Abstract

We describe an efficient middle-infrared laser source based on the Tm:YLF-Ho:LuAG-ZnGeP2 system in this paper. A new orthogonally polarized recycling pump scheme with a simple thin-film polarizer and a half-wave plate are used in a Ho:LuAG laser. Under an incident pump power of 63.8 W, we achieve a maximum continuous wave output power of 35.7 W in the Ho:LuAG laser, corresponding to a slope efficiency of 60.4% and an optical-to-optical efficiency of 56.0%. With the Q-switched mode, maximum average output powers of 34.1 W, 34.9 W, and 35.2 W were achieved in the Ho:LuAG laser with pulse repetition frequencies of 10 kHz, 15 kHz, and 20 kHz, respectively. With a Ho pump power of 34.1 W, maximum average output powers of 16.7 W, 15.3 W, and 12.6 W were achieved in a middle-infrared zinc germanium phosphide optical parametric oscillator (ZGP-OPO) under pulse repetition frequencies of 10 kHz, 15 kHz, and 20 kHz, respectively. The evaluated beam quality factor M2 of the ZGP-OPO was 2.2 for the signal and 1.9 for the idler. To the authors’ best knowledge, this is the best performance reported for a middle-infrared ZGP-OPO pumped by a Ho:LuAG laser.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High efficient actively Q-switched Ho:LuAG laser

Xiaoming Duan, Baoquan Yao, Gang Li, Youlun Ju, Yuezhu Wang, and Guangjun Zhao
Opt. Express 17(24) 21691-21697 (2009)

Continuous-wave and Q-switched operation of a resonantly pumped polycrystalline ceramic Ho:LuAG laser

Ting Zhao, Yong Wang, Deyuan Shen, Jian Zhang, Dingyuan Tang, and Hao Chen
Opt. Express 22(16) 19014-19020 (2014)

Efficient mid-infrared laser using 1.9-µm-pumped Ho:YAG and ZnGeP2 optical parametric oscillators

P. A. Budni, L. A. Pomeranz, M. L. Lemons, C. A. Miller, J. R. Mosto, and E. P. Chicklis
J. Opt. Soc. Am. B 17(5) 723-728 (2000)

References

  • View by:
  • |
  • |
  • |

  1. K. T. Zawilski, P. G. Schunemann, S. D. Setzler, and T. M. Pollak, “Large aperture single crystal ZnGeP2 for high-energy applications,” J. Cryst. Growth 310, 1891–1896 (2008).
    [Crossref]
  2. E. Lippert, H. Fonnum, G. Arisholm, and K. Stenersen, “A 22-watt mid-infrared optical parametric oscillator with V-shaped 3-mirror ring resonator,” Opt. Express 18, 26475–26483 (2010).
    [Crossref]
  3. L. Wang, T. Xing, S. Hu, X. Wu, H. Wu, J. Wang, and H. Jiang, “Mid-infrared ZGP-OPO with a high optical-to-optical conversion efficiency of 75.7%,” Opt. Express 25, 3373–3380 (2017).
    [Crossref]
  4. B. M. Wash, “Review of Tm and Ho materials; spectroscopy and lasers,” Laser Phys. 19, 855–866 (2009).
    [Crossref]
  5. G. L. Zhu, Y. L. Ju, C. H. Zhang, B. Q. Yao, and Y. Z. Wang, “High-power, high-quality ZGP OPO pumped by a Tm, Ho:GdVO4 laser,” Laser Phys. 20, 1341–1343 (2010).
    [Crossref]
  6. M. Schellhorn, G. Spindler, and M. Eichhorn, “Mid-infrared ZGP OPO with divergence compensation and high beam quality,” Opt. Express 26, 1402–1410 (2018).
    [Crossref]
  7. B. Yao, J. Yuan, J. Li, T. Dai, X. Duan, Y. Shen, Z. Cui, and Y. Pan, “High-power Cr2+:ZnS saturable absorber passively Q-switched Ho:YAG ceramic laser and its application to pumping of a mid-IR OPO,” Opt. Lett. 40, 348–351 (2015).
    [Crossref]
  8. Y. Kuwano, K. Suda, N. Ishizawa, and T. Yamada, “Crystals growth and properties of (Lu, Y)3Al5O12,” J. Cryst. Growth 260, 159–165 (2004).
    [Crossref]
  9. D. W. Hart, M. Jani, and N. P. Barnes, “Room-temperature lasing of end-pumped Ho:Lu3Al5O12,” Opt. Lett. 21, 728–730 (1996).
    [Crossref]
  10. B. M. Walsh, G. W. Grew, and N. P. Barnes, “Energy levels and intensity parameters of Ho3+ ions in Y3Al5O12 and Lu3Al5O12,” J. Phys. Chem. Solids 67, 1567–1582 (2006).
    [Crossref]
  11. X. Duan, B. Yao, G. Li, Y. Ju, Y. Wang, and G. Zhao, “High efficient actively Q-switched Ho:LuAG laser,” Opt. Express 17, 21691–21697 (2009).
    [Crossref]
  12. N. P. Barnes, F. Amzajerdian, D. J. Reichle, W. A. Carrion, G. E. Busch, and P. Leisher, “Diode pumped Ho:YAG and Ho:LuAG lasers, Q-switching and second harmonic generation,” Appl. Phys. B 103, 57–66 (2011).
    [Crossref]
  13. H. Chen, T. Zhao, H. Yang, L. Zhang, T. Zhou, D. Tang, C. Wong, Y. Chen, and D. Shen, “Energy level systems and transitions of Ho:LuAG laser resonantly pumped by a narrow line-width Tm fiber laser,” Opt. Express 24, 27536–27545 (2016).
    [Crossref]
  14. T. Zhao, D. Y. Shen, H. Chen, X. F. Yang, X. D. Xu, D. H. Zhou, and J. Xu, “Tm:fiber laser in-band pumped Ho:LuAG laser with over 18  W output at 2124.5  nm,” Laser Phys. 21, 1851–1854 (2011).
    [Crossref]
  15. Y. Shen, B. Yao, Z. Cui, X. Duan, Y. Ju, and Y. Wang, “A ring ZnGeP2 optical parametric oscillator pumped by a Ho:LuAG laser,” Appl. Phys. B 117, 127–130 (2014).
    [Crossref]
  16. B. Yao, Y. Tian, W. Wang, G. Li, and Y. Wang, “Analysis and compensation of thermal lens effects in Tm:YAP lasers,” Chin. Opt. Lett. 8, 996–999 (2010).
    [Crossref]
  17. G. Arisholm, E. Lippert, G. Rustad, and K. Stenersen, “Effect of resonator length on a doubly resonant optical parametric oscillator pumped by a multilongitudinal-mode beam,” Opt. Lett. 25, 1654–1656 (2000).
    [Crossref]

2018 (1)

2017 (1)

2016 (1)

2015 (1)

2014 (1)

Y. Shen, B. Yao, Z. Cui, X. Duan, Y. Ju, and Y. Wang, “A ring ZnGeP2 optical parametric oscillator pumped by a Ho:LuAG laser,” Appl. Phys. B 117, 127–130 (2014).
[Crossref]

2011 (2)

N. P. Barnes, F. Amzajerdian, D. J. Reichle, W. A. Carrion, G. E. Busch, and P. Leisher, “Diode pumped Ho:YAG and Ho:LuAG lasers, Q-switching and second harmonic generation,” Appl. Phys. B 103, 57–66 (2011).
[Crossref]

T. Zhao, D. Y. Shen, H. Chen, X. F. Yang, X. D. Xu, D. H. Zhou, and J. Xu, “Tm:fiber laser in-band pumped Ho:LuAG laser with over 18  W output at 2124.5  nm,” Laser Phys. 21, 1851–1854 (2011).
[Crossref]

2010 (3)

2009 (2)

2008 (1)

K. T. Zawilski, P. G. Schunemann, S. D. Setzler, and T. M. Pollak, “Large aperture single crystal ZnGeP2 for high-energy applications,” J. Cryst. Growth 310, 1891–1896 (2008).
[Crossref]

2006 (1)

B. M. Walsh, G. W. Grew, and N. P. Barnes, “Energy levels and intensity parameters of Ho3+ ions in Y3Al5O12 and Lu3Al5O12,” J. Phys. Chem. Solids 67, 1567–1582 (2006).
[Crossref]

2004 (1)

Y. Kuwano, K. Suda, N. Ishizawa, and T. Yamada, “Crystals growth and properties of (Lu, Y)3Al5O12,” J. Cryst. Growth 260, 159–165 (2004).
[Crossref]

2000 (1)

1996 (1)

Amzajerdian, F.

N. P. Barnes, F. Amzajerdian, D. J. Reichle, W. A. Carrion, G. E. Busch, and P. Leisher, “Diode pumped Ho:YAG and Ho:LuAG lasers, Q-switching and second harmonic generation,” Appl. Phys. B 103, 57–66 (2011).
[Crossref]

Arisholm, G.

Barnes, N. P.

N. P. Barnes, F. Amzajerdian, D. J. Reichle, W. A. Carrion, G. E. Busch, and P. Leisher, “Diode pumped Ho:YAG and Ho:LuAG lasers, Q-switching and second harmonic generation,” Appl. Phys. B 103, 57–66 (2011).
[Crossref]

B. M. Walsh, G. W. Grew, and N. P. Barnes, “Energy levels and intensity parameters of Ho3+ ions in Y3Al5O12 and Lu3Al5O12,” J. Phys. Chem. Solids 67, 1567–1582 (2006).
[Crossref]

D. W. Hart, M. Jani, and N. P. Barnes, “Room-temperature lasing of end-pumped Ho:Lu3Al5O12,” Opt. Lett. 21, 728–730 (1996).
[Crossref]

Busch, G. E.

N. P. Barnes, F. Amzajerdian, D. J. Reichle, W. A. Carrion, G. E. Busch, and P. Leisher, “Diode pumped Ho:YAG and Ho:LuAG lasers, Q-switching and second harmonic generation,” Appl. Phys. B 103, 57–66 (2011).
[Crossref]

Carrion, W. A.

N. P. Barnes, F. Amzajerdian, D. J. Reichle, W. A. Carrion, G. E. Busch, and P. Leisher, “Diode pumped Ho:YAG and Ho:LuAG lasers, Q-switching and second harmonic generation,” Appl. Phys. B 103, 57–66 (2011).
[Crossref]

Chen, H.

H. Chen, T. Zhao, H. Yang, L. Zhang, T. Zhou, D. Tang, C. Wong, Y. Chen, and D. Shen, “Energy level systems and transitions of Ho:LuAG laser resonantly pumped by a narrow line-width Tm fiber laser,” Opt. Express 24, 27536–27545 (2016).
[Crossref]

T. Zhao, D. Y. Shen, H. Chen, X. F. Yang, X. D. Xu, D. H. Zhou, and J. Xu, “Tm:fiber laser in-band pumped Ho:LuAG laser with over 18  W output at 2124.5  nm,” Laser Phys. 21, 1851–1854 (2011).
[Crossref]

Chen, Y.

Cui, Z.

Dai, T.

Duan, X.

Eichhorn, M.

Fonnum, H.

Grew, G. W.

B. M. Walsh, G. W. Grew, and N. P. Barnes, “Energy levels and intensity parameters of Ho3+ ions in Y3Al5O12 and Lu3Al5O12,” J. Phys. Chem. Solids 67, 1567–1582 (2006).
[Crossref]

Hart, D. W.

Hu, S.

Ishizawa, N.

Y. Kuwano, K. Suda, N. Ishizawa, and T. Yamada, “Crystals growth and properties of (Lu, Y)3Al5O12,” J. Cryst. Growth 260, 159–165 (2004).
[Crossref]

Jani, M.

Jiang, H.

Ju, Y.

Y. Shen, B. Yao, Z. Cui, X. Duan, Y. Ju, and Y. Wang, “A ring ZnGeP2 optical parametric oscillator pumped by a Ho:LuAG laser,” Appl. Phys. B 117, 127–130 (2014).
[Crossref]

X. Duan, B. Yao, G. Li, Y. Ju, Y. Wang, and G. Zhao, “High efficient actively Q-switched Ho:LuAG laser,” Opt. Express 17, 21691–21697 (2009).
[Crossref]

Ju, Y. L.

G. L. Zhu, Y. L. Ju, C. H. Zhang, B. Q. Yao, and Y. Z. Wang, “High-power, high-quality ZGP OPO pumped by a Tm, Ho:GdVO4 laser,” Laser Phys. 20, 1341–1343 (2010).
[Crossref]

Kuwano, Y.

Y. Kuwano, K. Suda, N. Ishizawa, and T. Yamada, “Crystals growth and properties of (Lu, Y)3Al5O12,” J. Cryst. Growth 260, 159–165 (2004).
[Crossref]

Leisher, P.

N. P. Barnes, F. Amzajerdian, D. J. Reichle, W. A. Carrion, G. E. Busch, and P. Leisher, “Diode pumped Ho:YAG and Ho:LuAG lasers, Q-switching and second harmonic generation,” Appl. Phys. B 103, 57–66 (2011).
[Crossref]

Li, G.

Li, J.

Lippert, E.

Pan, Y.

Pollak, T. M.

K. T. Zawilski, P. G. Schunemann, S. D. Setzler, and T. M. Pollak, “Large aperture single crystal ZnGeP2 for high-energy applications,” J. Cryst. Growth 310, 1891–1896 (2008).
[Crossref]

Reichle, D. J.

N. P. Barnes, F. Amzajerdian, D. J. Reichle, W. A. Carrion, G. E. Busch, and P. Leisher, “Diode pumped Ho:YAG and Ho:LuAG lasers, Q-switching and second harmonic generation,” Appl. Phys. B 103, 57–66 (2011).
[Crossref]

Rustad, G.

Schellhorn, M.

Schunemann, P. G.

K. T. Zawilski, P. G. Schunemann, S. D. Setzler, and T. M. Pollak, “Large aperture single crystal ZnGeP2 for high-energy applications,” J. Cryst. Growth 310, 1891–1896 (2008).
[Crossref]

Setzler, S. D.

K. T. Zawilski, P. G. Schunemann, S. D. Setzler, and T. M. Pollak, “Large aperture single crystal ZnGeP2 for high-energy applications,” J. Cryst. Growth 310, 1891–1896 (2008).
[Crossref]

Shen, D.

Shen, D. Y.

T. Zhao, D. Y. Shen, H. Chen, X. F. Yang, X. D. Xu, D. H. Zhou, and J. Xu, “Tm:fiber laser in-band pumped Ho:LuAG laser with over 18  W output at 2124.5  nm,” Laser Phys. 21, 1851–1854 (2011).
[Crossref]

Shen, Y.

Spindler, G.

Stenersen, K.

Suda, K.

Y. Kuwano, K. Suda, N. Ishizawa, and T. Yamada, “Crystals growth and properties of (Lu, Y)3Al5O12,” J. Cryst. Growth 260, 159–165 (2004).
[Crossref]

Tang, D.

Tian, Y.

Walsh, B. M.

B. M. Walsh, G. W. Grew, and N. P. Barnes, “Energy levels and intensity parameters of Ho3+ ions in Y3Al5O12 and Lu3Al5O12,” J. Phys. Chem. Solids 67, 1567–1582 (2006).
[Crossref]

Wang, J.

Wang, L.

Wang, W.

Wang, Y.

Wang, Y. Z.

G. L. Zhu, Y. L. Ju, C. H. Zhang, B. Q. Yao, and Y. Z. Wang, “High-power, high-quality ZGP OPO pumped by a Tm, Ho:GdVO4 laser,” Laser Phys. 20, 1341–1343 (2010).
[Crossref]

Wash, B. M.

B. M. Wash, “Review of Tm and Ho materials; spectroscopy and lasers,” Laser Phys. 19, 855–866 (2009).
[Crossref]

Wong, C.

Wu, H.

Wu, X.

Xing, T.

Xu, J.

T. Zhao, D. Y. Shen, H. Chen, X. F. Yang, X. D. Xu, D. H. Zhou, and J. Xu, “Tm:fiber laser in-band pumped Ho:LuAG laser with over 18  W output at 2124.5  nm,” Laser Phys. 21, 1851–1854 (2011).
[Crossref]

Xu, X. D.

T. Zhao, D. Y. Shen, H. Chen, X. F. Yang, X. D. Xu, D. H. Zhou, and J. Xu, “Tm:fiber laser in-band pumped Ho:LuAG laser with over 18  W output at 2124.5  nm,” Laser Phys. 21, 1851–1854 (2011).
[Crossref]

Yamada, T.

Y. Kuwano, K. Suda, N. Ishizawa, and T. Yamada, “Crystals growth and properties of (Lu, Y)3Al5O12,” J. Cryst. Growth 260, 159–165 (2004).
[Crossref]

Yang, H.

Yang, X. F.

T. Zhao, D. Y. Shen, H. Chen, X. F. Yang, X. D. Xu, D. H. Zhou, and J. Xu, “Tm:fiber laser in-band pumped Ho:LuAG laser with over 18  W output at 2124.5  nm,” Laser Phys. 21, 1851–1854 (2011).
[Crossref]

Yao, B.

Yao, B. Q.

G. L. Zhu, Y. L. Ju, C. H. Zhang, B. Q. Yao, and Y. Z. Wang, “High-power, high-quality ZGP OPO pumped by a Tm, Ho:GdVO4 laser,” Laser Phys. 20, 1341–1343 (2010).
[Crossref]

Yuan, J.

Zawilski, K. T.

K. T. Zawilski, P. G. Schunemann, S. D. Setzler, and T. M. Pollak, “Large aperture single crystal ZnGeP2 for high-energy applications,” J. Cryst. Growth 310, 1891–1896 (2008).
[Crossref]

Zhang, C. H.

G. L. Zhu, Y. L. Ju, C. H. Zhang, B. Q. Yao, and Y. Z. Wang, “High-power, high-quality ZGP OPO pumped by a Tm, Ho:GdVO4 laser,” Laser Phys. 20, 1341–1343 (2010).
[Crossref]

Zhang, L.

Zhao, G.

Zhao, T.

H. Chen, T. Zhao, H. Yang, L. Zhang, T. Zhou, D. Tang, C. Wong, Y. Chen, and D. Shen, “Energy level systems and transitions of Ho:LuAG laser resonantly pumped by a narrow line-width Tm fiber laser,” Opt. Express 24, 27536–27545 (2016).
[Crossref]

T. Zhao, D. Y. Shen, H. Chen, X. F. Yang, X. D. Xu, D. H. Zhou, and J. Xu, “Tm:fiber laser in-band pumped Ho:LuAG laser with over 18  W output at 2124.5  nm,” Laser Phys. 21, 1851–1854 (2011).
[Crossref]

Zhou, D. H.

T. Zhao, D. Y. Shen, H. Chen, X. F. Yang, X. D. Xu, D. H. Zhou, and J. Xu, “Tm:fiber laser in-band pumped Ho:LuAG laser with over 18  W output at 2124.5  nm,” Laser Phys. 21, 1851–1854 (2011).
[Crossref]

Zhou, T.

Zhu, G. L.

G. L. Zhu, Y. L. Ju, C. H. Zhang, B. Q. Yao, and Y. Z. Wang, “High-power, high-quality ZGP OPO pumped by a Tm, Ho:GdVO4 laser,” Laser Phys. 20, 1341–1343 (2010).
[Crossref]

Appl. Phys. B (2)

N. P. Barnes, F. Amzajerdian, D. J. Reichle, W. A. Carrion, G. E. Busch, and P. Leisher, “Diode pumped Ho:YAG and Ho:LuAG lasers, Q-switching and second harmonic generation,” Appl. Phys. B 103, 57–66 (2011).
[Crossref]

Y. Shen, B. Yao, Z. Cui, X. Duan, Y. Ju, and Y. Wang, “A ring ZnGeP2 optical parametric oscillator pumped by a Ho:LuAG laser,” Appl. Phys. B 117, 127–130 (2014).
[Crossref]

Chin. Opt. Lett. (1)

J. Cryst. Growth (2)

K. T. Zawilski, P. G. Schunemann, S. D. Setzler, and T. M. Pollak, “Large aperture single crystal ZnGeP2 for high-energy applications,” J. Cryst. Growth 310, 1891–1896 (2008).
[Crossref]

Y. Kuwano, K. Suda, N. Ishizawa, and T. Yamada, “Crystals growth and properties of (Lu, Y)3Al5O12,” J. Cryst. Growth 260, 159–165 (2004).
[Crossref]

J. Phys. Chem. Solids (1)

B. M. Walsh, G. W. Grew, and N. P. Barnes, “Energy levels and intensity parameters of Ho3+ ions in Y3Al5O12 and Lu3Al5O12,” J. Phys. Chem. Solids 67, 1567–1582 (2006).
[Crossref]

Laser Phys. (3)

T. Zhao, D. Y. Shen, H. Chen, X. F. Yang, X. D. Xu, D. H. Zhou, and J. Xu, “Tm:fiber laser in-band pumped Ho:LuAG laser with over 18  W output at 2124.5  nm,” Laser Phys. 21, 1851–1854 (2011).
[Crossref]

B. M. Wash, “Review of Tm and Ho materials; spectroscopy and lasers,” Laser Phys. 19, 855–866 (2009).
[Crossref]

G. L. Zhu, Y. L. Ju, C. H. Zhang, B. Q. Yao, and Y. Z. Wang, “High-power, high-quality ZGP OPO pumped by a Tm, Ho:GdVO4 laser,” Laser Phys. 20, 1341–1343 (2010).
[Crossref]

Opt. Express (5)

Opt. Lett. (3)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1. Experimental setup. Dots indicate s-polarized pump light; arrows indicate p-polarized pump light.
Fig. 2.
Fig. 2. Output power of the Tm:YLF slab laser. Inset, output spectrum at maximum output level.
Fig. 3.
Fig. 3. M2 measurement of the slab Tm:YLF laser.
Fig. 4.
Fig. 4. Output performance of the Ho:LuAG laser. Inset, output spectrum.
Fig. 5.
Fig. 5. M2 measurement of the Ho:LuAG laser.
Fig. 6.
Fig. 6. Dependences of (a) pulse widths, (b) pulse energies, and (c) peak powers on PRFs in cases of PRF=10  kHz, 15 kHz, and 20 kHz.
Fig. 7.
Fig. 7. Pulse profiles and trains of the Ho:LuAG laser with cases of (a) PRF=10  kHz, (b) 15 kHz and (c) 20 kHz.
Fig. 8.
Fig. 8. Output performance of the ZGP-OPO.
Fig. 9.
Fig. 9. Dependences of (a) pulse widths, (b) pulse energies and (c) peak powers on PRFs in cases of PRF=10  kHz, 15 kHz and 20 kHz.
Fig. 10.
Fig. 10. Pulse profiles and trains of the ZGP-OPO with cases of (a) PRF=10  kHz, (b) 15 kHz, and (c) 20 kHz.
Fig. 11.
Fig. 11. Output spectrum of the ZGP-OPO pumped by the Ho:LuAG laser.
Fig. 12.
Fig. 12. M2 measurement of the ZGP-OPO. Inset, typical 2D beam profile.