Abstract

In the present study, the sensitivities of the fiber optic propagating surface plasmon resonance (SPR) and localized surface plasmon resonance (LSPR)-based refractive index sensors have been evaluated experimentally for a tapered probe of different taper ratio. The tapering of the fiber probe has been carried out via a heating and stretching technique. The SPR probe has been fabricated by coating a thin film of silver over the core of the tapered optical fiber, while the LSPR probe has been prepared by the coating of the gold nanoparticles over the core of the tapered optical fiber. The increase in the taper ratio increases the sensitivity of both kinds of the probes. The experimentally obtained sensitivity has been compared with the sensitivity of the SPR-based fiber optic refractive index sensors fabricated using various techniques and reported in the literature.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Tapered optical fiber sensor based on localized surface plasmon resonance

Hsing-Ying Lin, Chen-Han Huang, Gia-Ling Cheng, Nan-Kuang Chen, and Hsiang-Chen Chui
Opt. Express 20(19) 21693-21701 (2012)

Surface-plasmon-resonance-based fiber-optic refractive index sensor: sensitivity enhancement

Priya Bhatia and Banshi D. Gupta
Appl. Opt. 50(14) 2032-2036 (2011)

Theoretical modeling of a localized surface plasmon resonance based intensity modulated fiber optic refractive index sensor

Sachin K. Srivastava, Rajneesh K. Verma, and Banshi D. Gupta
Appl. Opt. 48(19) 3796-3802 (2009)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (14)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (8)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription