korea,” J. Geophys. Res. 116, D06206 (2011).
[Crossref]

Kirsche, A.

J. Bösenberg, V. Matthias, A. Amodeo, V. Amoiridi, A. Ansmann, J. M. Baldasano, I. Balin, D. Balis, C. Böckmann, A. Boselli, G. Carlson, A. Chaikovsky, G. Chourdakis, A. Comerón, F. D. Tomasi, R. Eixmann, V. Freudenthaler, H. Giehl, I. Grigorov, A. Hågård, M. Iarlori, A. Kirsche, G. Kolarov, L. Komguem, S. Kreipl, W. Kumpf, G. Larchevêque, H. Linné, R. Matthey, I. Mattis, L. Mona, D. Müller, S. Music, S. Nickovic, M. Pandolfi, A. Papayannis, G. Pappalardo, J. Pelon, C. Pérez, R. M. Perrone, R. Persson, D. P. Resendes, V. Rizi, R. Rocadenbosch, J. A. Rodriguez, L. Sauvage, L. Schneidenbach, R. Schumacher, V. Shcherbakov, V. Simeonov, P. Sobolewsky, N. Spinelli, I. Stachlewska, D. Stoyanov, T. Trickl, G. Tsaknakis, G. Vaughan, U. Wandinger, X. Wang, M. Wiegner, M. Zavrtanik, and C. Zerefos, “EARLINET: A European aerosol research lidar network to establish an aerosol climatology,” (2003).

Knobelspiesse, K.

S. P. Burton, E. Chemyakin, X. Liu, K. Knobelspiesse, S. Stamnes, P. Sawamura, R. H. Moore, C. A. Hostetler, and R. A. Ferrare, “Information content and sensitivity of the 3β + 2α lidar measurement system for aerosol microphysical retrievals,” Atmos. Meas. Tech. 9, 5555–5574 (2016).
[Crossref]

Kolarov, G.

J. Bösenberg, V. Matthias, A. Amodeo, V. Amoiridi, A. Ansmann, J. M. Baldasano, I. Balin, D. Balis, C. Böckmann, A. Boselli, G. Carlson, A. Chaikovsky, G. Chourdakis, A. Comerón, F. D. Tomasi, R. Eixmann, V. Freudenthaler, H. Giehl, I. Grigorov, A. Hågård, M. Iarlori, A. Kirsche, G. Kolarov, L. Komguem, S. Kreipl, W. Kumpf, G. Larchevêque, H. Linné, R. Matthey, I. Mattis, L. Mona, D. Müller, S. Music, S. Nickovic, M. Pandolfi, A. Papayannis, G. Pappalardo, J. Pelon, C. Pérez, R. M. Perrone, R. Persson, D. P. Resendes, V. Rizi, R. Rocadenbosch, J. A. Rodriguez, L. Sauvage, L. Schneidenbach, R. Schumacher, V. Shcherbakov, V. Simeonov, P. Sobolewsky, N. Spinelli, I. Stachlewska, D. Stoyanov, T. Trickl, G. Tsaknakis, G. Vaughan, U. Wandinger, X. Wang, M. Wiegner, M. Zavrtanik, and C. Zerefos, “EARLINET: A European aerosol research lidar network to establish an aerosol climatology,” (2003).

Kolgotin, A.

A. Kolgotin, D. Müller, E. Chemyakin, A. Romanov, and V. Alehnovich, “Improved identification of the solution space of aerosol microphysical properties derived from the inversion of profiles of lidar optical data, part 3: case studies,” Appl. Opt. 57, 2499–2513 (2018).
[Crossref]

P. Sawamura, R. H. Moore, S. P. Burton, E. Chemyakin, D. Müller, A. Kolgotin, R. A. Ferrare, C. A. Hostetler, L. D. Ziemba, A. J. Beyersdorf, and B. E. Anderson, “HSRL-2 aerosol optical measurements and microphysical retrievals vs. airborne in situ measurements during DISCOVER-AQ 2013: an intercomparison study,” Atmos. Chem. Phys. 17, 7229–7243 (2017).
[Crossref]

A. Kolgotin, D. Müller, E. Chemyakin, and A. Romanov, “Improved identification of the solution space of aerosol microphysical properties derived from the inversion of profiles of lidar optical data, part 2: simulations with synthetic data,” Appl. Opt. 55, 9850–9865 (2016).
[Crossref]

A. Kolgotin, D. Müller, E. Chemyakin, and A. Romanov, “Improved identification of the solution space of aerosol microphysical properties derived from the inversion of profiles of lidar optical data, part 1: theory,” Appl. Opt. 55, 9839–9849 (2016).
[Crossref]

D. Müller, C. Böckmann, A. Kolgotin, L. Schneidenbach, E. Chemyakin, J. J. Rosemann, P. Znak, and A. Romanov, “Microphysical particle properties derived from inversion algorithms developed in the framework of EARLINET,” Atmos. Meas. Tech. 9, 5007–5035 (2016).
[Crossref]

E. Chemyakin, D. Müller, S. Burton, A. Kolgotin, C. Hostetler, and R. Ferrare, “Arrange and average algorithm for the retrieval of aerosol parameters from multiwavelength high-spectral-resolution lidar/Raman lidar data,” Appl. Opt. 53, 7252–7266 (2014).
[Crossref]

D. Müller, C. A. Hostetler, R. A. Ferrare, S. P. Burton, E. Chemyakin, A. Kolgotin, J. W. Hair, A. L. Cook, D. B. Harper, R. R. Rogers, R. W. Hare, C. S. Cleckner, M. D. Obland, J. Tomlinson, L. K. Berg, and B. Schmid, “Airborne multiwavelength high spectral resolution lidar (HSRL-2) observations during TCAP 2012: vertical profiles of optical and microphysical properties of a smoke/urban haze plume over the northeastern coast of the US,” Atmos. Meas. Tech. 7, 3487–3496 (2014).
[Crossref]

D. Pérez-Ramírez, D. N. Whiteman, I. Veselovskii, A. Kolgotin, M. Korenskiy, and L. Alados-Arboledas, “Effects of systematic and random errors on the retrieval of particle microphysical properties from multiwavelength lidar measurements using inversion with regularization,” Atmos. Meas. Tech. 6, 3039–3054 (2013).
[Crossref]

D. Müller, I. Veselovskii, A. Kolgotin, M. Tesche, A. Ansmann, and O. Dubovik, “Vertical profiles of pure dust and mixed smoke-dust plumes inferred from inversion of multiwavelength Raman/polarization lidar data and comparison to AERONET retrievals and in situ observations,” Appl. Opt. 52, 3178–3202 (2013).
[Crossref]

I. Veselovskii, O. Dubovik, A. Kolgotin, M. Korenskiy, D. Whiteman, K. Allakhverdiev, and F. Huseyinoglu, “Linear estimation of particle bulk parameters from multi-wavelength lidar measurements,” Atmos. Meas. Tech. 5, 1135–1145 (2012).
[Crossref]

I. Veselovskii, A. Kolgotin, V. Griaznov, D. Müller, and D. N. Whiteman, “Information content of multiwavelength lidar data with respect to microphysical particle properties derived from eigenvalue analysis,” Appl. Opt. 44, 5292–5303 (2005).
[Crossref]

I. Veselovskii, A. Kolgotin, V. Griaznov, D. Müller, K. Franke, and D. N. Whiteman, “Inversion of multiwavelength Raman lidar data for retrieval of bimodal aerosol size distribution,” Appl. Opt. 43, 1180–1195 (2004).
[Crossref]

I. Veselovskii, A. Kolgotin, V. Griaznov, D. Müller, U. Wandinger, and D. N. Whiteman, “Inversion with regularization for the retrieval of tropospheric aerosol parameters from multiwavelength lidar sounding,” Appl. Opt. 41, 3685–3699 (2002).
[Crossref]

Komguem, L.

J. Bösenberg, V. Matthias, A. Amodeo, V. Amoiridi, A. Ansmann, J. M. Baldasano, I. Balin, D. Balis, C. Böckmann, A. Boselli, G. Carlson, A. Chaikovsky, G. Chourdakis, A. Comerón, F. D. Tomasi, R. Eixmann, V. Freudenthaler, H. Giehl, I. Grigorov, A. Hågård, M. Iarlori, A. Kirsche, G. Kolarov, L. Komguem, S. Kreipl, W. Kumpf, G. Larchevêque, H. Linné, R. Matthey, I. Mattis, L. Mona, D. Müller, S. Music, S. Nickovic, M. Pandolfi, A. Papayannis, G. Pappalardo, J. Pelon, C. Pérez, R. M. Perrone, R. Persson, D. P. Resendes, V. Rizi, R. Rocadenbosch, J. A. Rodriguez, L. Sauvage, L. Schneidenbach, R. Schumacher, V. Shcherbakov, V. Simeonov, P. Sobolewsky, N. Spinelli, I. Stachlewska, D. Stoyanov, T. Trickl, G. Tsaknakis, G. Vaughan, U. Wandinger, X. Wang, M. Wiegner, M. Zavrtanik, and C. Zerefos, “EARLINET: A European aerosol research lidar network to establish an aerosol climatology,” (2003).

Korenskiy, M.

V. Bovchaliuk, P. Goloub, T. Podvin, I. Veselovskii, D. Tanré, A. Chaikovsky, O. Dubovik, A. Mortier, A. Lopatin, M. Korenskiy, and S. Victori, “Comparison of aerosol properties retrieved using GARRLiC, LIRIC, and Raman algorithms applied to multi-wavelength lidar and sun/sky-photometer data,” Atmos. Meas. Tech. 9, 3391–3405 (2016).
[Crossref]

D. Pérez-Ramírez, D. N. Whiteman, I. Veselovskii, A. Kolgotin, M. Korenskiy, and L. Alados-Arboledas, “Effects of systematic and random errors on the retrieval of particle microphysical properties from multiwavelength lidar measurements using inversion with regularization,” Atmos. Meas. Tech. 6, 3039–3054 (2013).
[Crossref]

I. Veselovskii, O. Dubovik, A. Kolgotin, M. Korenskiy, D. Whiteman, K. Allakhverdiev, and F. Huseyinoglu, “Linear estimation of particle bulk parameters from multi-wavelength lidar measurements,” Atmos. Meas. Tech. 5, 1135–1145 (2012).
[Crossref]

Kreipl, S.

J. Bösenberg, V. Matthias, A. Amodeo, V. Amoiridi, A. Ansmann, J. M. Baldasano, I. Balin, D. Balis, C. Böckmann, A. Boselli, G. Carlson, A. Chaikovsky, G. Chourdakis, A. Comerón, F. D. Tomasi, R. Eixmann, V. Freudenthaler, H. Giehl, I. Grigorov, A. Hågård, M. Iarlori, A. Kirsche, G. Kolarov, L. Komguem, S. Kreipl, W. Kumpf, G. Larchevêque, H. Linné, R. Matthey, I. Mattis, L. Mona, D. Müller, S. Music, S. Nickovic, M. Pandolfi, A. Papayannis, G. Pappalardo, J. Pelon, C. Pérez, R. M. Perrone, R. Persson, D. P. Resendes, V. Rizi, R. Rocadenbosch, J. A. Rodriguez, L. Sauvage, L. Schneidenbach, R. Schumacher, V. Shcherbakov, V. Simeonov, P. Sobolewsky, N. Spinelli, I. Stachlewska, D. Stoyanov, T. Trickl, G. Tsaknakis, G. Vaughan, U. Wandinger, X. Wang, M. Wiegner, M. Zavrtanik, and C. Zerefos, “EARLINET: A European aerosol research lidar network to establish an aerosol climatology,” (2003).

Kumpf, W.

J. Bösenberg, V. Matthias, A. Amodeo, V. Amoiridi, A. Ansmann, J. M. Baldasano, I. Balin, D. Balis, C. Böckmann, A. Boselli, G. Carlson, A. Chaikovsky, G. Chourdakis, A. Comerón, F. D. Tomasi, R. Eixmann, V. Freudenthaler, H. Giehl, I. Grigorov, A. Hågård, M. Iarlori, A. Kirsche, G. Kolarov, L. Komguem, S. Kreipl, W. Kumpf, G. Larchevêque, H. Linné, R. Matthey, I. Mattis, L. Mona, D. Müller, S. Music, S. Nickovic, M. Pandolfi, A. Papayannis, G. Pappalardo, J. Pelon, C. Pérez, R. M. Perrone, R. Persson, D. P. Resendes, V. Rizi, R. Rocadenbosch, J. A. Rodriguez, L. Sauvage, L. Schneidenbach, R. Schumacher, V. Shcherbakov, V. Simeonov, P. Sobolewsky, N. Spinelli, I. Stachlewska, D. Stoyanov, T. Trickl, G. Tsaknakis, G. Vaughan, U. Wandinger, X. Wang, M. Wiegner, M. Zavrtanik, and C. Zerefos, “EARLINET: A European aerosol research lidar network to establish an aerosol climatology,” (2003).

Lapyonok, T.

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Muñoz, B. Veihelmann, W. J. van der Zande, J.-F. Leon, M. Sorokin, and I. Slutsker, “The application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111, D11208 (2006).
[Crossref]

Larchevêque, G.

J. Bösenberg, V. Matthias, A. Amodeo, V. Amoiridi, A. Ansmann, J. M. Baldasano, I. Balin, D. Balis, C. Böckmann, A. Boselli, G. Carlson, A. Chaikovsky, G. Chourdakis, A. Comerón, F. D. Tomasi, R. Eixmann, V. Freudenthaler, H. Giehl, I. Grigorov, A. Hågård, M. Iarlori, A. Kirsche, G. Kolarov, L. Komguem, S. Kreipl, W. Kumpf, G. Larchevêque, H. Linné, R. Matthey, I. Mattis, L. Mona, D. Müller, S. Music, S. Nickovic, M. Pandolfi, A. Papayannis, G. Pappalardo, J. Pelon, C. Pérez, R. M. Perrone, R. Persson, D. P. Resendes, V. Rizi, R. Rocadenbosch, J. A. Rodriguez, L. Sauvage, L. Schneidenbach, R. Schumacher, V. Shcherbakov, V. Simeonov, P. Sobolewsky, N. Spinelli, I. Stachlewska, D. Stoyanov, T. Trickl, G. Tsaknakis, G. Vaughan, U. Wandinger, X. Wang, M. Wiegner, M. Zavrtanik, and C. Zerefos, “EARLINET: A European aerosol research lidar network to establish an aerosol climatology,” (2003).

Lee, H.

Y. M. Noh, D. Müller, I. Mattis, H. Lee, and Y. J. Kim, “Vertically resolved light-absorption characteristics and the influence of relative humidity on particle properties: multiwavelength Raman lidar observations of East Asian aerosol types over Korea,” J. Geophys. Res. 116, D06206 (2011).
[Crossref]

Leon, J.-F.

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Muñoz, B. Veihelmann, W. J. van der Zande, J.-F. Leon, M. Sorokin, and I. Slutsker, “The application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111, D11208 (2006).
[Crossref]

Linné, H.

J. Bösenberg, V. Matthias, A. Amodeo, V. Amoiridi, A. Ansmann, J. M. Baldasano, I. Balin, D. Balis, C. Böckmann, A. Boselli, G. Carlson, A. Chaikovsky, G. Chourdakis, A. Comerón, F. D. Tomasi, R. Eixmann, V. Freudenthaler, H. Giehl, I. Grigorov, A. Hågård, M. Iarlori, A. Kirsche, G. Kolarov, L. Komguem, S. Kreipl, W. Kumpf, G. Larchevêque, H. Linné, R. Matthey, I. Mattis, L. Mona, D. Müller, S. Music, S. Nickovic, M. Pandolfi, A. Papayannis, G. Pappalardo, J. Pelon, C. Pérez, R. M. Perrone, R. Persson, D. P. Resendes, V. Rizi, R. Rocadenbosch, J. A. Rodriguez, L. Sauvage, L. Schneidenbach, R. Schumacher, V. Shcherbakov, V. Simeonov, P. Sobolewsky, N. Spinelli, I. Stachlewska, D. Stoyanov, T. Trickl, G. Tsaknakis, G. Vaughan, U. Wandinger, X. Wang, M. Wiegner, M. Zavrtanik, and C. Zerefos, “EARLINET: A European aerosol research lidar network to establish an aerosol climatology,” (2003).

Liu, X.

S. P. Burton, E. Chemyakin, X. Liu, K. Knobelspiesse, S. Stamnes, P. Sawamura, R. H. Moore, C. A. Hostetler, and R. A. Ferrare, “Information content and sensitivity of the 3β + 2α lidar measurement system for aerosol microphysical retrievals,” Atmos. Meas. Tech. 9, 5555–5574 (2016).
[Crossref]

Lopatin, A.

V. Bovchaliuk, P. Goloub, T. Podvin, I. Veselovskii, D. Tanré, A. Chaikovsky, O. Dubovik, A. Mortier, A. Lopatin, M. Korenskiy, and S. Victori, “Comparison of aerosol properties retrieved using GARRLiC, LIRIC, and Raman algorithms applied to multi-wavelength lidar and sun/sky-photometer data,” Atmos. Meas. Tech. 9, 3391–3405 (2016).
[Crossref]

Mamouri, R. E.

R. E. Mamouri and A. Ansmann, “Separating mixtures of aerosol types in airborne HSRL data,” Atmos. Meas. Tech. 7, 419–436 (2013).
[Crossref]

Matthey, R.

J. Bösenberg, V. Matthias, A. Amodeo, V. Amoiridi, A. Ansmann, J. M. Baldasano, I. Balin, D. Balis, C. Böckmann, A. Boselli, G. Carlson, A. Chaikovsky, G. Chourdakis, A. Comerón, F. D. Tomasi, R. Eixmann, V. Freudenthaler, H. Giehl, I. Grigorov, A. Hågård, M. Iarlori, A. Kirsche, G. Kolarov, L. Komguem, S. Kreipl, W. Kumpf, G. Larchevêque, H. Linné, R. Matthey, I. Mattis, L. Mona, D. Müller, S. Music, S. Nickovic, M. Pandolfi, A. Papayannis, G. Pappalardo, J. Pelon, C. Pérez, R. M. Perrone, R. Persson, D. P. Resendes, V. Rizi, R. Rocadenbosch, J. A. Rodriguez, L. Sauvage, L. Schneidenbach, R. Schumacher, V. Shcherbakov, V. Simeonov, P. Sobolewsky, N. Spinelli, I. Stachlewska, D. Stoyanov, T. Trickl, G. Tsaknakis, G. Vaughan, U. Wandinger, X. Wang, M. Wiegner, M. Zavrtanik, and C. Zerefos, “EARLINET: A European aerosol research lidar network to establish an aerosol climatology,” (2003).

Matthias, V.

U. Wandinger, D. Müller, C. Böckmann, D. Althausen, V. Matthias, J. Bösenberg, V. Weiss, M. Fiebig, M. Wendisch, A. Stohl, and A. Ansmann, “Optical and microphysical characterization of biomass-burning and industrial-pollution aerosols from multiwavelength lidar and aircraft measurements,” J. Geophys. Res. 107, D21 (2002).
[Crossref]

J. Bösenberg, V. Matthias, A. Amodeo, V. Amoiridi, A. Ansmann, J. M. Baldasano, I. Balin, D. Balis, C. Böckmann, A. Boselli, G. Carlson, A. Chaikovsky, G. Chourdakis, A. Comerón, F. D. Tomasi, R. Eixmann, V. Freudenthaler, H. Giehl, I. Grigorov, A. Hågård, M. Iarlori, A. Kirsche, G. Kolarov, L. Komguem, S. Kreipl, W. Kumpf, G. Larchevêque, H. Linné, R. Matthey, I. Mattis, L. Mona, D. Müller, S. Music, S. Nickovic, M. Pandolfi, A. Papayannis, G. Pappalardo, J. Pelon, C. Pérez, R. M. Perrone, R. Persson, D. P. Resendes, V. Rizi, R. Rocadenbosch, J. A. Rodriguez, L. Sauvage, L. Schneidenbach, R. Schumacher, V. Shcherbakov, V. Simeonov, P. Sobolewsky, N. Spinelli, I. Stachlewska, D. Stoyanov, T. Trickl, G. Tsaknakis, G. Vaughan, U. Wandinger, X. Wang, M. Wiegner, M. Zavrtanik, and C. Zerefos, “EARLINET: A European aerosol research lidar network to establish an aerosol climatology,” (2003).

Mattis, I.

Y. M. Noh, D. Müller, I. Mattis, H. Lee, and Y. J. Kim, “Vertically resolved light-absorption characteristics and the influence of relative humidity on particle properties: multiwavelength Raman lidar observations of East Asian aerosol types over Korea,” J. Geophys. Res. 116, D06206 (2011).
[Crossref]

D. Müller, U. Wandinger, D. Althausen, I. Mattis, and A. Ansmann, “Retrieval of physical particle properties from lidar observations of extinction and backscatter at multiple wavelengths,” Appl. Opt. 37, 2260–2263 (1998).
[Crossref]

J. Bösenberg, V. Matthias, A. Amodeo, V. Amoiridi, A. Ansmann, J. M. Baldasano, I. Balin, D. Balis, C. Böckmann, A. Boselli, G. Carlson, A. Chaikovsky, G. Chourdakis, A. Comerón, F. D. Tomasi, R. Eixmann, V. Freudenthaler, H. Giehl, I. Grigorov, A. Hågård, M. Iarlori, A. Kirsche, G. Kolarov, L. Komguem, S. Kreipl, W. Kumpf, G. Larchevêque, H. Linné, R. Matthey, I. Mattis, L. Mona, D. Müller, S. Music, S. Nickovic, M. Pandolfi, A. Papayannis, G. Pappalardo, J. Pelon, C. Pérez, R. M. Perrone, R. Persson, D. P. Resendes, V. Rizi, R. Rocadenbosch, J. A. Rodriguez, L. Sauvage, L. Schneidenbach, R. Schumacher, V. Shcherbakov, V. Simeonov, P. Sobolewsky, N. Spinelli, I. Stachlewska, D. Stoyanov, T. Trickl, G. Tsaknakis, G. Vaughan, U. Wandinger, X. Wang, M. Wiegner, M. Zavrtanik, and C. Zerefos, “EARLINET: A European aerosol research lidar network to establish an aerosol climatology,” (2003).

Miranova, I.

Mishchenko, M.

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Muñoz, B. Veihelmann, W. J. van der Zande, J.-F. Leon, M. Sorokin, and I. Slutsker, “The application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111, D11208 (2006).
[Crossref]

Mona, L.

J. Bösenberg, V. Matthias, A. Amodeo, V. Amoiridi, A. Ansmann, J. M. Baldasano, I. Balin, D. Balis, C. Böckmann, A. Boselli, G. Carlson, A. Chaikovsky, G. Chourdakis, A. Comerón, F. D. Tomasi, R. Eixmann, V. Freudenthaler, H. Giehl, I. Grigorov, A. Hågård, M. Iarlori, A. Kirsche, G. Kolarov, L. Komguem, S. Kreipl, W. Kumpf, G. Larchevêque, H. Linné, R. Matthey, I. Mattis, L. Mona, D. Müller, S. Music, S. Nickovic, M. Pandolfi, A. Papayannis, G. Pappalardo, J. Pelon, C. Pérez, R. M. Perrone, R. Persson, D. P. Resendes, V. Rizi, R. Rocadenbosch, J. A. Rodriguez, L. Sauvage, L. Schneidenbach, R. Schumacher, V. Shcherbakov, V. Simeonov, P. Sobolewsky, N. Spinelli, I. Stachlewska, D. Stoyanov, T. Trickl, G. Tsaknakis, G. Vaughan, U. Wandinger, X. Wang, M. Wiegner, M. Zavrtanik, and C. Zerefos, “EARLINET: A European aerosol research lidar network to establish an aerosol climatology,” (2003).

Moore, R. H.

P. Sawamura, R. H. Moore, S. P. Burton, E. Chemyakin, D. Müller, A. Kolgotin, R. A. Ferrare, C. A. Hostetler, L. D. Ziemba, A. J. Beyersdorf, and B. E. Anderson, “HSRL-2 aerosol optical measurements and microphysical retrievals vs. airborne in situ measurements during DISCOVER-AQ 2013: an intercomparison study,” Atmos. Chem. Phys. 17, 7229–7243 (2017).
[Crossref]

S. P. Burton, E. Chemyakin, X. Liu, K. Knobelspiesse, S. Stamnes, P. Sawamura, R. H. Moore, C. A. Hostetler, and R. A. Ferrare, “Information content and sensitivity of the 3β + 2α lidar measurement system for aerosol microphysical retrievals,” Atmos. Meas. Tech. 9, 5555–5574 (2016).
[Crossref]

Mortier, A.

V. Bovchaliuk, P. Goloub, T. Podvin, I. Veselovskii, D. Tanré, A. Chaikovsky, O. Dubovik, A. Mortier, A. Lopatin, M. Korenskiy, and S. Victori, “Comparison of aerosol properties retrieved using GARRLiC, LIRIC, and Raman algorithms applied to multi-wavelength lidar and sun/sky-photometer data,” Atmos. Meas. Tech. 9, 3391–3405 (2016).
[Crossref]

Müller, D.

A. Kolgotin, D. Müller, E. Chemyakin, A. Romanov, and V. Alehnovich, “Improved identification of the solution space of aerosol microphysical properties derived from the inversion of profiles of lidar optical data, part 3: case studies,” Appl. Opt. 57, 2499–2513 (2018).
[Crossref]

P. Sawamura, R. H. Moore, S. P. Burton, E. Chemyakin, D. Müller, A. Kolgotin, R. A. Ferrare, C. A. Hostetler, L. D. Ziemba, A. J. Beyersdorf, and B. E. Anderson, “HSRL-2 aerosol optical measurements and microphysical retrievals vs. airborne in situ measurements during DISCOVER-AQ 2013: an intercomparison study,” Atmos. Chem. Phys. 17, 7229–7243 (2017).
[Crossref]

A. Kolgotin, D. Müller, E. Chemyakin, and A. Romanov, “Improved identification of the solution space of aerosol microphysical properties derived from the inversion of profiles of lidar optical data, part 2: simulations with synthetic data,” Appl. Opt. 55, 9850–9865 (2016).
[Crossref]

A. Kolgotin, D. Müller, E. Chemyakin, and A. Romanov, “Improved identification of the solution space of aerosol microphysical properties derived from the inversion of profiles of lidar optical data, part 1: theory,” Appl. Opt. 55, 9839–9849 (2016).
[Crossref]

D. Müller, C. Böckmann, A. Kolgotin, L. Schneidenbach, E. Chemyakin, J. J. Rosemann, P. Znak, and A. Romanov, “Microphysical particle properties derived from inversion algorithms developed in the framework of EARLINET,” Atmos. Meas. Tech. 9, 5007–5035 (2016).
[Crossref]

P. Sawamura, D. Müller, R. M. Hoff, C. A. Hostetler, R. A. Ferrare, J. W. Hair, R. R. Rogers, B. E. Anderson, L. D. Ziemba, A. J. Beyersdorf, K. L. Thornhill, E. L. Winstead, and B. N. Holben, “Aerosol optical and microphysical retrievals from a hybrid multiwavelength lidar dataset – DISCOVER-AQ 2011,” Atmos. Meas. Tech. 7, 3095–3112 (2014).
[Crossref]

E. Chemyakin, D. Müller, S. Burton, A. Kolgotin, C. Hostetler, and R. Ferrare, “Arrange and average algorithm for the retrieval of aerosol parameters from multiwavelength high-spectral-resolution lidar/Raman lidar data,” Appl. Opt. 53, 7252–7266 (2014).
[Crossref]

D. Müller, C. A. Hostetler, R. A. Ferrare, S. P. Burton, E. Chemyakin, A. Kolgotin, J. W. Hair, A. L. Cook, D. B. Harper, R. R. Rogers, R. W. Hare, C. S. Cleckner, M. D. Obland, J. Tomlinson, L. K. Berg, and B. Schmid, “Airborne multiwavelength high spectral resolution lidar (HSRL-2) observations during TCAP 2012: vertical profiles of optical and microphysical properties of a smoke/urban haze plume over the northeastern coast of the US,” Atmos. Meas. Tech. 7, 3487–3496 (2014).
[Crossref]

D. Müller, I. Veselovskii, A. Kolgotin, M. Tesche, A. Ansmann, and O. Dubovik, “Vertical profiles of pure dust and mixed smoke-dust plumes inferred from inversion of multiwavelength Raman/polarization lidar data and comparison to AERONET retrievals and in situ observations,” Appl. Opt. 52, 3178–3202 (2013).
[Crossref]

Y. M. Noh, D. Müller, I. Mattis, H. Lee, and Y. J. Kim, “Vertically resolved light-absorption characteristics and the influence of relative humidity on particle properties: multiwavelength Raman lidar observations of East Asian aerosol types over Korea,” J. Geophys. Res. 116, D06206 (2011).
[Crossref]

M. Tesche, A. Ansmann, D. Müller, D. Althausen, R. Engelmann, V. Freudenthaler, and S. Groß, “Vertically resolved separation of dust and smoke over Cape Verde by using multiwavelength Raman and polarization lidar during SAMUM 2008,” J. Geophys. Res. 114, D13202 (2009).
[Crossref]

C. Böckmann, I. Miranova, D. Müller, L. Scheidenbach, and R. Nessler, “Microphysical aerosol parameters from multiwavelength lidar,” J. Opt. Soc. Am. A 22, 518–528 (2005).
[Crossref]

I. Veselovskii, A. Kolgotin, V. Griaznov, D. Müller, and D. N. Whiteman, “Information content of multiwavelength lidar data with respect to microphysical particle properties derived from eigenvalue analysis,” Appl. Opt. 44, 5292–5303 (2005).
[Crossref]

H. Baars, A. Ansmann, D. Althausen, R. Engelmann, B. Heese, D. Müller, P. Artaxo, M. Paixao, T. Pauliquevis, and R. Souza, “Aerosol profiling with lidar in the Amazon Basin during the wet and dry season,” J. Geophys. Res. 117, D21201 (2005).
[Crossref]

T. Murayama, D. Müller, K. Wada, A. Shimizu, M. Sekigushi, and T. Tsukamato, “Characterization of Asian dust and Siberian smoke with multi-wavelength Raman lidar over Tokyo, Japan in spring 2003,” Geophys. Res. Lett. 31, L23103 (2004).
[Crossref]

I. Veselovskii, A. Kolgotin, V. Griaznov, D. Müller, K. Franke, and D. N. Whiteman, “Inversion of multiwavelength Raman lidar data for retrieval of bimodal aerosol size distribution,” Appl. Opt. 43, 1180–1195 (2004).
[Crossref]

I. Veselovskii, A. Kolgotin, V. Griaznov, D. Müller, U. Wandinger, and D. N. Whiteman, “Inversion with regularization for the retrieval of tropospheric aerosol parameters from multiwavelength lidar sounding,” Appl. Opt. 41, 3685–3699 (2002).
[Crossref]

U. Wandinger, D. Müller, C. Böckmann, D. Althausen, V. Matthias, J. Bösenberg, V. Weiss, M. Fiebig, M. Wendisch, A. Stohl, and A. Ansmann, “Optical and microphysical characterization of biomass-burning and industrial-pollution aerosols from multiwavelength lidar and aircraft measurements,” J. Geophys. Res. 107, D21 (2002).
[Crossref]

D. Müller, U. Wandinger, D. Althausen, and M. Fiebig, “Comprehensive particle characterization from three-wavelength Raman-lidar observations,” Appl. Opt. 40, 4863–4869 (2001).
[Crossref]

D. Müller, U. Wandinger, and A. Ansmann, “Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: experiment,” Appl. Opt. 39, 1879–1892 (2000).
[Crossref]

D. Müller, U. Wandinger, and A. Ansmann, “Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: simulation,” Appl. Opt. 38, 2358–2368 (1999).
[Crossref]

D. Müller, U. Wandinger, and A. Ansmann, “Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: theory,” Appl. Opt. 38, 2346–2357 (1999).
[Crossref]

D. Müller, U. Wandinger, D. Althausen, I. Mattis, and A. Ansmann, “Retrieval of physical particle properties from lidar observations of extinction and backscatter at multiple wavelengths,” Appl. Opt. 37, 2260–2263 (1998).
[Crossref]

D. Müller, “Inversionsalgorithmus zur Bestimmung Physikalischer Partikeleigenschaften aus Mehrwellenlängen-Lidarmessungen (inversion algorithm for the determination of particle properties from multiwavelength lidar measurements),” Ph.D. thesis (Universität1997).

A. Ansmann and D. Müller, “Lidar and atmospheric aerosol particles,” in Lidar Range-Resolved Optical Remote Sensing of the Atmosphere, C. Weitkamp, ed. (Springer, 2005), pp. 105–141.

J. Bösenberg, V. Matthias, A. Amodeo, V. Amoiridi, A. Ansmann, J. M. Baldasano, I. Balin, D. Balis, C. Böckmann, A. Boselli, G. Carlson, A. Chaikovsky, G. Chourdakis, A. Comerón, F. D. Tomasi, R. Eixmann, V. Freudenthaler, H. Giehl, I. Grigorov, A. Hågård, M. Iarlori, A. Kirsche, G. Kolarov, L. Komguem, S. Kreipl, W. Kumpf, G. Larchevêque, H. Linné, R. Matthey, I. Mattis, L. Mona, D. Müller, S. Music, S. Nickovic, M. Pandolfi, A. Papayannis, G. Pappalardo, J. Pelon, C. Pérez, R. M. Perrone, R. Persson, D. P. Resendes, V. Rizi, R. Rocadenbosch, J. A. Rodriguez, L. Sauvage, L. Schneidenbach, R. Schumacher, V. Shcherbakov, V. Simeonov, P. Sobolewsky, N. Spinelli, I. Stachlewska, D. Stoyanov, T. Trickl, G. Tsaknakis, G. Vaughan, U. Wandinger, X. Wang, M. Wiegner, M. Zavrtanik, and C. Zerefos, “EARLINET: A European aerosol research lidar network to establish an aerosol climatology,” (2003).

Muñoz, O.

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Muñoz, B. Veihelmann, W. J. van der Zande, J.-F. Leon, M. Sorokin, and I. Slutsker, “The application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111, D11208 (2006).
[Crossref]

Murayama, T.

T. Murayama, D. Müller, K. Wada, A. Shimizu, M. Sekigushi, and T. Tsukamato, “Characterization of Asian dust and Siberian smoke with multi-wavelength Raman lidar over Tokyo, Japan in spring 2003,” Geophys. Res. Lett. 31, L23103 (2004).
[Crossref]

Music, S.

J. Bösenberg, V. Matthias, A. Amodeo, V. Amoiridi, A. Ansmann, J. M. Baldasano, I. Balin, D. Balis, C. Böckmann, A. Boselli, G. Carlson, A. Chaikovsky, G. Chourdakis, A. Comerón, F. D. Tomasi, R. Eixmann, V. Freudenthaler, H. Giehl, I. Grigorov, A. Hågård, M. Iarlori, A. Kirsche, G. Kolarov, L. Komguem, S. Kreipl, W. Kumpf, G. Larchevêque, H. Linné, R. Matthey, I. Mattis, L. Mona, D. Müller, S. Music, S. Nickovic, M. Pandolfi, A. Papayannis, G. Pappalardo, J. Pelon, C. Pérez, R. M. Perrone, R. Persson, D. P. Resendes, V. Rizi, R. Rocadenbosch, J. A. Rodriguez, L. Sauvage, L. Schneidenbach, R. Schumacher, V. Shcherbakov, V. Simeonov, P. Sobolewsky, N. Spinelli, I. Stachlewska, D. Stoyanov, T. Trickl, G. Tsaknakis, G. Vaughan, U. Wandinger, X. Wang, M. Wiegner, M. Zavrtanik, and C. Zerefos, “EARLINET: A European aerosol research lidar network to establish an aerosol climatology,” (2003).

Nessler, R.

Nickovic, S.

J. Bösenberg, V. Matthias, A. Amodeo, V. Amoiridi, A. Ansmann, J. M. Baldasano, I. Balin, D. Balis, C. Böckmann, A. Boselli, G. Carlson, A. Chaikovsky, G. Chourdakis, A. Comerón, F. D. Tomasi, R. Eixmann, V. Freudenthaler, H. Giehl, I. Grigorov, A. Hågård, M. Iarlori, A. Kirsche, G. Kolarov, L. Komguem, S. Kreipl, W. Kumpf, G. Larchevêque, H. Linné, R. Matthey, I. Mattis, L. Mona, D. Müller, S. Music, S. Nickovic, M. Pandolfi, A. Papayannis, G. Pappalardo, J. Pelon, C. Pérez, R. M. Perrone, R. Persson, D. P. Resendes, V. Rizi, R. Rocadenbosch, J. A. Rodriguez, L. Sauvage, L. Schneidenbach, R. Schumacher, V. Shcherbakov, V. Simeonov, P. Sobolewsky, N. Spinelli, I. Stachlewska, D. Stoyanov, T. Trickl, G. Tsaknakis, G. Vaughan, U. Wandinger, X. Wang, M. Wiegner, M. Zavrtanik, and C. Zerefos, “EARLINET: A European aerosol research lidar network to establish an aerosol climatology,” (2003).

Noh, Y. M.

Y. M. Noh, D. Müller, I. Mattis, H. Lee, and Y. J. Kim, “Vertically resolved light-absorption characteristics and the influence of relative humidity on particle properties: multiwavelength Raman lidar observations of East Asian aerosol types over Korea,” J. Geophys. Res. 116, D06206 (2011).
[Crossref]

Obland, M. D.

D. Müller, C. A. Hostetler, R. A. Ferrare, S. P. Burton, E. Chemyakin, A. Kolgotin, J. W. Hair, A. L. Cook, D. B. Harper, R. R. Rogers, R. W. Hare, C. S. Cleckner, M. D. Obland, J. Tomlinson, L. K. Berg, and B. Schmid, “Airborne multiwavelength high spectral resolution lidar (HSRL-2) observations during TCAP 2012: vertical profiles of optical and microphysical properties of a smoke/urban haze plume over the northeastern coast of the US,” Atmos. Meas. Tech. 7, 3487–3496 (2014).
[Crossref]

S. P. Burton, R. A. Ferrare, C. A. Hostetler, J. W. Hair, R. R. Rogers, M. D. Obland, C. F. Butler, A. L. Cook, D. B. Harper, and K. D. Froyd, “Aerosol classification using airborne high spectral resolution lidar measurements—methodology and examples,” Atmos. Meas. Tech. 5, 73–98 (2012).
[Crossref]

Paixao, M.

H. Baars, A. Ansmann, D. Althausen, R. Engelmann, B. Heese, D. Müller, P. Artaxo, M. Paixao, T. Pauliquevis, and R. Souza, “Aerosol profiling with lidar in the Amazon Basin during the wet and dry season,” J. Geophys. Res. 117, D21201 (2005).
[Crossref]

Pandolfi, M.

J. Bösenberg, V. Matthias, A. Amodeo, V. Amoiridi, A. Ansmann, J. M. Baldasano, I. Balin, D. Balis, C. Böckmann, A. Boselli, G. Carlson, A. Chaikovsky, G. Chourdakis, A. Comerón, F. D. Tomasi, R. Eixmann, V. Freudenthaler, H. Giehl, I. Grigorov, A. Hågård, M. Iarlori, A. Kirsche, G. Kolarov, L. Komguem, S. Kreipl, W. Kumpf, G. Larchevêque, H. Linné, R. Matthey, I. Mattis, L. Mona, D. Müller, S. Music, S. Nickovic, M. Pandolfi, A. Papayannis, G. Pappalardo, J. Pelon, C. Pérez, R. M. Perrone, R. Persson, D. P. Resendes, V. Rizi, R. Rocadenbosch, J. A. Rodriguez, L. Sauvage, L. Schneidenbach, R. Schumacher, V. Shcherbakov, V. Simeonov, P. Sobolewsky, N. Spinelli, I. Stachlewska, D. Stoyanov, T. Trickl, G. Tsaknakis, G. Vaughan, U. Wandinger, X. Wang, M. Wiegner, M. Zavrtanik, and C. Zerefos, “EARLINET: A European aerosol research lidar network to establish an aerosol climatology,” (2003).

Papayannis, A.

J. Bösenberg, V. Matthias, A. Amodeo, V. Amoiridi, A. Ansmann, J. M. Baldasano, I. Balin, D. Balis, C. Böckmann, A. Boselli, G. Carlson, A. Chaikovsky, G. Chourdakis, A. Comerón, F. D. Tomasi, R. Eixmann, V. Freudenthaler, H. Giehl, I. Grigorov, A. Hågård, M. Iarlori, A. Kirsche, G. Kolarov, L. Komguem, S. Kreipl, W. Kumpf, G. Larchevêque, H. Linné, R. Matthey, I. Mattis, L. Mona, D. Müller, S. Music, S. Nickovic, M. Pandolfi, A. Papayannis, G. Pappalardo, J. Pelon, C. Pérez, R. M. Perrone, R. Persson, D. P. Resendes, V. Rizi, R. Rocadenbosch, J. A. Rodriguez, L. Sauvage, L. Schneidenbach, R. Schumacher, V. Shcherbakov, V. Simeonov, P. Sobolewsky, N. Spinelli, I. Stachlewska, D. Stoyanov, T. Trickl, G. Tsaknakis, G. Vaughan, U. Wandinger, X. Wang, M. Wiegner, M. Zavrtanik, and C. Zerefos, “EARLINET: A European aerosol research lidar network to establish an aerosol climatology,” (2003).

Pappalardo, G.

J. Bösenberg, V. Matthias, A. Amodeo, V. Amoiridi, A. Ansmann, J. M. Baldasano, I. Balin, D. Balis, C. Böckmann, A. Boselli, G. Carlson, A. Chaikovsky, G. Chourdakis, A. Comerón, F. D. Tomasi, R. Eixmann, V. Freudenthaler, H. Giehl, I. Grigorov, A. Hågård, M. Iarlori, A. Kirsche, G. Kolarov, L. Komguem, S. Kreipl, W. Kumpf, G. Larchevêque, H. Linné, R. Matthey, I. Mattis, L. Mona, D. Müller, S. Music, S. Nickovic, M. Pandolfi, A. Papayannis, G. Pappalardo, J. Pelon, C. Pérez, R. M. Perrone, R. Persson, D. P. Resendes, V. Rizi, R. Rocadenbosch, J. A. Rodriguez, L. Sauvage, L. Schneidenbach, R. Schumacher, V. Shcherbakov, V. Simeonov, P. Sobolewsky, N. Spinelli, I. Stachlewska, D. Stoyanov, T. Trickl, G. Tsaknakis, G. Vaughan, U. Wandinger, X. Wang, M. Wiegner, M. Zavrtanik, and C. Zerefos, “EARLINET: A European aerosol research lidar network to establish an aerosol climatology,” (2003).

Pauliquevis, T.

H. Baars, A. Ansmann, D. Althausen, R. Engelmann, B. Heese, D. Müller, P. Artaxo, M. Paixao, T. Pauliquevis, and R. Souza, “Aerosol profiling with lidar in the Amazon Basin during the wet and dry season,” J. Geophys. Res. 117, D21201 (2005).
[Crossref]

Pelon, J.

J. Bösenberg, V. Matthias, A. Amodeo, V. Amoiridi, A. Ansmann, J. M. Baldasano, I. Balin, D. Balis, C. Böckmann, A. Boselli, G. Carlson, A. Chaikovsky, G. Chourdakis, A. Comerón, F. D. Tomasi, R. Eixmann, V. Freudenthaler, H. Giehl, I. Grigorov, A. Hågård, M. Iarlori, A. Kirsche, G. Kolarov, L. Komguem, S. Kreipl, W. Kumpf, G. Larchevêque, H. Linné, R. Matthey, I. Mattis, L. Mona, D. Müller, S. Music, S. Nickovic, M. Pandolfi, A. Papayannis, G. Pappalardo, J. Pelon, C. Pérez, R. M. Perrone, R. Persson, D. P. Resendes, V. Rizi, R. Rocadenbosch, J. A. Rodriguez, L. Sauvage, L. Schneidenbach, R. Schumacher, V. Shcherbakov, V. Simeonov, P. Sobolewsky, N. Spinelli, I. Stachlewska, D. Stoyanov, T. Trickl, G. Tsaknakis, G. Vaughan, U. Wandinger, X. Wang, M. Wiegner, M. Zavrtanik, and C. Zerefos, “EARLINET: A European aerosol research lidar network to establish an aerosol climatology,” (2003).

Pérez, C.

J. Bösenberg, V. Matthias, A. Amodeo, V. Amoiridi, A. Ansmann, J. M. Baldasano, I. Balin, D. Balis, C. Böckmann, A. Boselli, G. Carlson, A. Chaikovsky, G. Chourdakis, A. Comerón, F. D. Tomasi, R. Eixmann, V. Freudenthaler, H. Giehl, I. Grigorov, A. Hågård, M. Iarlori, A. Kirsche, G. Kolarov, L. Komguem, S. Kreipl, W. Kumpf, G. Larchevêque, H. Linné, R. Matthey, I. Mattis, L. Mona, D. Müller, S. Music, S. Nickovic, M. Pandolfi, A. Papayannis, G. Pappalardo, J. Pelon, C. Pérez, R. M. Perrone, R. Persson, D. P. Resendes, V. Rizi, R. Rocadenbosch, J. A. Rodriguez, L. Sauvage, L. Schneidenbach, R. Schumacher, V. Shcherbakov, V. Simeonov, P. Sobolewsky, N. Spinelli, I. Stachlewska, D. Stoyanov, T. Trickl, G. Tsaknakis, G. Vaughan, U. Wandinger, X. Wang, M. Wiegner, M. Zavrtanik, and C. Zerefos, “EARLINET: A European aerosol research lidar network to establish an aerosol climatology,” (2003).

Pérez-Ramírez, D.

D. Pérez-Ramírez, D. N. Whiteman, I. Veselovskii, A. Kolgotin, M. Korenskiy, and L. Alados-Arboledas, “Effects of systematic and random errors on the retrieval of particle microphysical properties from multiwavelength lidar measurements using inversion with regularization,” Atmos. Meas. Tech. 6, 3039–3054 (2013).
[Crossref]

Perrone, R. M.

J. Bösenberg, V. Matthias, A. Amodeo, V. Amoiridi, A. Ansmann, J. M. Baldasano, I. Balin, D. Balis, C. Böckmann, A. Boselli, G. Carlson, A. Chaikovsky, G. Chourdakis, A. Comerón, F. D. Tomasi, R. Eixmann, V. Freudenthaler, H. Giehl, I. Grigorov, A. Hågård, M. Iarlori, A. Kirsche, G. Kolarov, L. Komguem, S. Kreipl, W. Kumpf, G. Larchevêque, H. Linné, R. Matthey, I. Mattis, L. Mona, D. Müller, S. Music, S. Nickovic, M. Pandolfi, A. Papayannis, G. Pappalardo, J. Pelon, C. Pérez, R. M. Perrone, R. Persson, D. P. Resendes, V. Rizi, R. Rocadenbosch, J. A. Rodriguez, L. Sauvage, L. Schneidenbach, R. Schumacher, V. Shcherbakov, V. Simeonov, P. Sobolewsky, N. Spinelli, I. Stachlewska, D. Stoyanov, T. Trickl, G. Tsaknakis, G. Vaughan, U. Wandinger, X. Wang, M. Wiegner, M. Zavrtanik, and C. Zerefos, “EARLINET: A European aerosol research lidar network to establish an aerosol climatology,” (2003).

Persson, R.

J. Bösenberg, V. Matthias, A. Amodeo, V. Amoiridi, A. Ansmann, J. M. Baldasano, I. Balin, D. Balis, C. Böckmann, A. Boselli, G. Carlson, A. Chaikovsky, G. Chourdakis, A. Comerón, F. D. Tomasi, R. Eixmann, V. Freudenthaler, H. Giehl, I. Grigorov, A. Hågård, M. Iarlori, A. Kirsche, G. Kolarov, L. Komguem, S. Kreipl, W. Kumpf, G. Larchevêque, H. Linné, R. Matthey, I. Mattis, L. Mona, D. Müller, S. Music, S. Nickovic, M. Pandolfi, A. Papayannis, G. Pappalardo, J. Pelon, C. Pérez, R. M. Perrone, R. Persson, D. P. Resendes, V. Rizi, R. Rocadenbosch, J. A. Rodriguez, L. Sauvage, L. Schneidenbach, R. Schumacher, V. Shcherbakov, V. Simeonov, P. Sobolewsky, N. Spinelli, I. Stachlewska, D. Stoyanov, T. Trickl, G. Tsaknakis, G. Vaughan, U. Wandinger, X. Wang, M. Wiegner, M. Zavrtanik, and C. Zerefos, “EARLINET: A European aerosol research lidar network to establish an aerosol climatology,” (2003).

Phillips, D. L.

D. L. Phillips, “A technique for the numerical solution of certain integral equations of the first kind,” J. Assoc. Comput. Mach. 9, 84–97 (1962).
[Crossref]

Podvin, T.

V. Bovchaliuk, P. Goloub, T. Podvin, I. Veselovskii, D. Tanré, A. Chaikovsky, O. Dubovik, A. Mortier, A. Lopatin, M. Korenskiy, and S. Victori, “Comparison of aerosol properties retrieved using GARRLiC, LIRIC, and Raman algorithms applied to multi-wavelength lidar and sun/sky-photometer data,” Atmos. Meas. Tech. 9, 3391–3405 (2016).
[Crossref]

Resendes, D. P.

J. Bösenberg, V. Matthias, A. Amodeo, V. Amoiridi, A. Ansmann, J. M. Baldasano, I. Balin, D. Balis, C. Böckmann, A. Boselli, G. Carlson, A. Chaikovsky, G. Chourdakis, A. Comerón, F. D. Tomasi, R. Eixmann, V. Freudenthaler, H. Giehl, I. Grigorov, A. Hågård, M. Iarlori, A. Kirsche, G. Kolarov, L. Komguem, S. Kreipl, W. Kumpf, G. Larchevêque, H. Linné, R. Matthey, I. Mattis, L. Mona, D. Müller, S. Music, S. Nickovic, M. Pandolfi, A. Papayannis, G. Pappalardo, J. Pelon, C. Pérez, R. M. Perrone, R. Persson, D. P. Resendes, V. Rizi, R. Rocadenbosch, J. A. Rodriguez, L. Sauvage, L. Schneidenbach, R. Schumacher, V. Shcherbakov, V. Simeonov, P. Sobolewsky, N. Spinelli, I. Stachlewska, D. Stoyanov, T. Trickl, G. Tsaknakis, G. Vaughan, U. Wandinger, X. Wang, M. Wiegner, M. Zavrtanik, and C. Zerefos, “EARLINET: A European aerosol research lidar network to establish an aerosol climatology,” (2003).

Rizi, V.

J. Bösenberg, V. Matthias, A. Amodeo, V. Amoiridi, A. Ansmann, J. M. Baldasano, I. Balin, D. Balis, C. Böckmann, A. Boselli, G. Carlson, A. Chaikovsky, G. Chourdakis, A. Comerón, F. D. Tomasi, R. Eixmann, V. Freudenthaler, H. Giehl, I. Grigorov, A. Hågård, M. Iarlori, A. Kirsche, G. Kolarov, L. Komguem, S. Kreipl, W. Kumpf, G. Larchevêque, H. Linné, R. Matthey, I. Mattis, L. Mona, D. Müller, S. Music, S. Nickovic, M. Pandolfi, A. Papayannis, G. Pappalardo, J. Pelon, C. Pérez, R. M. Perrone, R. Persson, D. P. Resendes, V. Rizi, R. Rocadenbosch, J. A. Rodriguez, L. Sauvage, L. Schneidenbach, R. Schumacher, V. Shcherbakov, V. Simeonov, P. Sobolewsky, N. Spinelli, I. Stachlewska, D. Stoyanov, T. Trickl, G. Tsaknakis, G. Vaughan, U. Wandinger, X. Wang, M. Wiegner, M. Zavrtanik, and C. Zerefos, “EARLINET: A European aerosol research lidar network to establish an aerosol climatology,” (2003).

Rocadenbosch, R.

J. Bösenberg, V. Matthias, A. Amodeo, V. Amoiridi, A. Ansmann, J. M. Baldasano, I. Balin, D. Balis, C. Böckmann, A. Boselli, G. Carlson, A. Chaikovsky, G. Chourdakis, A. Comerón, F. D. Tomasi, R. Eixmann, V. Freudenthaler, H. Giehl, I. Grigorov, A. Hågård, M. Iarlori, A. Kirsche, G. Kolarov, L. Komguem, S. Kreipl, W. Kumpf, G. Larchevêque, H. Linné, R. Matthey, I. Mattis, L. Mona, D. Müller, S. Music, S. Nickovic, M. Pandolfi, A. Papayannis, G. Pappalardo, J. Pelon, C. Pérez, R. M. Perrone, R. Persson, D. P. Resendes, V. Rizi, R. Rocadenbosch, J. A. Rodriguez, L. Sauvage, L. Schneidenbach, R. Schumacher, V. Shcherbakov, V. Simeonov, P. Sobolewsky, N. Spinelli, I. Stachlewska, D. Stoyanov, T. Trickl, G. Tsaknakis, G. Vaughan, U. Wandinger, X. Wang, M. Wiegner, M. Zavrtanik, and C. Zerefos, “EARLINET: A European aerosol research lidar network to establish an aerosol climatology,” (2003).

Rodriguez, J. A.

J. Bösenberg, V. Matthias, A. Amodeo, V. Amoiridi, A. Ansmann, J. M. Baldasano, I. Balin, D. Balis, C. Böckmann, A. Boselli, G. Carlson, A. Chaikovsky, G. Chourdakis, A. Comerón, F. D. Tomasi, R. Eixmann, V. Freudenthaler, H. Giehl, I. Grigorov, A. Hågård, M. Iarlori, A. Kirsche, G. Kolarov, L. Komguem, S. Kreipl, W. Kumpf, G. Larchevêque, H. Linné, R. Matthey, I. Mattis, L. Mona, D. Müller, S. Music, S. Nickovic, M. Pandolfi, A. Papayannis, G. Pappalardo, J. Pelon, C. Pérez, R. M. Perrone, R. Persson, D. P. Resendes, V. Rizi, R. Rocadenbosch, J. A. Rodriguez, L. Sauvage, L. Schneidenbach, R. Schumacher, V. Shcherbakov, V. Simeonov, P. Sobolewsky, N. Spinelli, I. Stachlewska, D. Stoyanov, T. Trickl, G. Tsaknakis, G. Vaughan, U. Wandinger, X. Wang, M. Wiegner, M. Zavrtanik, and C. Zerefos, “EARLINET: A European aerosol research lidar network to establish an aerosol climatology,” (2003).

Rogers, R. R.

D. Müller, C. A. Hostetler, R. A. Ferrare, S. P. Burton, E. Chemyakin, A. Kolgotin, J. W. Hair, A. L. Cook, D. B. Harper, R. R. Rogers, R. W. Hare, C. S. Cleckner, M. D. Obland, J. Tomlinson, L. K. Berg, and B. Schmid, “Airborne multiwavelength high spectral resolution lidar (HSRL-2) observations during TCAP 2012: vertical profiles of optical and microphysical properties of a smoke/urban haze plume over the northeastern coast of the US,” Atmos. Meas. Tech. 7, 3487–3496 (2014).
[Crossref]

P. Sawamura, D. Müller, R. M. Hoff, C. A. Hostetler, R. A. Ferrare, J. W. Hair, R. R. Rogers, B. E. Anderson, L. D. Ziemba, A. J. Beyersdorf, K. L. Thornhill, E. L. Winstead, and B. N. Holben, “Aerosol optical and microphysical retrievals from a hybrid multiwavelength lidar dataset – DISCOVER-AQ 2011,” Atmos. Meas. Tech. 7, 3095–3112 (2014).
[Crossref]

S. P. Burton, R. A. Ferrare, C. A. Hostetler, J. W. Hair, R. R. Rogers, M. D. Obland, C. F. Butler, A. L. Cook, D. B. Harper, and K. D. Froyd, “Aerosol classification using airborne high spectral resolution lidar measurements—methodology and examples,” Atmos. Meas. Tech. 5, 73–98 (2012).
[Crossref]

Romanov, A.

Rosemann, J. J.

D. Müller, C. Böckmann, A. Kolgotin, L. Schneidenbach, E. Chemyakin, J. J. Rosemann, P. Znak, and A. Romanov, “Microphysical particle properties derived from inversion algorithms developed in the framework of EARLINET,” Atmos. Meas. Tech. 9, 5007–5035 (2016).
[Crossref]

Sauvage, L.

J. Bösenberg, V. Matthias, A. Amodeo, V. Amoiridi, A. Ansmann, J. M. Baldasano, I. Balin, D. Balis, C. Böckmann, A. Boselli, G. Carlson, A. Chaikovsky, G. Chourdakis, A. Comerón, F. D. Tomasi, R. Eixmann, V. Freudenthaler, H. Giehl, I. Grigorov, A. Hågård, M. Iarlori, A. Kirsche, G. Kolarov, L. Komguem, S. Kreipl, W. Kumpf, G. Larchevêque, H. Linné, R. Matthey, I. Mattis, L. Mona, D. Müller, S. Music, S. Nickovic, M. Pandolfi, A. Papayannis, G. Pappalardo, J. Pelon, C. Pérez, R. M. Perrone, R. Persson, D. P. Resendes, V. Rizi, R. Rocadenbosch, J. A. Rodriguez, L. Sauvage, L. Schneidenbach, R. Schumacher, V. Shcherbakov, V. Simeonov, P. Sobolewsky, N. Spinelli, I. Stachlewska, D. Stoyanov, T. Trickl, G. Tsaknakis, G. Vaughan, U. Wandinger, X. Wang, M. Wiegner, M. Zavrtanik, and C. Zerefos, “EARLINET: A European aerosol research lidar network to establish an aerosol climatology,” (2003).

Sawamura, P.

P. Sawamura, R. H. Moore, S. P. Burton, E. Chemyakin, D. Müller, A. Kolgotin, R. A. Ferrare, C. A. Hostetler, L. D. Ziemba, A. J. Beyersdorf, and B. E. Anderson, “HSRL-2 aerosol optical measurements and microphysical retrievals vs. airborne in situ measurements during DISCOVER-AQ 2013: an intercomparison study,” Atmos. Chem. Phys. 17, 7229–7243 (2017).
[Crossref]

S. P. Burton, E. Chemyakin, X. Liu, K. Knobelspiesse, S. Stamnes, P. Sawamura, R. H. Moore, C. A. Hostetler, and R. A. Ferrare, “Information content and sensitivity of the 3β + 2α lidar measurement system for aerosol microphysical retrievals,” Atmos. Meas. Tech. 9, 5555–5574 (2016).
[Crossref]

P. Sawamura, D. Müller, R. M. Hoff, C. A. Hostetler, R. A. Ferrare, J. W. Hair, R. R. Rogers, B. E. Anderson, L. D. Ziemba, A. J. Beyersdorf, K. L. Thornhill, E. L. Winstead, and B. N. Holben, “Aerosol optical and microphysical retrievals from a hybrid multiwavelength lidar dataset – DISCOVER-AQ 2011,” Atmos. Meas. Tech. 7, 3095–3112 (2014).
[Crossref]

Scheidenbach, L.

Schmid, B.

D. Müller, C. A. Hostetler, R. A. Ferrare, S. P. Burton, E. Chemyakin, A. Kolgotin, J. W. Hair, A. L. Cook, D. B. Harper, R. R. Rogers, R. W. Hare, C. S. Cleckner, M. D. Obland, J. Tomlinson, L. K. Berg, and B. Schmid, “Airborne multiwavelength high spectral resolution lidar (HSRL-2) observations during TCAP 2012: vertical profiles of optical and microphysical properties of a smoke/urban haze plume over the northeastern coast of the US,” Atmos. Meas. Tech. 7, 3487–3496 (2014).
[Crossref]

Schneidenbach, L.

D. Müller, C. Böckmann, A. Kolgotin, L. Schneidenbach, E. Chemyakin, J. J. Rosemann, P. Znak, and A. Romanov, “Microphysical particle properties derived from inversion algorithms developed in the framework of EARLINET,” Atmos. Meas. Tech. 9, 5007–5035 (2016).
[Crossref]

J. Bösenberg, V. Matthias, A. Amodeo, V. Amoiridi, A. Ansmann, J. M. Baldasano, I. Balin, D. Balis, C. Böckmann, A. Boselli, G. Carlson, A. Chaikovsky, G. Chourdakis, A. Comerón, F. D. Tomasi, R. Eixmann, V. Freudenthaler, H. Giehl, I. Grigorov, A. Hågård, M. Iarlori, A. Kirsche, G. Kolarov, L. Komguem, S. Kreipl, W. Kumpf, G. Larchevêque, H. Linné, R. Matthey, I. Mattis, L. Mona, D. Müller, S. Music, S. Nickovic, M. Pandolfi, A. Papayannis, G. Pappalardo, J. Pelon, C. Pérez, R. M. Perrone, R. Persson, D. P. Resendes, V. Rizi, R. Rocadenbosch, J. A. Rodriguez, L. Sauvage, L. Schneidenbach, R. Schumacher, V. Shcherbakov, V. Simeonov, P. Sobolewsky, N. Spinelli, I. Stachlewska, D. Stoyanov, T. Trickl, G. Tsaknakis, G. Vaughan, U. Wandinger, X. Wang, M. Wiegner, M. Zavrtanik, and C. Zerefos, “EARLINET: A European aerosol research lidar network to establish an aerosol climatology,” (2003).

Schumacher, R.

J. Bösenberg, V. Matthias, A. Amodeo, V. Amoiridi, A. Ansmann, J. M. Baldasano, I. Balin, D. Balis, C. Böckmann, A. Boselli, G. Carlson, A. Chaikovsky, G. Chourdakis, A. Comerón, F. D. Tomasi, R. Eixmann, V. Freudenthaler, H. Giehl, I. Grigorov, A. Hågård, M. Iarlori, A. Kirsche, G. Kolarov, L. Komguem, S. Kreipl, W. Kumpf, G. Larchevêque, H. Linné, R. Matthey, I. Mattis, L. Mona, D. Müller, S. Music, S. Nickovic, M. Pandolfi, A. Papayannis, G. Pappalardo, J. Pelon, C. Pérez, R. M. Perrone, R. Persson, D. P. Resendes, V. Rizi, R. Rocadenbosch, J. A. Rodriguez, L. Sauvage, L. Schneidenbach, R. Schumacher, V. Shcherbakov, V. Simeonov, P. Sobolewsky, N. Spinelli, I. Stachlewska, D. Stoyanov, T. Trickl, G. Tsaknakis, G. Vaughan, U. Wandinger, X. Wang, M. Wiegner, M. Zavrtanik, and C. Zerefos, “EARLINET: A European aerosol research lidar network to establish an aerosol climatology,” (2003).

Sekigushi, M.

T. Murayama, D. Müller, K. Wada, A. Shimizu, M. Sekigushi, and T. Tsukamato, “Characterization of Asian dust and Siberian smoke with multi-wavelength Raman lidar over Tokyo, Japan in spring 2003,” Geophys. Res. Lett. 31, L23103 (2004).
[Crossref]

Shcherbakov, V.

J. Bösenberg, V. Matthias, A. Amodeo, V. Amoiridi, A. Ansmann, J. M. Baldasano, I. Balin, D. Balis, C. Böckmann, A. Boselli, G. Carlson, A. Chaikovsky, G. Chourdakis, A. Comerón, F. D. Tomasi, R. Eixmann, V. Freudenthaler, H. Giehl, I. Grigorov, A. Hågård, M. Iarlori, A. Kirsche, G. Kolarov, L. Komguem, S. Kreipl, W. Kumpf, G. Larchevêque, H. Linné, R. Matthey, I. Mattis, L. Mona, D. Müller, S. Music, S. Nickovic, M. Pandolfi, A. Papayannis, G. Pappalardo, J. Pelon, C. Pérez, R. M. Perrone, R. Persson, D. P. Resendes, V. Rizi, R. Rocadenbosch, J. A. Rodriguez, L. Sauvage, L. Schneidenbach, R. Schumacher, V. Shcherbakov, V. Simeonov, P. Sobolewsky, N. Spinelli, I. Stachlewska, D. Stoyanov, T. Trickl, G. Tsaknakis, G. Vaughan, U. Wandinger, X. Wang, M. Wiegner, M. Zavrtanik, and C. Zerefos, “EARLINET: A European aerosol research lidar network to establish an aerosol climatology,” (2003).

Shimizu, A.

T. Murayama, D. Müller, K. Wada, A. Shimizu, M. Sekigushi, and T. Tsukamato, “Characterization of Asian dust and Siberian smoke with multi-wavelength Raman lidar over Tokyo, Japan in spring 2003,” Geophys. Res. Lett. 31, L23103 (2004).
[Crossref]

Simeonov, V.

J. Bösenberg, V. Matthias, A. Amodeo, V. Amoiridi, A. Ansmann, J. M. Baldasano, I. Balin, D. Balis, C. Böckmann, A. Boselli, G. Carlson, A. Chaikovsky, G. Chourdakis, A. Comerón, F. D. Tomasi, R. Eixmann, V. Freudenthaler, H. Giehl, I. Grigorov, A. Hågård, M. Iarlori, A. Kirsche, G. Kolarov, L. Komguem, S. Kreipl, W. Kumpf, G. Larchevêque, H. Linné, R. Matthey, I. Mattis, L. Mona, D. Müller, S. Music, S. Nickovic, M. Pandolfi, A. Papayannis, G. Pappalardo, J. Pelon, C. Pérez, R. M. Perrone, R. Persson, D. P. Resendes, V. Rizi, R. Rocadenbosch, J. A. Rodriguez, L. Sauvage, L. Schneidenbach, R. Schumacher, V. Shcherbakov, V. Simeonov, P. Sobolewsky, N. Spinelli, I. Stachlewska, D. Stoyanov, T. Trickl, G. Tsaknakis, G. Vaughan, U. Wandinger, X. Wang, M. Wiegner, M. Zavrtanik, and C. Zerefos, “EARLINET: A European aerosol research lidar network to establish an aerosol climatology,” (2003).

Sinyuk, A.

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Muñoz, B. Veihelmann, W. J. van der Zande, J.-F. Leon, M. Sorokin, and I. Slutsker, “The application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111, D11208 (2006).
[Crossref]

Slutsker, I.

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Muñoz, B. Veihelmann, W. J. van der Zande, J.-F. Leon, M. Sorokin, and I. Slutsker, “The application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111, D11208 (2006).
[Crossref]

Sobolewsky, P.

J. Bösenberg, V. Matthias, A. Amodeo, V. Amoiridi, A. Ansmann, J. M. Baldasano, I. Balin, D. Balis, C. Böckmann, A. Boselli, G. Carlson, A. Chaikovsky, G. Chourdakis, A. Comerón, F. D. Tomasi, R. Eixmann, V. Freudenthaler, H. Giehl, I. Grigorov, A. Hågård, M. Iarlori, A. Kirsche, G. Kolarov, L. Komguem, S. Kreipl, W. Kumpf, G. Larchevêque, H. Linné, R. Matthey, I. Mattis, L. Mona, D. Müller, S. Music, S. Nickovic, M. Pandolfi, A. Papayannis, G. Pappalardo, J. Pelon, C. Pérez, R. M. Perrone, R. Persson, D. P. Resendes, V. Rizi, R. Rocadenbosch, J. A. Rodriguez, L. Sauvage, L. Schneidenbach, R. Schumacher, V. Shcherbakov, V. Simeonov, P. Sobolewsky, N. Spinelli, I. Stachlewska, D. Stoyanov, T. Trickl, G. Tsaknakis, G. Vaughan, U. Wandinger, X. Wang, M. Wiegner, M. Zavrtanik, and C. Zerefos, “EARLINET: A European aerosol research lidar network to establish an aerosol climatology,” (2003).

Sorokin, M.

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Muñoz, B. Veihelmann, W. J. van der Zande, J.-F. Leon, M. Sorokin, and I. Slutsker, “The application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111, D11208 (2006).
[Crossref]

Souza, R.

H. Baars, A. Ansmann, D. Althausen, R. Engelmann, B. Heese, D. Müller, P. Artaxo, M. Paixao, T. Pauliquevis, and R. Souza, “Aerosol profiling with lidar in the Amazon Basin during the wet and dry season,” J. Geophys. Res. 117, D21201 (2005).
[Crossref]

Spinelli, N.

J. Bösenberg, V. Matthias, A. Amodeo, V. Amoiridi, A. Ansmann, J. M. Baldasano, I. Balin, D. Balis, C. Böckmann, A. Boselli, G. Carlson, A. Chaikovsky, G. Chourdakis, A. Comerón, F. D. Tomasi, R. Eixmann, V. Freudenthaler, H. Giehl, I. Grigorov, A. Hågård, M. Iarlori, A. Kirsche, G. Kolarov, L. Komguem, S. Kreipl, W. Kumpf, G. Larchevêque, H. Linné, R. Matthey, I. Mattis, L. Mona, D. Müller, S. Music, S. Nickovic, M. Pandolfi, A. Papayannis, G. Pappalardo, J. Pelon, C. Pérez, R. M. Perrone, R. Persson, D. P. Resendes, V. Rizi, R. Rocadenbosch, J. A. Rodriguez, L. Sauvage, L. Schneidenbach, R. Schumacher, V. Shcherbakov, V. Simeonov, P. Sobolewsky, N. Spinelli, I. Stachlewska, D. Stoyanov, T. Trickl, G. Tsaknakis, G. Vaughan, U. Wandinger, X. Wang, M. Wiegner, M. Zavrtanik, and C. Zerefos, “EARLINET: A European aerosol research lidar network to establish an aerosol climatology,” (2003).

Stachlewska, I.

J. Bösenberg, V. Matthias, A. Amodeo, V. Amoiridi, A. Ansmann, J. M. Baldasano, I. Balin, D. Balis, C. Böckmann, A. Boselli, G. Carlson, A. Chaikovsky, G. Chourdakis, A. Comerón, F. D. Tomasi, R. Eixmann, V. Freudenthaler, H. Giehl, I. Grigorov, A. Hågård, M. Iarlori, A. Kirsche, G. Kolarov, L. Komguem, S. Kreipl, W. Kumpf, G. Larchevêque, H. Linné, R. Matthey, I. Mattis, L. Mona, D. Müller, S. Music, S. Nickovic, M. Pandolfi, A. Papayannis, G. Pappalardo, J. Pelon, C. Pérez, R. M. Perrone, R. Persson, D. P. Resendes, V. Rizi, R. Rocadenbosch, J. A. Rodriguez, L. Sauvage, L. Schneidenbach, R. Schumacher, V. Shcherbakov, V. Simeonov, P. Sobolewsky, N. Spinelli, I. Stachlewska, D. Stoyanov, T. Trickl, G. Tsaknakis, G. Vaughan, U. Wandinger, X. Wang, M. Wiegner, M. Zavrtanik, and C. Zerefos, “EARLINET: A European aerosol research lidar network to establish an aerosol climatology,” (2003).

Stamnes, S.

S. P. Burton, E. Chemyakin, X. Liu, K. Knobelspiesse, S. Stamnes, P. Sawamura, R. H. Moore, C. A. Hostetler, and R. A. Ferrare, “Information content and sensitivity of the 3β + 2α lidar measurement system for aerosol microphysical retrievals,” Atmos. Meas. Tech. 9, 5555–5574 (2016).
[Crossref]

Stohl, A.

U. Wandinger, D. Müller, C. Böckmann, D. Althausen, V. Matthias, J. Bösenberg, V. Weiss, M. Fiebig, M. Wendisch, A. Stohl, and A. Ansmann, “Optical and microphysical characterization of biomass-burning and industrial-pollution aerosols from multiwavelength lidar and aircraft measurements,” J. Geophys. Res. 107, D21 (2002).
[Crossref]

Stoyanov, D.

J. Bösenberg, V. Matthias, A. Amodeo, V. Amoiridi, A. Ansmann, J. M. Baldasano, I. Balin, D. Balis, C. Böckmann, A. Boselli, G. Carlson, A. Chaikovsky, G. Chourdakis, A. Comerón, F. D. Tomasi, R. Eixmann, V. Freudenthaler, H. Giehl, I. Grigorov, A. Hågård, M. Iarlori, A. Kirsche, G. Kolarov, L. Komguem, S. Kreipl, W. Kumpf, G. Larchevêque, H. Linné, R. Matthey, I. Mattis, L. Mona, D. Müller, S. Music, S. Nickovic, M. Pandolfi, A. Papayannis, G. Pappalardo, J. Pelon, C. Pérez, R. M. Perrone, R. Persson, D. P. Resendes, V. Rizi, R. Rocadenbosch, J. A. Rodriguez, L. Sauvage, L. Schneidenbach, R. Schumacher, V. Shcherbakov, V. Simeonov, P. Sobolewsky, N. Spinelli, I. Stachlewska, D. Stoyanov, T. Trickl, G. Tsaknakis, G. Vaughan, U. Wandinger, X. Wang, M. Wiegner, M. Zavrtanik, and C. Zerefos, “EARLINET: A European aerosol research lidar network to establish an aerosol climatology,” (2003).

Tanré, D.

V. Bovchaliuk, P. Goloub, T. Podvin, I. Veselovskii, D. Tanré, A. Chaikovsky, O. Dubovik, A. Mortier, A. Lopatin, M. Korenskiy, and S. Victori, “Comparison of aerosol properties retrieved using GARRLiC, LIRIC, and Raman algorithms applied to multi-wavelength lidar and sun/sky-photometer data,” Atmos. Meas. Tech. 9, 3391–3405 (2016).
[Crossref]

Tesche, M.

D. Müller, I. Veselovskii, A. Kolgotin, M. Tesche, A. Ansmann, and O. Dubovik, “Vertical profiles of pure dust and mixed smoke-dust plumes inferred from inversion of multiwavelength Raman/polarization lidar data and comparison to AERONET retrievals and in situ observations,” Appl. Opt. 52, 3178–3202 (2013).
[Crossref]

M. Tesche, A. Ansmann, D. Müller, D. Althausen, R. Engelmann, V. Freudenthaler, and S. Groß, “Vertically resolved separation of dust and smoke over Cape Verde by using multiwavelength Raman and polarization lidar during SAMUM 2008,” J. Geophys. Res. 114, D13202 (2009).
[Crossref]

Thornhill, K. L.

P. Sawamura, D. Müller, R. M. Hoff, C. A. Hostetler, R. A. Ferrare, J. W. Hair, R. R. Rogers, B. E. Anderson, L. D. Ziemba, A. J. Beyersdorf, K. L. Thornhill, E. L. Winstead, and B. N. Holben, “Aerosol optical and microphysical retrievals from a hybrid multiwavelength lidar dataset – DISCOVER-AQ 2011,” Atmos. Meas. Tech. 7, 3095–3112 (2014).
[Crossref]

Tomasi, F. D.

J. Bösenberg, V. Matthias, A. Amodeo, V. Amoiridi, A. Ansmann, J. M. Baldasano, I. Balin, D. Balis, C. Böckmann, A. Boselli, G. Carlson, A. Chaikovsky, G. Chourdakis, A. Comerón, F. D. Tomasi, R. Eixmann, V. Freudenthaler, H. Giehl, I. Grigorov, A. Hågård, M. Iarlori, A. Kirsche, G. Kolarov, L. Komguem, S. Kreipl, W. Kumpf, G. Larchevêque, H. Linné, R. Matthey, I. Mattis, L. Mona, D. Müller, S. Music, S. Nickovic, M. Pandolfi, A. Papayannis, G. Pappalardo, J. Pelon, C. Pérez, R. M. Perrone, R. Persson, D. P. Resendes, V. Rizi, R. Rocadenbosch, J. A. Rodriguez, L. Sauvage, L. Schneidenbach, R. Schumacher, V. Shcherbakov, V. Simeonov, P. Sobolewsky, N. Spinelli, I. Stachlewska, D. Stoyanov, T. Trickl, G. Tsaknakis, G. Vaughan, U. Wandinger, X. Wang, M. Wiegner, M. Zavrtanik, and C. Zerefos, “EARLINET: A European aerosol research lidar network to establish an aerosol climatology,” (2003).

Tomlinson, J.

D. Müller, C. A. Hostetler, R. A. Ferrare, S. P. Burton, E. Chemyakin, A. Kolgotin, J. W. Hair, A. L. Cook, D. B. Harper, R. R. Rogers, R. W. Hare, C. S. Cleckner, M. D. Obland, J. Tomlinson, L. K. Berg, and B. Schmid, “Airborne multiwavelength high spectral resolution lidar (HSRL-2) observations during TCAP 2012: vertical profiles of optical and microphysical properties of a smoke/urban haze plume over the northeastern coast of the US,” Atmos. Meas. Tech. 7, 3487–3496 (2014).
[Crossref]

Trickl, T.

J. Bösenberg, V. Matthias, A. Amodeo, V. Amoiridi, A. Ansmann, J. M. Baldasano, I. Balin, D. Balis, C. Böckmann, A. Boselli, G. Carlson, A. Chaikovsky, G. Chourdakis, A. Comerón, F. D. Tomasi, R. Eixmann, V. Freudenthaler, H. Giehl, I. Grigorov, A. Hågård, M. Iarlori, A. Kirsche, G. Kolarov, L. Komguem, S. Kreipl, W. Kumpf, G. Larchevêque, H. Linné, R. Matthey, I. Mattis, L. Mona, D. Müller, S. Music, S. Nickovic, M. Pandolfi, A. Papayannis, G. Pappalardo, J. Pelon, C. Pérez, R. M. Perrone, R. Persson, D. P. Resendes, V. Rizi, R. Rocadenbosch, J. A. Rodriguez, L. Sauvage, L. Schneidenbach, R. Schumacher, V. Shcherbakov, V. Simeonov, P. Sobolewsky, N. Spinelli, I. Stachlewska, D. Stoyanov, T. Trickl, G. Tsaknakis, G. Vaughan, U. Wandinger, X. Wang, M. Wiegner, M. Zavrtanik, and C. Zerefos, “EARLINET: A European aerosol research lidar network to establish an aerosol climatology,” (2003).

Tsaknakis, G.

J. Bösenberg, V. Matthias, A. Amodeo, V. Amoiridi, A. Ansmann, J. M. Baldasano, I. Balin, D. Balis, C. Böckmann, A. Boselli, G. Carlson, A. Chaikovsky, G. Chourdakis, A. Comerón, F. D. Tomasi, R. Eixmann, V. Freudenthaler, H. Giehl, I. Grigorov, A. Hågård, M. Iarlori, A. Kirsche, G. Kolarov, L. Komguem, S. Kreipl, W. Kumpf, G. Larchevêque, H. Linné, R. Matthey, I. Mattis, L. Mona, D. Müller, S. Music, S. Nickovic, M. Pandolfi, A. Papayannis, G. Pappalardo, J. Pelon, C. Pérez, R. M. Perrone, R. Persson, D. P. Resendes, V. Rizi, R. Rocadenbosch, J. A. Rodriguez, L. Sauvage, L. Schneidenbach, R. Schumacher, V. Shcherbakov, V. Simeonov, P. Sobolewsky, N. Spinelli, I. Stachlewska, D. Stoyanov, T. Trickl, G. Tsaknakis, G. Vaughan, U. Wandinger, X. Wang, M. Wiegner, M. Zavrtanik, and C. Zerefos, “EARLINET: A European aerosol research lidar network to establish an aerosol climatology,” (2003).

Tsukamato, T.

T. Murayama, D. Müller, K. Wada, A. Shimizu, M. Sekigushi, and T. Tsukamato, “Characterization of Asian dust and Siberian smoke with multi-wavelength Raman lidar over Tokyo, Japan in spring 2003,” Geophys. Res. Lett. 31, L23103 (2004).
[Crossref]

Twomey, S.

S. Twomey, “The application of numerical filtering to the solution of integral equations encountered in indirect sensing measurements,” J. Franklin Inst. 279, 95–109 (1965).
[Crossref]

van der Zande, W. J.

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Muñoz, B. Veihelmann, W. J. van der Zande, J.-F. Leon, M. Sorokin, and I. Slutsker, “The application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111, D11208 (2006).
[Crossref]

Vaughan, G.

J. Bösenberg, V. Matthias, A. Amodeo, V. Amoiridi, A. Ansmann, J. M. Baldasano, I. Balin, D. Balis, C. Böckmann, A. Boselli, G. Carlson, A. Chaikovsky, G. Chourdakis, A. Comerón, F. D. Tomasi, R. Eixmann, V. Freudenthaler, H. Giehl, I. Grigorov, A. Hågård, M. Iarlori, A. Kirsche, G. Kolarov, L. Komguem, S. Kreipl, W. Kumpf, G. Larchevêque, H. Linné, R. Matthey, I. Mattis, L. Mona, D. Müller, S. Music, S. Nickovic, M. Pandolfi, A. Papayannis, G. Pappalardo, J. Pelon, C. Pérez, R. M. Perrone, R. Persson, D. P. Resendes, V. Rizi, R. Rocadenbosch, J. A. Rodriguez, L. Sauvage, L. Schneidenbach, R. Schumacher, V. Shcherbakov, V. Simeonov, P. Sobolewsky, N. Spinelli, I. Stachlewska, D. Stoyanov, T. Trickl, G. Tsaknakis, G. Vaughan, U. Wandinger, X. Wang, M. Wiegner, M. Zavrtanik, and C. Zerefos, “EARLINET: A European aerosol research lidar network to establish an aerosol climatology,” (2003).

Veihelmann, B.

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Muñoz, B. Veihelmann, W. J. van der Zande, J.-F. Leon, M. Sorokin, and I. Slutsker, “The application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111, D11208 (2006).
[Crossref]

Veselovskii, I.

V. Bovchaliuk, P. Goloub, T. Podvin, I. Veselovskii, D. Tanré, A. Chaikovsky, O. Dubovik, A. Mortier, A. Lopatin, M. Korenskiy, and S. Victori, “Comparison of aerosol properties retrieved using GARRLiC, LIRIC, and Raman algorithms applied to multi-wavelength lidar and sun/sky-photometer data,” Atmos. Meas. Tech. 9, 3391–3405 (2016).
[Crossref]

D. Pérez-Ramírez, D. N. Whiteman, I. Veselovskii, A. Kolgotin, M. Korenskiy, and L. Alados-Arboledas, “Effects of systematic and random errors on the retrieval of particle microphysical properties from multiwavelength lidar measurements using inversion with regularization,” Atmos. Meas. Tech. 6, 3039–3054 (2013).
[Crossref]

D. Müller, I. Veselovskii, A. Kolgotin, M. Tesche, A. Ansmann, and O. Dubovik, “Vertical profiles of pure dust and mixed smoke-dust plumes inferred from inversion of multiwavelength Raman/polarization lidar data and comparison to AERONET retrievals and in situ observations,” Appl. Opt. 52, 3178–3202 (2013).
[Crossref]

I. Veselovskii, O. Dubovik, A. Kolgotin, M. Korenskiy, D. Whiteman, K. Allakhverdiev, and F. Huseyinoglu, “Linear estimation of particle bulk parameters from multi-wavelength lidar measurements,” Atmos. Meas. Tech. 5, 1135–1145 (2012).
[Crossref]

I. Veselovskii, A. Kolgotin, V. Griaznov, D. Müller, and D. N. Whiteman, “Information content of multiwavelength lidar data with respect to microphysical particle properties derived from eigenvalue analysis,” Appl. Opt. 44, 5292–5303 (2005).
[Crossref]

I. Veselovskii, A. Kolgotin, V. Griaznov, D. Müller, K. Franke, and D. N. Whiteman, “Inversion of multiwavelength Raman lidar data for retrieval of bimodal aerosol size distribution,” Appl. Opt. 43, 1180–1195 (2004).
[Crossref]

I. Veselovskii, A. Kolgotin, V. Griaznov, D. Müller, U. Wandinger, and D. N. Whiteman, “Inversion with regularization for the retrieval of tropospheric aerosol parameters from multiwavelength lidar sounding,” Appl. Opt. 41, 3685–3699 (2002).
[Crossref]

Victori, S.

V. Bovchaliuk, P. Goloub, T. Podvin, I. Veselovskii, D. Tanré, A. Chaikovsky, O. Dubovik, A. Mortier, A. Lopatin, M. Korenskiy, and S. Victori, “Comparison of aerosol properties retrieved using GARRLiC, LIRIC, and Raman algorithms applied to multi-wavelength lidar and sun/sky-photometer data,” Atmos. Meas. Tech. 9, 3391–3405 (2016).
[Crossref]

Volten, H.

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Muñoz, B. Veihelmann, W. J. van der Zande, J.-F. Leon, M. Sorokin, and I. Slutsker, “The application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111, D11208 (2006).
[Crossref]

Wada, K.

T. Murayama, D. Müller, K. Wada, A. Shimizu, M. Sekigushi, and T. Tsukamato, “Characterization of Asian dust and Siberian smoke with multi-wavelength Raman lidar over Tokyo, Japan in spring 2003,” Geophys. Res. Lett. 31, L23103 (2004).
[Crossref]

Wandinger, U.

U. Wandinger, D. Müller, C. Böckmann, D. Althausen, V. Matthias, J. Bösenberg, V. Weiss, M. Fiebig, M. Wendisch, A. Stohl, and A. Ansmann, “Optical and microphysical characterization of biomass-burning and industrial-pollution aerosols from multiwavelength lidar and aircraft measurements,” J. Geophys. Res. 107, D21 (2002).
[Crossref]

I. Veselovskii, A. Kolgotin, V. Griaznov, D. Müller, U. Wandinger, and D. N. Whiteman, “Inversion with regularization for the retrieval of tropospheric aerosol parameters from multiwavelength lidar sounding,” Appl. Opt. 41, 3685–3699 (2002).
[Crossref]

D. Müller, U. Wandinger, D. Althausen, and M. Fiebig, “Comprehensive particle characterization from three-wavelength Raman-lidar observations,” Appl. Opt. 40, 4863–4869 (2001).
[Crossref]

D. Müller, U. Wandinger, and A. Ansmann, “Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: experiment,” Appl. Opt. 39, 1879–1892 (2000).
[Crossref]

D. Müller, U. Wandinger, and A. Ansmann, “Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: simulation,” Appl. Opt. 38, 2358–2368 (1999).
[Crossref]

D. Müller, U. Wandinger, and A. Ansmann, “Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: theory,” Appl. Opt. 38, 2346–2357 (1999).
[Crossref]

D. Müller, U. Wandinger, D. Althausen, I. Mattis, and A. Ansmann, “Retrieval of physical particle properties from lidar observations of extinction and backscatter at multiple wavelengths,” Appl. Opt. 37, 2260–2263 (1998).
[Crossref]

J. Bösenberg, V. Matthias, A. Amodeo, V. Amoiridi, A. Ansmann, J. M. Baldasano, I. Balin, D. Balis, C. Böckmann, A. Boselli, G. Carlson, A. Chaikovsky, G. Chourdakis, A. Comerón, F. D. Tomasi, R. Eixmann, V. Freudenthaler, H. Giehl, I. Grigorov, A. Hågård, M. Iarlori, A. Kirsche, G. Kolarov, L. Komguem, S. Kreipl, W. Kumpf, G. Larchevêque, H. Linné, R. Matthey, I. Mattis, L. Mona, D. Müller, S. Music, S. Nickovic, M. Pandolfi, A. Papayannis, G. Pappalardo, J. Pelon, C. Pérez, R. M. Perrone, R. Persson, D. P. Resendes, V. Rizi, R. Rocadenbosch, J. A. Rodriguez, L. Sauvage, L. Schneidenbach, R. Schumacher, V. Shcherbakov, V. Simeonov, P. Sobolewsky, N. Spinelli, I. Stachlewska, D. Stoyanov, T. Trickl, G. Tsaknakis, G. Vaughan, U. Wandinger, X. Wang, M. Wiegner, M. Zavrtanik, and C. Zerefos, “EARLINET: A European aerosol research lidar network to establish an aerosol climatology,” (2003).

Wang, X.

J. Bösenberg, V. Matthias, A. Amodeo, V. Amoiridi, A. Ansmann, J. M. Baldasano, I. Balin, D. Balis, C. Böckmann, A. Boselli, G. Carlson, A. Chaikovsky, G. Chourdakis, A. Comerón, F. D. Tomasi, R. Eixmann, V. Freudenthaler, H. Giehl, I. Grigorov, A. Hågård, M. Iarlori, A. Kirsche, G. Kolarov, L. Komguem, S. Kreipl, W. Kumpf, G. Larchevêque, H. Linné, R. Matthey, I. Mattis, L. Mona, D. Müller, S. Music, S. Nickovic, M. Pandolfi, A. Papayannis, G. Pappalardo, J. Pelon, C. Pérez, R. M. Perrone, R. Persson, D. P. Resendes, V. Rizi, R. Rocadenbosch, J. A. Rodriguez, L. Sauvage, L. Schneidenbach, R. Schumacher, V. Shcherbakov, V. Simeonov, P. Sobolewsky, N. Spinelli, I. Stachlewska, D. Stoyanov, T. Trickl, G. Tsaknakis, G. Vaughan, U. Wandinger, X. Wang, M. Wiegner, M. Zavrtanik, and C. Zerefos, “EARLINET: A European aerosol research lidar network to establish an aerosol climatology,” (2003).

Weiss, V.

U. Wandinger, D. Müller, C. Böckmann, D. Althausen, V. Matthias, J. Bösenberg, V. Weiss, M. Fiebig, M. Wendisch, A. Stohl, and A. Ansmann, “Optical and microphysical characterization of biomass-burning and industrial-pollution aerosols from multiwavelength lidar and aircraft measurements,” J. Geophys. Res. 107, D21 (2002).
[Crossref]

Wendisch, M.

U. Wandinger, D. Müller, C. Böckmann, D. Althausen, V. Matthias, J. Bösenberg, V. Weiss, M. Fiebig, M. Wendisch, A. Stohl, and A. Ansmann, “Optical and microphysical characterization of biomass-burning and industrial-pollution aerosols from multiwavelength lidar and aircraft measurements,” J. Geophys. Res. 107, D21 (2002).
[Crossref]

Whiteman, D.

I. Veselovskii, O. Dubovik, A. Kolgotin, M. Korenskiy, D. Whiteman, K. Allakhverdiev, and F. Huseyinoglu, “Linear estimation of particle bulk parameters from multi-wavelength lidar measurements,” Atmos. Meas. Tech. 5, 1135–1145 (2012).
[Crossref]

Whiteman, D. N.

Wiegner, M.

J. Bösenberg, V. Matthias, A. Amodeo, V. Amoiridi, A. Ansmann, J. M. Baldasano, I. Balin, D. Balis, C. Böckmann, A. Boselli, G. Carlson, A. Chaikovsky, G. Chourdakis, A. Comerón, F. D. Tomasi, R. Eixmann, V. Freudenthaler, H. Giehl, I. Grigorov, A. Hågård, M. Iarlori, A. Kirsche, G. Kolarov, L. Komguem, S. Kreipl, W. Kumpf, G. Larchevêque, H. Linné, R. Matthey, I. Mattis, L. Mona, D. Müller, S. Music, S. Nickovic, M. Pandolfi, A. Papayannis, G. Pappalardo, J. Pelon, C. Pérez, R. M. Perrone, R. Persson, D. P. Resendes, V. Rizi, R. Rocadenbosch, J. A. Rodriguez, L. Sauvage, L. Schneidenbach, R. Schumacher, V. Shcherbakov, V. Simeonov, P. Sobolewsky, N. Spinelli, I. Stachlewska, D. Stoyanov, T. Trickl, G. Tsaknakis, G. Vaughan, U. Wandinger, X. Wang, M. Wiegner, M. Zavrtanik, and C. Zerefos, “EARLINET: A European aerosol research lidar network to establish an aerosol climatology,” (2003).

Winstead, E. L.

P. Sawamura, D. Müller, R. M. Hoff, C. A. Hostetler, R. A. Ferrare, J. W. Hair, R. R. Rogers, B. E. Anderson, L. D. Ziemba, A. J. Beyersdorf, K. L. Thornhill, E. L. Winstead, and B. N. Holben, “Aerosol optical and microphysical retrievals from a hybrid multiwavelength lidar dataset – DISCOVER-AQ 2011,” Atmos. Meas. Tech. 7, 3095–3112 (2014).
[Crossref]

Yang, P.

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Muñoz, B. Veihelmann, W. J. van der Zande, J.-F. Leon, M. Sorokin, and I. Slutsker, “The application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111, D11208 (2006).
[Crossref]

Zavrtanik, M.

J. Bösenberg, V. Matthias, A. Amodeo, V. Amoiridi, A. Ansmann, J. M. Baldasano, I. Balin, D. Balis, C. Böckmann, A. Boselli, G. Carlson, A. Chaikovsky, G. Chourdakis, A. Comerón, F. D. Tomasi, R. Eixmann, V. Freudenthaler, H. Giehl, I. Grigorov, A. Hågård, M. Iarlori, A. Kirsche, G. Kolarov, L. Komguem, S. Kreipl, W. Kumpf, G. Larchevêque, H. Linné, R. Matthey, I. Mattis, L. Mona, D. Müller, S. Music, S. Nickovic, M. Pandolfi, A. Papayannis, G. Pappalardo, J. Pelon, C. Pérez, R. M. Perrone, R. Persson, D. P. Resendes, V. Rizi, R. Rocadenbosch, J. A. Rodriguez, L. Sauvage, L. Schneidenbach, R. Schumacher, V. Shcherbakov, V. Simeonov, P. Sobolewsky, N. Spinelli, I. Stachlewska, D. Stoyanov, T. Trickl, G. Tsaknakis, G. Vaughan, U. Wandinger, X. Wang, M. Wiegner, M. Zavrtanik, and C. Zerefos, “EARLINET: A European aerosol research lidar network to establish an aerosol climatology,” (2003).

Zerefos, C.

J. Bösenberg, V. Matthias, A. Amodeo, V. Amoiridi, A. Ansmann, J. M. Baldasano, I. Balin, D. Balis, C. Böckmann, A. Boselli, G. Carlson, A. Chaikovsky, G. Chourdakis, A. Comerón, F. D. Tomasi, R. Eixmann, V. Freudenthaler, H. Giehl, I. Grigorov, A. Hågård, M. Iarlori, A. Kirsche, G. Kolarov, L. Komguem, S. Kreipl, W. Kumpf, G. Larchevêque, H. Linné, R. Matthey, I. Mattis, L. Mona, D. Müller, S. Music, S. Nickovic, M. Pandolfi, A. Papayannis, G. Pappalardo, J. Pelon, C. Pérez, R. M. Perrone, R. Persson, D. P. Resendes, V. Rizi, R. Rocadenbosch, J. A. Rodriguez, L. Sauvage, L. Schneidenbach, R. Schumacher, V. Shcherbakov, V. Simeonov, P. Sobolewsky, N. Spinelli, I. Stachlewska, D. Stoyanov, T. Trickl, G. Tsaknakis, G. Vaughan, U. Wandinger, X. Wang, M. Wiegner, M. Zavrtanik, and C. Zerefos, “EARLINET: A European aerosol research lidar network to establish an aerosol climatology,” (2003).

Ziemba, L. D.

P. Sawamura, R. H. Moore, S. P. Burton, E. Chemyakin, D. Müller, A. Kolgotin, R. A. Ferrare, C. A. Hostetler, L. D. Ziemba, A. J. Beyersdorf, and B. E. Anderson, “HSRL-2 aerosol optical measurements and microphysical retrievals vs. airborne in situ measurements during DISCOVER-AQ 2013: an intercomparison study,” Atmos. Chem. Phys. 17, 7229–7243 (2017).
[Crossref]

P. Sawamura, D. Müller, R. M. Hoff, C. A. Hostetler, R. A. Ferrare, J. W. Hair, R. R. Rogers, B. E. Anderson, L. D. Ziemba, A. J. Beyersdorf, K. L. Thornhill, E. L. Winstead, and B. N. Holben, “Aerosol optical and microphysical retrievals from a hybrid multiwavelength lidar dataset – DISCOVER-AQ 2011,” Atmos. Meas. Tech. 7, 3095–3112 (2014).
[Crossref]

Znak, P.

D. Müller, C. Böckmann, A. Kolgotin, L. Schneidenbach, E. Chemyakin, J. J. Rosemann, P. Znak, and A. Romanov, “Microphysical particle properties derived from inversion algorithms developed in the framework of EARLINET,” Atmos. Meas. Tech. 9, 5007–5035 (2016).
[Crossref]

Appl. Opt. (14)

D. Müller, U. Wandinger, D. Althausen, I. Mattis, and A. Ansmann, “Retrieval of physical particle properties from lidar observations of extinction and backscatter at multiple wavelengths,” Appl. Opt. 37, 2260–2263 (1998).
[Crossref]

D. Müller, U. Wandinger, and A. Ansmann, “Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: theory,” Appl. Opt. 38, 2346–2357 (1999).
[Crossref]

D. Müller, U. Wandinger, and A. Ansmann, “Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: simulation,” Appl. Opt. 38, 2358–2368 (1999).
[Crossref]

D. Müller, U. Wandinger, and A. Ansmann, “Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: experiment,” Appl. Opt. 39, 1879–1892 (2000).
[Crossref]

D. Müller, U. Wandinger, D. Althausen, and M. Fiebig, “Comprehensive particle characterization from three-wavelength Raman-lidar observations,” Appl. Opt. 40, 4863–4869 (2001).
[Crossref]

I. Veselovskii, A. Kolgotin, V. Griaznov, D. Müller, U. Wandinger, and D. N. Whiteman, “Inversion with regularization for the retrieval of tropospheric aerosol parameters from multiwavelength lidar sounding,” Appl. Opt. 41, 3685–3699 (2002).
[Crossref]

I. Veselovskii, A. Kolgotin, V. Griaznov, D. Müller, K. Franke, and D. N. Whiteman, “Inversion of multiwavelength Raman lidar data for retrieval of bimodal aerosol size distribution,” Appl. Opt. 43, 1180–1195 (2004).
[Crossref]

I. Veselovskii, A. Kolgotin, V. Griaznov, D. Müller, and D. N. Whiteman, “Information content of multiwavelength lidar data with respect to microphysical particle properties derived from eigenvalue analysis,” Appl. Opt. 44, 5292–5303 (2005).
[Crossref]

M. de Graaf, A. Apituley, and D. Donovan, “Feasibility study of integral property retrieval for tropospheric aerosol from Raman lidar data using principle component analysis,” Appl. Opt. 52, 2173–2186 (2013).
[Crossref]

D. Müller, I. Veselovskii, A. Kolgotin, M. Tesche, A. Ansmann, and O. Dubovik, “Vertical profiles of pure dust and mixed smoke-dust plumes inferred from inversion of multiwavelength Raman/polarization lidar data and comparison to AERONET retrievals and in situ observations,” Appl. Opt. 52, 3178–3202 (2013).
[Crossref]

E. Chemyakin, D. Müller, S. Burton, A. Kolgotin, C. Hostetler, and R. Ferrare, “Arrange and average algorithm for the retrieval of aerosol parameters from multiwavelength high-spectral-resolution lidar/Raman lidar data,” Appl. Opt. 53, 7252–7266 (2014).
[Crossref]

A. Kolgotin, D. Müller, E. Chemyakin, and A. Romanov, “Improved identification of the solution space of aerosol microphysical properties derived from the inversion of profiles of lidar optical data, part 1: theory,” Appl. Opt. 55, 9839–9849 (2016).
[Crossref]

A. Kolgotin, D. Müller, E. Chemyakin, and A. Romanov, “Improved identification of the solution space of aerosol microphysical properties derived from the inversion of profiles of lidar optical data, part 2: simulations with synthetic data,” Appl. Opt. 55, 9850–9865 (2016).
[Crossref]

A. Kolgotin, D. Müller, E. Chemyakin, A. Romanov, and V. Alehnovich, “Improved identification of the solution space of aerosol microphysical properties derived from the inversion of profiles of lidar optical data, part 3: case studies,” Appl. Opt. 57, 2499–2513 (2018).
[Crossref]

Atmos. Chem. Phys. (1)

P. Sawamura, R. H. Moore, S. P. Burton, E. Chemyakin, D. Müller, A. Kolgotin, R. A. Ferrare, C. A. Hostetler, L. D. Ziemba, A. J. Beyersdorf, and B. E. Anderson, “HSRL-2 aerosol optical measurements and microphysical retrievals vs. airborne in situ measurements during DISCOVER-AQ 2013: an intercomparison study,” Atmos. Chem. Phys. 17, 7229–7243 (2017).
[Crossref]

Atmos. Meas. Tech. (9)

S. P. Burton, R. A. Ferrare, C. A. Hostetler, J. W. Hair, R. R. Rogers, M. D. Obland, C. F. Butler, A. L. Cook, D. B. Harper, and K. D. Froyd, “Aerosol classification using airborne high spectral resolution lidar measurements—methodology and examples,” Atmos. Meas. Tech. 5, 73–98 (2012).
[Crossref]

D. Pérez-Ramírez, D. N. Whiteman, I. Veselovskii, A. Kolgotin, M. Korenskiy, and L. Alados-Arboledas, “Effects of systematic and random errors on the retrieval of particle microphysical properties from multiwavelength lidar measurements using inversion with regularization,” Atmos. Meas. Tech. 6, 3039–3054 (2013).
[Crossref]

S. P. Burton, E. Chemyakin, X. Liu, K. Knobelspiesse, S. Stamnes, P. Sawamura, R. H. Moore, C. A. Hostetler, and R. A. Ferrare, “Information content and sensitivity of the 3β + 2α lidar measurement system for aerosol microphysical retrievals,” Atmos. Meas. Tech. 9, 5555–5574 (2016).
[Crossref]

V. Bovchaliuk, P. Goloub, T. Podvin, I. Veselovskii, D. Tanré, A. Chaikovsky, O. Dubovik, A. Mortier, A. Lopatin, M. Korenskiy, and S. Victori, “Comparison of aerosol properties retrieved using GARRLiC, LIRIC, and Raman algorithms applied to multi-wavelength lidar and sun/sky-photometer data,” Atmos. Meas. Tech. 9, 3391–3405 (2016).
[Crossref]

P. Sawamura, D. Müller, R. M. Hoff, C. A. Hostetler, R. A. Ferrare, J. W. Hair, R. R. Rogers, B. E. Anderson, L. D. Ziemba, A. J. Beyersdorf, K. L. Thornhill, E. L. Winstead, and B. N. Holben, “Aerosol optical and microphysical retrievals from a hybrid multiwavelength lidar dataset – DISCOVER-AQ 2011,” Atmos. Meas. Tech. 7, 3095–3112 (2014).
[Crossref]

D. Müller, C. Böckmann, A. Kolgotin, L. Schneidenbach, E. Chemyakin, J. J. Rosemann, P. Znak, and A. Romanov, “Microphysical particle properties derived from inversion algorithms developed in the framework of EARLINET,” Atmos. Meas. Tech. 9, 5007–5035 (2016).
[Crossref]

R. E. Mamouri and A. Ansmann, “Separating mixtures of aerosol types in airborne HSRL data,” Atmos. Meas. Tech. 7, 419–436 (2013).
[Crossref]

I. Veselovskii, O. Dubovik, A. Kolgotin, M. Korenskiy, D. Whiteman, K. Allakhverdiev, and F. Huseyinoglu, “Linear estimation of particle bulk parameters from multi-wavelength lidar measurements,” Atmos. Meas. Tech. 5, 1135–1145 (2012).
[Crossref]

D. Müller, C. A. Hostetler, R. A. Ferrare, S. P. Burton, E. Chemyakin, A. Kolgotin, J. W. Hair, A. L. Cook, D. B. Harper, R. R. Rogers, R. W. Hare, C. S. Cleckner, M. D. Obland, J. Tomlinson, L. K. Berg, and B. Schmid, “Airborne multiwavelength high spectral resolution lidar (HSRL-2) observations during TCAP 2012: vertical profiles of optical and microphysical properties of a smoke/urban haze plume over the northeastern coast of the US,” Atmos. Meas. Tech. 7, 3487–3496 (2014).
[Crossref]

Geophys. Res. Lett. (1)

T. Murayama, D. Müller, K. Wada, A. Shimizu, M. Sekigushi, and T. Tsukamato, “Characterization of Asian dust and Siberian smoke with multi-wavelength Raman lidar over Tokyo, Japan in spring 2003,” Geophys. Res. Lett. 31, L23103 (2004).
[Crossref]

J. Assoc. Comput. Mach. (1)

D. L. Phillips, “A technique for the numerical solution of certain integral equations of the first kind,” J. Assoc. Comput. Mach. 9, 84–97 (1962).
[Crossref]

J. Franklin Inst. (1)

S. Twomey, “The application of numerical filtering to the solution of integral equations encountered in indirect sensing measurements,” J. Franklin Inst. 279, 95–109 (1965).
[Crossref]

J. Geophys. Res. (5)

Y. M. Noh, D. Müller, I. Mattis, H. Lee, and Y. J. Kim, “Vertically resolved light-absorption characteristics and the influence of relative humidity on particle properties: multiwavelength Raman lidar observations of East Asian aerosol types over Korea,” J. Geophys. Res. 116, D06206 (2011).
[Crossref]

H. Baars, A. Ansmann, D. Althausen, R. Engelmann, B. Heese, D. Müller, P. Artaxo, M. Paixao, T. Pauliquevis, and R. Souza, “Aerosol profiling with lidar in the Amazon Basin during the wet and dry season,” J. Geophys. Res. 117, D21201 (2005).
[Crossref]

M. Tesche, A. Ansmann, D. Müller, D. Althausen, R. Engelmann, V. Freudenthaler, and S. Groß, “Vertically resolved separation of dust and smoke over Cape Verde by using multiwavelength Raman and polarization lidar during SAMUM 2008,” J. Geophys. Res. 114, D13202 (2009).
[Crossref]

U. Wandinger, D. Müller, C. Böckmann, D. Althausen, V. Matthias, J. Bösenberg, V. Weiss, M. Fiebig, M. Wendisch, A. Stohl, and A. Ansmann, “Optical and microphysical characterization of biomass-burning and industrial-pollution aerosols from multiwavelength lidar and aircraft measurements,” J. Geophys. Res. 107, D21 (2002).
[Crossref]

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Muñoz, B. Veihelmann, W. J. van der Zande, J.-F. Leon, M. Sorokin, and I. Slutsker, “The application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111, D11208 (2006).
[Crossref]

J. Opt. Soc. Am. A (1)

Other (9)

V. E. Zuev and I. E. Naats, eds., Inverse Problems of Lidar Sensing of the Atmosphere (Springer, 1983).

S. Twomey, ed., Introduction to the Mathematics of Inversion in Remote Sensing and Indirect Measurements (Elsevier, 1977).

R. A. Horn and C. R. Johnson, eds., Matrix Analysis (Cambridge University, 1985).

C. F. Bohren and D. R. Huffman, eds., Absorption and Scattering of Light by Small Particles (Wiley, 1983).

C. D. Rodgers, ed., Inverse Methods for Atmospheric Sounding: Theory and Practice (World Scientific, 2000).

J. Bösenberg, V. Matthias, A. Amodeo, V. Amoiridi, A. Ansmann, J. M. Baldasano, I. Balin, D. Balis, C. Böckmann, A. Boselli, G. Carlson, A. Chaikovsky, G. Chourdakis, A. Comerón, F. D. Tomasi, R. Eixmann, V. Freudenthaler, H. Giehl, I. Grigorov, A. Hågård, M. Iarlori, A. Kirsche, G. Kolarov, L. Komguem, S. Kreipl, W. Kumpf, G. Larchevêque, H. Linné, R. Matthey, I. Mattis, L. Mona, D. Müller, S. Music, S. Nickovic, M. Pandolfi, A. Papayannis, G. Pappalardo, J. Pelon, C. Pérez, R. M. Perrone, R. Persson, D. P. Resendes, V. Rizi, R. Rocadenbosch, J. A. Rodriguez, L. Sauvage, L. Schneidenbach, R. Schumacher, V. Shcherbakov, V. Simeonov, P. Sobolewsky, N. Spinelli, I. Stachlewska, D. Stoyanov, T. Trickl, G. Tsaknakis, G. Vaughan, U. Wandinger, X. Wang, M. Wiegner, M. Zavrtanik, and C. Zerefos, “EARLINET: A European aerosol research lidar network to establish an aerosol climatology,” (2003).

A. Ansmann and D. Müller, “Lidar and atmospheric aerosol particles,” in Lidar Range-Resolved Optical Remote Sensing of the Atmosphere, C. Weitkamp, ed. (Springer, 2005), pp. 105–141.

A. N. Tikhonov and V. Y. Arsenin, eds., Solutions of Ill-Posed Problems (Wiley, 1977).

D. Müller, “Inversionsalgorithmus zur Bestimmung Physikalischer Partikeleigenschaften aus Mehrwellenlängen-Lidarmessungen (inversion algorithm for the determination of particle properties from multiwavelength lidar measurements),” Ph.D. thesis (Universität1997).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1.
Fig. 1. (left) Example of the qualitative reconstruction of a PSD with five base functions of triangular shape distributed in the radius interval [rmin,rmax]. The radius interval is denoted as inversion window in the text. (right) Eight base functions allow us to reconstruct bimodal size distributions.
Fig. 2.
Fig. 2. (top) Gliding inversion window. We show the arrangement of the nine inversion windows. (bottom) Grid of the complex refractive indices. The meaning of the grey-shaded area (real part from 1.325−1.8) is described in the text.
Fig. 3.
Fig. 3. Example of the linear combination of three optimized LUT base functions bj1(r), bj1+1(r), and bj1+2(r) into one inversion triangular base function Bj(r).
Fig. 4.
Fig. 4. Illustration of (top) extreme-error model (EEM) and (bottom) Gauss-error model (GEM). The figure is explained in the text.
Fig. 5.
Fig. 5. Flowchart of TiARA. The meanings of the numbers in circles in the flowchart are given in Appendix A.
Fig. 6.
Fig. 6. PSDs that were tested in our simulation studies.
Fig. 7.
Fig. 7. Graphical display of effective radius and surface-area and volume concentrations of the PSDs that formed the basis for the computation of the optical data used in the simulations. Each symbol represents one specific combination of median radius and geometrical standard deviation. The numerical vales of the parameters are given in Appendix A.
Fig. 8.
Fig. 8. Example of retrieval performance for the case of size distributions with a geometrical standard deviation of 1.9 and median radii of 20 nm, 60 nm, 100 nm, 140 nm, 180 nm, 220 nm, 260 nm, and 300 nm (Table 5). We tested all 15 imaginary parts of the complex refractive index of the investigated particle size distributions (Table 5). We show the results for the imaginary parts 0i, 0.005i, 0.01i, 0.03i, and 0.05i. Each data point (with error bar) shows the average and standard deviation of multiple solutions obtained in one retrieval. The first row shows the results for effective radius and 0% data uncertainty. The second row shows the results for 15% data uncertainty and the use of EEM. The results for number concentration are shown in row 3 (0% data uncertainty) and row 4 (15% data uncertainty). Rows 5 and 6 show the results for surface-area concentration. The colored lines describe by how much the data values need to increase or decrease to coincide with the 1-1–line (gray line). Green = reduction/increase by 20% (denoted in the text as green sector); red = reduction/increase by factor 2 (red sector). The squares describe the results of the four real parts tested in the simulations: 1.4 (blue), 1.5 (green), 1.6 (orange), and 1.7 (black). The uncertainty bars for number concentration are turned by 90° for better readability.
Fig. 9.
Fig. 9. Same as in Fig. 8 but for (rows 1 and 2) volume concentration, (rows 3 and 4) the real part, and (rows 5 and 6) the imaginary part of the complex refractive index. Meaning of the symbols and their colors are the same causedas in Fig. 8. Results for volume concentration again are shown in terms of percent-deviation from the true results. Meaning of the colored lines in the plots that show the results for the real part: reduction/increase of the mean values by 0.05 (green) and by 0.075 (red) before results coincide with the true values (1-1-line, gray). Meaning of colored lines for the imaginary part: reduction/increase by ±0.006 (green) and reduction/increase by factor 2 (red) until mean values coincide with 1-1–line (gray). The uncertainty bars for real and imaginary parts of the complex refractive index are turned by 90° for better readability.
Fig. 10.
Fig. 10. Inversion results for all values of sigma, all median radii, and all real and imaginary parts of the complex refractive index (see Fig. 7 and Table 5). Each row shows the results for one of the six investigated data products. Each column shows the results for (from left to right): 0%, 5%, 10%, 15%, 20%, and 25% optical data uncertainty. The histograms show percentage deviations (0%–50%) from the true values for the cases (aa)–(df) and the absolute errors for cases (ea) to (ff). We show the results for the EEM (black/hatched columns) and the GEM (green columns). The gray (EEM) and green (GEM) horizontal lines show the total number of simulation cases for which the respective parameter can be reconstructed to better than ±50% [(aa)–(df)]. The black (EEM) and green (GEM) numbers show the percentage of cases for which the data products can be retrieved to better than ±20%. In the case of the real part [(ea)–(ef)], the horizontal lines (gray and green) represent results for absolute deviations less than±0.075 from the true values. The numbers represent deviation less than ±0.05. In the case of the imaginary part [(fa)–(ff)], relative deviations, i.e., horizontal lines, are not defined, as we included the results for imaginary parts of 0i in our analysis. The numbers show the percentage of simulations for which the retrieved imaginary parts deviate less than ±0.006i from the true values [(fa)–(ff)]. The y axis of all plots is scaled to 100%. Figure 16 in the Appendix provides an overview of the results based on individual scalings for each data product.
Fig. 11.
Fig. 11. Results for all simulations, separated according to the imaginary part and the geometric standard deviation (mode width) of particle size distribution. The colors (see color legend at bottom of figure) visualize the number of simulation cases (in terms of percentages) that have a retrieval uncertainty that is better than ±50%, respectively, ±20% for effective radius and number, surface-area, and volume concentrations, i.e., ±50% and ±20% serve as cutoff values for the simulations that meet these constraints. The numbers in each cell provide the number of cases (in percent relative to the total number of cases that belong to each cell). With regard to the real part, the colors describe the number of cases that are retrieved to better than ±0.075, respectively, ±0.05. Only cases that meet this threshold value are included in the statistics. The imaginary-part retrieval is color coded on the basis of a retrieval result that is better than ±50%, respectively, better than ±0.006i. If values cannot be given (not defined) we inserted n/d in the cells.
Fig. 12.
Fig. 12. Simulation results based on all PSDs and CRIs and the use of the extreme-error model (squares) and the Gauss-error model (stars). The symbols represent the sum (expressed in terms of percent of all cases) of all simulation cases for which the shown parameters are within ±50% deviation from the true results.
Fig. 13.
Fig. 13. Curtain plots of particle Angström exponents (extinction coefficients measured at 355 nm and 532 nm), lidar ratio at 532 nm, and ratio of lidar ratios measured at 355 nm and 532 nm. Data are shown up to 8 km height above sea level. The measurement time was from 8:00 UTC to 14:40 UTC. The temporal resolution of the data is 10 s; the vertical resolution is 100 m per data point. Geographical location of the aircraft was between approximately 22.7°N and 21.21°N and from 12.69°E to 6.85°E. In the case of the lidar ratio, the x-axis range was from 22.7°N to 22.97°N and from 12.69°E to 13.85°E. Data below approximately 3 km height above sea level were in part excluded from the analysis with TiARA (see Figs. 14 and 15) because these data points either did not meet the threshold values regarding signal-to-noise ratio needed for a reliable, high-quality data inversion or contained significant values of the particle linear depolarization ratio. As pointed out in previous publications and also in this contribution, we lack a reliable light-scattering model that can accurately describe particle backscatter coefficients at 180º that present key input data for TiARA.
Fig. 14.
Fig. 14. Curtain plots of microphysical parameters (left column) and retrieval uncertainties in terms of absolute values of the data products (right column). We show (first row) number concentration, (second row) effective radius, (third row) surface-area concentration, and (forth row) volume concentration. The data products do not include results for particles below 50 nm particle radius. Measurement time, measurement location and height are the same as in Fig. 13. The individual profiles shown in Fig. 13 were averaged into 5 min averages and subsequently used for data inversion. We applied a 1 min gliding average to each set of 5 min profiles, which allows us to produce the curtain plots of microphysical parameters in this figure and Fig. 15.
Fig. 15.
Fig. 15. Curtain plots of (top) ratio of number concentration in the fine mode fraction of the particle size distribution (particles with radius between 50 nm and 500 nm) to total number concentration and (bottom) ratio of effective radius of particle size distribution with particles less than 500 nm radius (and above 50 nm) to effective radius of the complete particle size distribution. Measurement time, measurement location and height are the same as in Fig. 13. The spatial and temporal resolutions of the curtain plots are the same as in Fig. 14.
Fig. 16.
Fig. 16. Inversion results as shown in Fig. 10. Results are not scaled to 100%. Meanings of symbols and colors are the same as in Fig. 10.

Tables (6)

Tables Icon

Table 1. Distortion of Optical Data in Each Measurement Channel in the Case of the EEMa

Tables Icon

Table 2. Data Products of the Total PSD Inferred with TiARAa

Tables Icon

Table 3. Error Scenarios of the Simulation Studiesa

Tables Icon

Table 4. Data Products Inferred with TiARAa

Tables Icon

Table 5. Input Parameters of Size Distributions Used in the Simulation Studiesa

Tables Icon

Table 6. Scenarios of Measurement-Channel-Dependent Optical Data Uncertaintiesa

Equations (26)

Equations on this page are rendered with MathJax. Learn more.

gl*(λi)=0Kl(m,r,λi,s)f*(r)dr,
gp*=rminrmaxKp(m,r)f*(r)dr+ϵplimits,
f*(r)=f(r)+ϵ(r)=j=1NBfjBj(r)+ϵ(r).
gp*=j=1NBApj(m)fj+ϵp.
Apj=rminrmaxKp(m,r)Bj(r)dr,
ϵp=rminrmaxKp(m,r)ϵ(r)dr+ϵplimits.
g*=Af+ϵ.
Af=g.
f=(ATA)1ATg.
(ATA+γH)f=ATg.
A(k)|f(k)|=g(k).
ρ(k)=g(k)g,
ρ(k)=A(k)|f(k)|g,
ρ(k)=1NOj=1NOρj(k)gj100%.
rminrmaxKl,n(m,r,λ)B(r)dr=(λλ^)3λ^λrminλ^λrmaxKl,n(m,r,λ^)B^(r)dr,
rminrmaxKl,s(m,r,λ)B(r)dr=λλ^λ^λrminλ^λrmaxKl,s(m,r,λ^)B^(r)dr,
rminrmaxKl,v(m,r,λ)B(r)dr=λ^λrminλ^λrmaxKl,v(m,r,λ^)B^(r)dr,
Bj(r)=12bj1(r)+bj1+1(r)+12bj1+2(r).
accuracyftruefave,
precision:σ.
reff(1)reff(2)/reff(1)×100%
nt(1)nt(2)/nt(1)×100%
p¯=1kj=1kp(k),p=nt,reff.
r¯effreff(k+1)/r¯eff×100%
n¯tnt(k+1)/n¯t×100%
f(r)=1rlnσexp[(lnrlnrmed)22(lnσ)2].

Metrics