Abstract

Spatially dithered distributions of binary amplitude pixels are optimized using a full direct binary search, taking into account the experimental configuration for amplitude modulation of coherent waves. This design process is shown to yield a significant reduction of the noise induced by binarization and pixelation over the region of interest. We demonstrate this approach for beam shaping and optical differentiation wavefront sensing, where the region of interest is in an image plane of the pixel distribution, and in the far field of the pixel distribution, respectively. The observed reduction in error compared to a standard error diffusion algorithm is significant for both applications because it improves performance without the tighter fabrication tolerance and cost associated with smaller pixels.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical differentiation wavefront sensing with binary pixelated transmission filters

J. Qiao, Z. Mulhollan, and C. Dorrer
Opt. Express 24(9) 9266-9279 (2016)

Model-based optimization of near-field binary-pixelated beam shapers

C. Dorrer and J. Hassett
Appl. Opt. 56(4) 806-815 (2017)

Analysis of the chromaticity of near-field binary beam shapers

Christophe Dorrer
Appl. Opt. 52(14) 3368-3380 (2013)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription