Abstract

It is well known that freeform surfaces are used to improve the resolution in systems without rotational symmetry. For Scheimpflug systems, the tilted object plane leads to variant magnification in the system imaging. Thus, the system suffers from non-rotationally symmetric aberrations, non-uniform resolution, and non-uniform intensity distribution. In this paper, the paraxial imaging condition of Scheimpflug systems is discussed. From the classical viewpoint, the aberration theory is used to understand, balance, and improve the system performance for variant object distance. For large object distance shift, it is necessary to apply freeform surfaces. With the initial system design method based on Gaussian brackets, the starting configuration of a Scheimpflug system with large object distance shift is obtained. Based on the extension of the Nodal aberration theory concerning the aberrations of freeform surfaces, the rules of selecting the freeform surface position in the system are introduced. By adding two freeform surfaces far away from the pupil, the aberrations are effectively corrected in the Scheimpflug system. The aberrations along the field are decomposed and represented using Zernike fringe polynomials to show the improvement of uniformity and resolution. This work provides insight into Scheimpflug system design with freeform surfaces.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Theory of aberration fields for general optical systems with freeform surfaces

Kyle Fuerschbach, Jannick P. Rolland, and Kevin P. Thompson
Opt. Express 22(22) 26585-26606 (2014)

Analysis of nodal aberration properties in off-axis freeform system design

Haodong Shi, Huilin Jiang, Xin Zhang, Chao Wang, and Tao Liu
Appl. Opt. 55(24) 6782-6790 (2016)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (12)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (19)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription