Abstract

The skylight degree of linear polarization (DoLP) was previously shown to vary primarily with aerosol optical depth and underlying surface reflectance for visible-to-near-infrared (VNIR) wavelengths. This paper extends the study of skylight polarization to 2.5 μm in the short-wave infrared (SWIR). A successive-orders-of-scattering radiative transfer code was used to model skylight polarization with measured inputs that included aerosol properties retrieved from a ground-based solar radiometer (extrapolated into the SWIR) and spectral surface reflectance from a handheld spectrometer. The modeled DoLP depended heavily on the aerosol size distribution at SWIR wavelengths and on the aerosol optical depth at VNIR wavelengths. Once the aerosol optical depth became greater than the Rayleigh optical depth, the predicted polarization deviated significantly from Rayleigh scattering theory. The SWIR polarization spectrum generally decreased at wavelengths beyond 1 μm at a rate dependent on the aerosol size distribution. The surface reflectance affected the polarization in the same manner throughout the visible (VIS)–SWIR spectrum, with higher reflectance decreasing the skylight polarization. Validation measurements of SWIR skylight polarization in a 1.5–1.8 μm band are also shown. These measurements were made on clean and smoky days using a SWIR imaging polarimeter. In both simulations and measurements, the SWIR skylight polarization was greater in the smoky atmosphere than in the clean atmosphere.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Effects of surface reflectance on skylight polarization measurements at the Mauna Loa Observatory

Andrew R. Dahlberg, Nathan J. Pust, and Joseph A. Shaw
Opt. Express 19(17) 16008-16021 (2011)

Effect of aerosol microphysical properties on polarization of skylight: sensitivity study and measurements

Eyk Boesche, Piet Stammes, Thomas Ruhtz, Réne Preusker, and Juergen Fischer
Appl. Opt. 45(34) 8790-8805 (2006)

Study on skylight polarization patterns over the ocean for polarized light navigation application

Le Guan, Shiqi Li, Liyuan Zhai, Sheng Liu, Hui Liu, Wei Lin, Yan Cui, Jinkui Chu, and Huikai Xie
Appl. Opt. 57(21) 6243-6251 (2018)

References

  • View by:
  • |
  • |
  • |

  1. J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt. 45, 5453–5469 (2006).
    [Crossref]
  2. I. Aben, F. Helderman, D. M. Stam, and P. Stammes, “Spectral fine structure in the polarisation of skylight,” Geophys. Res. Lett. 26, 591–594 (1999).
    [Crossref]
  3. D. M. Stam, J. F. De Haan, and J. W. Hovenier, “Degree of linear polarization of light emerging from the cloudless atmosphere in the oxygen A band,” J. Geophys. Res. 104, 16843–16858 (1999).
    [Crossref]
  4. M. Herman, J. L. Deuzé, A. Marchand, B. Roger, and P. Lallart, “Aerosol remote sensing from POLDER/ADEOS over the ocean: improved retrieval using a nonspherical particle model,” J. Geophys. Res. 110, D10S02 (2005).
    [Crossref]
  5. E. Bosche, P. Stammes, T. Ruhtz, R. Preusker, and J. Fischer, “Effect of aerosol microphysical properties on polarization of skylight: sensitivity study and measurements,” Appl. Opt. 45, 8790–8805 (2006).
    [Crossref]
  6. Z. Li, P. Goloub, C. Devaux, X. Gu, J. Deuzé, Y. Qiao, and F. Zhao, “Retrieval of aerosol optical and physical properties from ground-based spectral, multi-angular, and polarized sun-photometer measurements,” Remote Sens. Environ. 101, 519–533 (2006).
    [Crossref]
  7. D. J. Diner, A. Davis, B. Hancock, G. Gutt, R. A. Chipman, and B. Cairns, “Dual-photoelastic-modulator-based polarimetric imaging concept for aerosol remote sensing,” Appl. Opt. 46, 8428–8445 (2007).
    [Crossref]
  8. N. J. Pust and J. A. Shaw, “Digital all-sky polarization imaging of partly cloudy skies,” Appl. Opt. 47, H190–H198 (2008).
    [Crossref]
  9. F. Waquet, B. Cairns, K. Knobelspiesse, J. Chowdhary, L. D. Travis, B. Schmid, and M. I. Mischenko, “Polarimetric remote sensing of aerosols over land,” J. Geophys. Res. 114, D01206 (2009).
    [Crossref]
  10. G. van Harten, J. de Boer, J. H. H. Rietjens, F. Snik, A. Di Noia, O. P. Hasekamp, J. Vonk, H. Volten, J. M. Smit, J. S. Henzing, and C. U. Keller, “Atmospheric aerosol characterization with a ground-based SPEX spectropolarimetric instrument,” Atmos. Meas. Tech. 7, 4341–4351 (2014).
    [Crossref]
  11. K. Knobelspiesse, B. van Diedenhoven, A. Marshak, S. Dunagan, B. Holben, and I. Slutsker, “Cloud thermodynamic phase detection with polarimetrically sensitive passive sky radiometers,” Atmos. Meas. Tech. 8, 1537–1554 (2015).
    [Crossref]
  12. L. M. Dahl, M. J. Tauc, and J. A. Shaw, “Cloud thermodynamic phase detection using an all-sky imaging polarimeter,” Proc. SPIE 10407, 104070O (2017).
    [Crossref]
  13. F. J. Iannarilli, J. A. Shaw, S. H. Jones, and H. E. Scott, “Snapshot LWIR hyperspectral polarimetric imager for ocean surface sensing,” Proc. SPIE 4133, 270–283 (2000).
    [Crossref]
  14. J. A. Shaw, “Degree of linear polarization in spectral radiances from water-viewing infrared radiometers,” Appl. Opt. 38, 3157–3165 (1999).
    [Crossref]
  15. J. A. Shaw, “Polarimetric measurements of long-wave infrared spectral radiance from water,” Appl. Opt. 40, 5985–5990 (2001).
    [Crossref]
  16. M. Chami, “Importance of the polarization in the retrieval of oceanic constituents from the remote sensing reflectance,” J. Geophys. Res. 112, C05026 (2007).
    [Crossref]
  17. C. J. Zappa, M. L. Banner, H. Schultz, A. Corrada-Emmanuel, L. B. Wolff, and J. Yalcin, “Retrieval of short ocean wave slope using polarimetric imaging,” Meas. Sci. Technol. 19, 055503 (2008).
    [Crossref]
  18. J. L. Pezzaniti, D. Chenault, M. Roche, J. Reinhardt, and H. Schultz, “Wave slope measurement using imaging polarimetry,” Proc. SPIE 7317, 73170B (2009).
    [Crossref]
  19. K. J. Voss and N. Souaidia, “POLRADS: polarization radiance distribution measurement system,” Opt. Express 18, 19672–19680 (2010).
    [Crossref]
  20. P. Bhandari, K. J. Voss, and L. Logan, “An instrument to measure the downwelling polarized radiance distribution in the ocean,” Opt. Express 19, 17609–17620 (2011).
    [Crossref]
  21. B. A. Hooper, B. Van Pelt, J. Z. Williams, J. P. Dugan, M. Yi, C. C. Piotrowski, and C. Miskey, “Airborne spectral polarimeter for ocean wave research,” J. Atmos. Ocean. Technol. 32, 805–815 (2015).
    [Crossref]
  22. F. Goudail, P. Terrier, Y. Takakura, L. Bigué, F. Galland, and V. DeVlaminck, “Target detection with a liquid-crystal-based passive Stokes polarimeter,” Appl. Opt. 43, 274–282 (2004).
    [Crossref]
  23. S. Lin, K. M. Yemelyanov, E. N. Pugh, and N. Engheta, “Polarization enhanced visual surveillance techniques,” in IEEE International Conference on Networking, Sensing and Control (2004), Vol. 1, pp. 216–221.
  24. D. A. Lavigne, M. Breton, G. Fournier, J. M. Charette, V. Rivet, and A. Bernier, “Target discrimination of man-made objects using passive polarimetric signatures acquired in the visible and infrared spectral bands,” Proc. SPIE 8160, 816007 (2011).
    [Crossref]
  25. D. Lambrinos, M. Maris, H. Kobayashi, T. Labhart, R. Pfeifer, and R. Wehner, “An autonomous agent navigating with a polarized light compass,” Adapt. Behav. 6, 131–161 (1997).
    [Crossref]
  26. J. Chu, K. Zhao, Q. Zhang, and T. Wang, “Construction and performance test of a novel polarization sensor for navigation,” Sens. Actuators A 148, 75–82 (2008).
    [Crossref]
  27. S. B. Karman, S. Z. M. Diah, and I. C. Gebeshuber, “Bio-inspired polarized skylight-based navigation sensor: a review,” Sensors 12, 14232–14261 (2012).
    [Crossref]
  28. T. Aycock, A. Lompado, T. Wolz, and D. Chenault, “Passive optical sensing of atmospheric polarization for GPS denied operations,” Proc. SPIE 9838, 98380Y (2016).
    [Crossref]
  29. D. M. Harrington, J. R. Kuhn, and S. Hall, “Deriving telescope Mueller matrices using daytime sky polarization observations,” Publ. Astron. Soc. Pac. 123, 799–811 (2011).
    [Crossref]
  30. D. M. Harrington, J. R. Kuhn, and A. L. Ariste, “Daytime sky polarization calibration limitations,” Proc. SPIE 9912, 99126S (2016).
    [Crossref]
  31. D. M. Stam, “Spectropolarimetric signatures of Earth-like extrasolar planets,” Astron. Astrophys. 482, 989–1007 (2008).
    [Crossref]
  32. C. U. Keller, H. M. Schmid, L. B. Venema, H. Hanenburg, R. Jager, M. Kasper, P. Martinez, F. Rigal, M. Rodenhuis, R. Roelfsema, F. Snik, C. Verninaud, and N. Yaitskova, “EPOL: the exoplanet polarimeter for EPICS at the E-ELT,” in Ground-based and Airborne Instrumentation for Astronomy III (SPIE, 2010), Vol. 7735, paper 77356G.
  33. M. F. Sterzik, S. Bagnulo, and E. Palle, “Biosignatures as revealed by spectropolarimetry of Earthshine,” Nature 483, 64–66 (2012).
    [Crossref]
  34. M. A. Miller, R. V. Blumer, and J. D. Howe, “Active and passive SWIR imaging polarimetry,” Proc. SPIE 4481, 87–99 (2011).
    [Crossref]
  35. R. G. Driggers, V. Hodgkin, and R. Vollmerhausen, “What good is SWIR? Passive day comparison of VIS, NIR, and SWIR,” Proc. SPIE 8706, 87060L (2013).
    [Crossref]
  36. M. P. Hansen and D. S. Malchow, “Overview of SWIR detectors, cameras, and applications,” Proc. SPIE 6939, 69390I (2008).
    [Crossref]
  37. B. Stark, M. McGee, and Y. Chen, “Short wave infrared (SWIR) imaging systems using small Unmanned Aerial Systems (sUAS),” in International Conference on Unmanned Aircraft Systems (ICUAS) (2015), pp. 495–501.
  38. K. L. Coulson, Polarization and Intensity of Light in the Atmosphere (Deepak, 1988).
  39. A. Kreuter, C. Emde, and M. Blumthaler, “Measuring the influence of aerosols and albedo on sky polarization,” Atmos. Res. 98, 363–367 (2010).
    [Crossref]
  40. A. Dahlberg, N. J. Pust, and J. A. Shaw, “Effects of surface reflectance on skylight polarization measurements at the Mauna Loa Observatory,” Opt. Express 19, 16008–16021 (2011).
    [Crossref]
  41. N. J. Pust and J. A. Shaw, “Wavelength dependence of the degree of polarization in cloud-free skies: simulations of real environments,” Opt. Express 20, 15559–15568 (2012).
    [Crossref]
  42. J. A. Shaw, “Infrared polarization in the natural earth environment,” Proc. SPIE 4819, 129–138 (2002).
    [Crossref]
  43. J. Lenoble, M. Herman, J. L. Deuzé, B. Lafrance, R. Santer, and D. Tanré, “A successive order of scattering code for solving the vector equation of transfer in the earth’s atmosphere with aerosols,” J. Quant. Spectrosc. Radiat. Transfer 107, 479–507 (2007).
    [Crossref]
  44. N. J. Pust, A. Dahlberg, M. Thomas, and J. A. Shaw, “Comparison of full-sky polarization and radiance observations to radiative transfer simulations which employ AERONET products,” Opt. Express 19, 18602–18613 (2011).
    [Crossref]
  45. L. M. Dahl and J. A. Shaw, “Visible-to-SWIR wavelength variation of skylight polarization,” Proc. SPIE 9613, 96130P (2015).
    [Crossref]
  46. B. N. Holben, T. F. Eck, I. Slutsker, D. Tanré, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—a federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66, 1–16 (1998).
    [Crossref]
  47. Bozeman AERONET Site, https://aeronet.gsfc.nasa.gov/ .
  48. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  49. O. Dubovik and M. D. King, “A flexible inversion algorithm for retrieval of aerosol optical properties from sun and sky radiance measurements,” J. Geophys. Res. 105, 20673–20696 (2000).
    [Crossref]
  50. A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Godlen, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, P. E. Lewis, and E. P. Shettle, “MODTRAN5: 2006 update,” Proc. SPIE 6233, 508–515 (2006).
    [Crossref]
  51. A. Ångström, “The parameters of atmospheric turbidity,” Tellus 16, 64–75 (1964).
  52. E. P. Shettle and R. W. Fenn, “Models for the aerosols for the lower atmosphere and the effects of humidity variations on their optical properties,” (1979).
  53. J. R. Jensen, Remote Sensing of the Environment: An Earth Resource Perspective (Pearson, 2006).
  54. D. R. Bates, “Rayleigh scattering by air,” Planet. Space Sci. 32, 785–790 (1984).
    [Crossref]
  55. J. W. Strutt, “On the light from the sky, its polarization and colour,” Philos. Mag. 41(271), 107–120 (1871).
    [Crossref]
  56. L. Rayleigh, “On the transmission of light through an atmosphere containing small particles in suspension, and on the origin of the blue sky,” Philos. Mag. 47(287), 375–384 (1899).
    [Crossref]
  57. J. Lenoble, “Scattering and polarization of the solar radiation in the Earth’s atmosphere: historical review and present applications,” in AIP Conference Proceedings (2009), pp. 7–10.
  58. N. J. Pust and J. A. Shaw, “Dual-field imaging polarimeter using liquid crystal variable retarders,” Appl. Opt. 45, 5470–5478 (2006).
    [Crossref]

2017 (1)

L. M. Dahl, M. J. Tauc, and J. A. Shaw, “Cloud thermodynamic phase detection using an all-sky imaging polarimeter,” Proc. SPIE 10407, 104070O (2017).
[Crossref]

2016 (2)

T. Aycock, A. Lompado, T. Wolz, and D. Chenault, “Passive optical sensing of atmospheric polarization for GPS denied operations,” Proc. SPIE 9838, 98380Y (2016).
[Crossref]

D. M. Harrington, J. R. Kuhn, and A. L. Ariste, “Daytime sky polarization calibration limitations,” Proc. SPIE 9912, 99126S (2016).
[Crossref]

2015 (3)

B. A. Hooper, B. Van Pelt, J. Z. Williams, J. P. Dugan, M. Yi, C. C. Piotrowski, and C. Miskey, “Airborne spectral polarimeter for ocean wave research,” J. Atmos. Ocean. Technol. 32, 805–815 (2015).
[Crossref]

K. Knobelspiesse, B. van Diedenhoven, A. Marshak, S. Dunagan, B. Holben, and I. Slutsker, “Cloud thermodynamic phase detection with polarimetrically sensitive passive sky radiometers,” Atmos. Meas. Tech. 8, 1537–1554 (2015).
[Crossref]

L. M. Dahl and J. A. Shaw, “Visible-to-SWIR wavelength variation of skylight polarization,” Proc. SPIE 9613, 96130P (2015).
[Crossref]

2014 (1)

G. van Harten, J. de Boer, J. H. H. Rietjens, F. Snik, A. Di Noia, O. P. Hasekamp, J. Vonk, H. Volten, J. M. Smit, J. S. Henzing, and C. U. Keller, “Atmospheric aerosol characterization with a ground-based SPEX spectropolarimetric instrument,” Atmos. Meas. Tech. 7, 4341–4351 (2014).
[Crossref]

2013 (1)

R. G. Driggers, V. Hodgkin, and R. Vollmerhausen, “What good is SWIR? Passive day comparison of VIS, NIR, and SWIR,” Proc. SPIE 8706, 87060L (2013).
[Crossref]

2012 (3)

M. F. Sterzik, S. Bagnulo, and E. Palle, “Biosignatures as revealed by spectropolarimetry of Earthshine,” Nature 483, 64–66 (2012).
[Crossref]

S. B. Karman, S. Z. M. Diah, and I. C. Gebeshuber, “Bio-inspired polarized skylight-based navigation sensor: a review,” Sensors 12, 14232–14261 (2012).
[Crossref]

N. J. Pust and J. A. Shaw, “Wavelength dependence of the degree of polarization in cloud-free skies: simulations of real environments,” Opt. Express 20, 15559–15568 (2012).
[Crossref]

2011 (6)

A. Dahlberg, N. J. Pust, and J. A. Shaw, “Effects of surface reflectance on skylight polarization measurements at the Mauna Loa Observatory,” Opt. Express 19, 16008–16021 (2011).
[Crossref]

N. J. Pust, A. Dahlberg, M. Thomas, and J. A. Shaw, “Comparison of full-sky polarization and radiance observations to radiative transfer simulations which employ AERONET products,” Opt. Express 19, 18602–18613 (2011).
[Crossref]

D. A. Lavigne, M. Breton, G. Fournier, J. M. Charette, V. Rivet, and A. Bernier, “Target discrimination of man-made objects using passive polarimetric signatures acquired in the visible and infrared spectral bands,” Proc. SPIE 8160, 816007 (2011).
[Crossref]

P. Bhandari, K. J. Voss, and L. Logan, “An instrument to measure the downwelling polarized radiance distribution in the ocean,” Opt. Express 19, 17609–17620 (2011).
[Crossref]

M. A. Miller, R. V. Blumer, and J. D. Howe, “Active and passive SWIR imaging polarimetry,” Proc. SPIE 4481, 87–99 (2011).
[Crossref]

D. M. Harrington, J. R. Kuhn, and S. Hall, “Deriving telescope Mueller matrices using daytime sky polarization observations,” Publ. Astron. Soc. Pac. 123, 799–811 (2011).
[Crossref]

2010 (2)

K. J. Voss and N. Souaidia, “POLRADS: polarization radiance distribution measurement system,” Opt. Express 18, 19672–19680 (2010).
[Crossref]

A. Kreuter, C. Emde, and M. Blumthaler, “Measuring the influence of aerosols and albedo on sky polarization,” Atmos. Res. 98, 363–367 (2010).
[Crossref]

2009 (2)

J. L. Pezzaniti, D. Chenault, M. Roche, J. Reinhardt, and H. Schultz, “Wave slope measurement using imaging polarimetry,” Proc. SPIE 7317, 73170B (2009).
[Crossref]

F. Waquet, B. Cairns, K. Knobelspiesse, J. Chowdhary, L. D. Travis, B. Schmid, and M. I. Mischenko, “Polarimetric remote sensing of aerosols over land,” J. Geophys. Res. 114, D01206 (2009).
[Crossref]

2008 (5)

N. J. Pust and J. A. Shaw, “Digital all-sky polarization imaging of partly cloudy skies,” Appl. Opt. 47, H190–H198 (2008).
[Crossref]

C. J. Zappa, M. L. Banner, H. Schultz, A. Corrada-Emmanuel, L. B. Wolff, and J. Yalcin, “Retrieval of short ocean wave slope using polarimetric imaging,” Meas. Sci. Technol. 19, 055503 (2008).
[Crossref]

J. Chu, K. Zhao, Q. Zhang, and T. Wang, “Construction and performance test of a novel polarization sensor for navigation,” Sens. Actuators A 148, 75–82 (2008).
[Crossref]

D. M. Stam, “Spectropolarimetric signatures of Earth-like extrasolar planets,” Astron. Astrophys. 482, 989–1007 (2008).
[Crossref]

M. P. Hansen and D. S. Malchow, “Overview of SWIR detectors, cameras, and applications,” Proc. SPIE 6939, 69390I (2008).
[Crossref]

2007 (3)

M. Chami, “Importance of the polarization in the retrieval of oceanic constituents from the remote sensing reflectance,” J. Geophys. Res. 112, C05026 (2007).
[Crossref]

D. J. Diner, A. Davis, B. Hancock, G. Gutt, R. A. Chipman, and B. Cairns, “Dual-photoelastic-modulator-based polarimetric imaging concept for aerosol remote sensing,” Appl. Opt. 46, 8428–8445 (2007).
[Crossref]

J. Lenoble, M. Herman, J. L. Deuzé, B. Lafrance, R. Santer, and D. Tanré, “A successive order of scattering code for solving the vector equation of transfer in the earth’s atmosphere with aerosols,” J. Quant. Spectrosc. Radiat. Transfer 107, 479–507 (2007).
[Crossref]

2006 (5)

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Godlen, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, P. E. Lewis, and E. P. Shettle, “MODTRAN5: 2006 update,” Proc. SPIE 6233, 508–515 (2006).
[Crossref]

N. J. Pust and J. A. Shaw, “Dual-field imaging polarimeter using liquid crystal variable retarders,” Appl. Opt. 45, 5470–5478 (2006).
[Crossref]

J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt. 45, 5453–5469 (2006).
[Crossref]

E. Bosche, P. Stammes, T. Ruhtz, R. Preusker, and J. Fischer, “Effect of aerosol microphysical properties on polarization of skylight: sensitivity study and measurements,” Appl. Opt. 45, 8790–8805 (2006).
[Crossref]

Z. Li, P. Goloub, C. Devaux, X. Gu, J. Deuzé, Y. Qiao, and F. Zhao, “Retrieval of aerosol optical and physical properties from ground-based spectral, multi-angular, and polarized sun-photometer measurements,” Remote Sens. Environ. 101, 519–533 (2006).
[Crossref]

2005 (1)

M. Herman, J. L. Deuzé, A. Marchand, B. Roger, and P. Lallart, “Aerosol remote sensing from POLDER/ADEOS over the ocean: improved retrieval using a nonspherical particle model,” J. Geophys. Res. 110, D10S02 (2005).
[Crossref]

2004 (1)

2002 (1)

J. A. Shaw, “Infrared polarization in the natural earth environment,” Proc. SPIE 4819, 129–138 (2002).
[Crossref]

2001 (1)

2000 (2)

F. J. Iannarilli, J. A. Shaw, S. H. Jones, and H. E. Scott, “Snapshot LWIR hyperspectral polarimetric imager for ocean surface sensing,” Proc. SPIE 4133, 270–283 (2000).
[Crossref]

O. Dubovik and M. D. King, “A flexible inversion algorithm for retrieval of aerosol optical properties from sun and sky radiance measurements,” J. Geophys. Res. 105, 20673–20696 (2000).
[Crossref]

1999 (3)

J. A. Shaw, “Degree of linear polarization in spectral radiances from water-viewing infrared radiometers,” Appl. Opt. 38, 3157–3165 (1999).
[Crossref]

I. Aben, F. Helderman, D. M. Stam, and P. Stammes, “Spectral fine structure in the polarisation of skylight,” Geophys. Res. Lett. 26, 591–594 (1999).
[Crossref]

D. M. Stam, J. F. De Haan, and J. W. Hovenier, “Degree of linear polarization of light emerging from the cloudless atmosphere in the oxygen A band,” J. Geophys. Res. 104, 16843–16858 (1999).
[Crossref]

1998 (1)

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanré, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—a federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66, 1–16 (1998).
[Crossref]

1997 (1)

D. Lambrinos, M. Maris, H. Kobayashi, T. Labhart, R. Pfeifer, and R. Wehner, “An autonomous agent navigating with a polarized light compass,” Adapt. Behav. 6, 131–161 (1997).
[Crossref]

1984 (1)

D. R. Bates, “Rayleigh scattering by air,” Planet. Space Sci. 32, 785–790 (1984).
[Crossref]

1964 (1)

A. Ångström, “The parameters of atmospheric turbidity,” Tellus 16, 64–75 (1964).

1899 (1)

L. Rayleigh, “On the transmission of light through an atmosphere containing small particles in suspension, and on the origin of the blue sky,” Philos. Mag. 47(287), 375–384 (1899).
[Crossref]

1871 (1)

J. W. Strutt, “On the light from the sky, its polarization and colour,” Philos. Mag. 41(271), 107–120 (1871).
[Crossref]

Aben, I.

I. Aben, F. Helderman, D. M. Stam, and P. Stammes, “Spectral fine structure in the polarisation of skylight,” Geophys. Res. Lett. 26, 591–594 (1999).
[Crossref]

Acharya, P. K.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Godlen, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, P. E. Lewis, and E. P. Shettle, “MODTRAN5: 2006 update,” Proc. SPIE 6233, 508–515 (2006).
[Crossref]

Adler-Godlen, S. M.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Godlen, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, P. E. Lewis, and E. P. Shettle, “MODTRAN5: 2006 update,” Proc. SPIE 6233, 508–515 (2006).
[Crossref]

Anderson, G. P.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Godlen, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, P. E. Lewis, and E. P. Shettle, “MODTRAN5: 2006 update,” Proc. SPIE 6233, 508–515 (2006).
[Crossref]

Ångström, A.

A. Ångström, “The parameters of atmospheric turbidity,” Tellus 16, 64–75 (1964).

Ariste, A. L.

D. M. Harrington, J. R. Kuhn, and A. L. Ariste, “Daytime sky polarization calibration limitations,” Proc. SPIE 9912, 99126S (2016).
[Crossref]

Aycock, T.

T. Aycock, A. Lompado, T. Wolz, and D. Chenault, “Passive optical sensing of atmospheric polarization for GPS denied operations,” Proc. SPIE 9838, 98380Y (2016).
[Crossref]

Bagnulo, S.

M. F. Sterzik, S. Bagnulo, and E. Palle, “Biosignatures as revealed by spectropolarimetry of Earthshine,” Nature 483, 64–66 (2012).
[Crossref]

Banner, M. L.

C. J. Zappa, M. L. Banner, H. Schultz, A. Corrada-Emmanuel, L. B. Wolff, and J. Yalcin, “Retrieval of short ocean wave slope using polarimetric imaging,” Meas. Sci. Technol. 19, 055503 (2008).
[Crossref]

Bates, D. R.

D. R. Bates, “Rayleigh scattering by air,” Planet. Space Sci. 32, 785–790 (1984).
[Crossref]

Berk, A.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Godlen, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, P. E. Lewis, and E. P. Shettle, “MODTRAN5: 2006 update,” Proc. SPIE 6233, 508–515 (2006).
[Crossref]

Bernier, A.

D. A. Lavigne, M. Breton, G. Fournier, J. M. Charette, V. Rivet, and A. Bernier, “Target discrimination of man-made objects using passive polarimetric signatures acquired in the visible and infrared spectral bands,” Proc. SPIE 8160, 816007 (2011).
[Crossref]

Bernstein, L. S.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Godlen, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, P. E. Lewis, and E. P. Shettle, “MODTRAN5: 2006 update,” Proc. SPIE 6233, 508–515 (2006).
[Crossref]

Bhandari, P.

Bigué, L.

Blumer, R. V.

M. A. Miller, R. V. Blumer, and J. D. Howe, “Active and passive SWIR imaging polarimetry,” Proc. SPIE 4481, 87–99 (2011).
[Crossref]

Blumthaler, M.

A. Kreuter, C. Emde, and M. Blumthaler, “Measuring the influence of aerosols and albedo on sky polarization,” Atmos. Res. 98, 363–367 (2010).
[Crossref]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Borel, C. C.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Godlen, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, P. E. Lewis, and E. P. Shettle, “MODTRAN5: 2006 update,” Proc. SPIE 6233, 508–515 (2006).
[Crossref]

Bosche, E.

Breton, M.

D. A. Lavigne, M. Breton, G. Fournier, J. M. Charette, V. Rivet, and A. Bernier, “Target discrimination of man-made objects using passive polarimetric signatures acquired in the visible and infrared spectral bands,” Proc. SPIE 8160, 816007 (2011).
[Crossref]

Buis, J. P.

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanré, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—a federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66, 1–16 (1998).
[Crossref]

Cairns, B.

F. Waquet, B. Cairns, K. Knobelspiesse, J. Chowdhary, L. D. Travis, B. Schmid, and M. I. Mischenko, “Polarimetric remote sensing of aerosols over land,” J. Geophys. Res. 114, D01206 (2009).
[Crossref]

D. J. Diner, A. Davis, B. Hancock, G. Gutt, R. A. Chipman, and B. Cairns, “Dual-photoelastic-modulator-based polarimetric imaging concept for aerosol remote sensing,” Appl. Opt. 46, 8428–8445 (2007).
[Crossref]

Chami, M.

M. Chami, “Importance of the polarization in the retrieval of oceanic constituents from the remote sensing reflectance,” J. Geophys. Res. 112, C05026 (2007).
[Crossref]

Charette, J. M.

D. A. Lavigne, M. Breton, G. Fournier, J. M. Charette, V. Rivet, and A. Bernier, “Target discrimination of man-made objects using passive polarimetric signatures acquired in the visible and infrared spectral bands,” Proc. SPIE 8160, 816007 (2011).
[Crossref]

Chen, Y.

B. Stark, M. McGee, and Y. Chen, “Short wave infrared (SWIR) imaging systems using small Unmanned Aerial Systems (sUAS),” in International Conference on Unmanned Aircraft Systems (ICUAS) (2015), pp. 495–501.

Chenault, D.

T. Aycock, A. Lompado, T. Wolz, and D. Chenault, “Passive optical sensing of atmospheric polarization for GPS denied operations,” Proc. SPIE 9838, 98380Y (2016).
[Crossref]

J. L. Pezzaniti, D. Chenault, M. Roche, J. Reinhardt, and H. Schultz, “Wave slope measurement using imaging polarimetry,” Proc. SPIE 7317, 73170B (2009).
[Crossref]

Chenault, D. B.

Chetwynd, J. H.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Godlen, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, P. E. Lewis, and E. P. Shettle, “MODTRAN5: 2006 update,” Proc. SPIE 6233, 508–515 (2006).
[Crossref]

Chipman, R. A.

Chowdhary, J.

F. Waquet, B. Cairns, K. Knobelspiesse, J. Chowdhary, L. D. Travis, B. Schmid, and M. I. Mischenko, “Polarimetric remote sensing of aerosols over land,” J. Geophys. Res. 114, D01206 (2009).
[Crossref]

Chu, J.

J. Chu, K. Zhao, Q. Zhang, and T. Wang, “Construction and performance test of a novel polarization sensor for navigation,” Sens. Actuators A 148, 75–82 (2008).
[Crossref]

Cooley, T. W.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Godlen, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, P. E. Lewis, and E. P. Shettle, “MODTRAN5: 2006 update,” Proc. SPIE 6233, 508–515 (2006).
[Crossref]

Corrada-Emmanuel, A.

C. J. Zappa, M. L. Banner, H. Schultz, A. Corrada-Emmanuel, L. B. Wolff, and J. Yalcin, “Retrieval of short ocean wave slope using polarimetric imaging,” Meas. Sci. Technol. 19, 055503 (2008).
[Crossref]

Coulson, K. L.

K. L. Coulson, Polarization and Intensity of Light in the Atmosphere (Deepak, 1988).

Dahl, L. M.

L. M. Dahl, M. J. Tauc, and J. A. Shaw, “Cloud thermodynamic phase detection using an all-sky imaging polarimeter,” Proc. SPIE 10407, 104070O (2017).
[Crossref]

L. M. Dahl and J. A. Shaw, “Visible-to-SWIR wavelength variation of skylight polarization,” Proc. SPIE 9613, 96130P (2015).
[Crossref]

Dahlberg, A.

Davis, A.

de Boer, J.

G. van Harten, J. de Boer, J. H. H. Rietjens, F. Snik, A. Di Noia, O. P. Hasekamp, J. Vonk, H. Volten, J. M. Smit, J. S. Henzing, and C. U. Keller, “Atmospheric aerosol characterization with a ground-based SPEX spectropolarimetric instrument,” Atmos. Meas. Tech. 7, 4341–4351 (2014).
[Crossref]

De Haan, J. F.

D. M. Stam, J. F. De Haan, and J. W. Hovenier, “Degree of linear polarization of light emerging from the cloudless atmosphere in the oxygen A band,” J. Geophys. Res. 104, 16843–16858 (1999).
[Crossref]

Deuzé, J.

Z. Li, P. Goloub, C. Devaux, X. Gu, J. Deuzé, Y. Qiao, and F. Zhao, “Retrieval of aerosol optical and physical properties from ground-based spectral, multi-angular, and polarized sun-photometer measurements,” Remote Sens. Environ. 101, 519–533 (2006).
[Crossref]

Deuzé, J. L.

J. Lenoble, M. Herman, J. L. Deuzé, B. Lafrance, R. Santer, and D. Tanré, “A successive order of scattering code for solving the vector equation of transfer in the earth’s atmosphere with aerosols,” J. Quant. Spectrosc. Radiat. Transfer 107, 479–507 (2007).
[Crossref]

M. Herman, J. L. Deuzé, A. Marchand, B. Roger, and P. Lallart, “Aerosol remote sensing from POLDER/ADEOS over the ocean: improved retrieval using a nonspherical particle model,” J. Geophys. Res. 110, D10S02 (2005).
[Crossref]

Devaux, C.

Z. Li, P. Goloub, C. Devaux, X. Gu, J. Deuzé, Y. Qiao, and F. Zhao, “Retrieval of aerosol optical and physical properties from ground-based spectral, multi-angular, and polarized sun-photometer measurements,” Remote Sens. Environ. 101, 519–533 (2006).
[Crossref]

DeVlaminck, V.

Di Noia, A.

G. van Harten, J. de Boer, J. H. H. Rietjens, F. Snik, A. Di Noia, O. P. Hasekamp, J. Vonk, H. Volten, J. M. Smit, J. S. Henzing, and C. U. Keller, “Atmospheric aerosol characterization with a ground-based SPEX spectropolarimetric instrument,” Atmos. Meas. Tech. 7, 4341–4351 (2014).
[Crossref]

Diah, S. Z. M.

S. B. Karman, S. Z. M. Diah, and I. C. Gebeshuber, “Bio-inspired polarized skylight-based navigation sensor: a review,” Sensors 12, 14232–14261 (2012).
[Crossref]

Diner, D. J.

Driggers, R. G.

R. G. Driggers, V. Hodgkin, and R. Vollmerhausen, “What good is SWIR? Passive day comparison of VIS, NIR, and SWIR,” Proc. SPIE 8706, 87060L (2013).
[Crossref]

Dubovik, O.

O. Dubovik and M. D. King, “A flexible inversion algorithm for retrieval of aerosol optical properties from sun and sky radiance measurements,” J. Geophys. Res. 105, 20673–20696 (2000).
[Crossref]

Dugan, J. P.

B. A. Hooper, B. Van Pelt, J. Z. Williams, J. P. Dugan, M. Yi, C. C. Piotrowski, and C. Miskey, “Airborne spectral polarimeter for ocean wave research,” J. Atmos. Ocean. Technol. 32, 805–815 (2015).
[Crossref]

Dunagan, S.

K. Knobelspiesse, B. van Diedenhoven, A. Marshak, S. Dunagan, B. Holben, and I. Slutsker, “Cloud thermodynamic phase detection with polarimetrically sensitive passive sky radiometers,” Atmos. Meas. Tech. 8, 1537–1554 (2015).
[Crossref]

Eck, T. F.

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanré, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—a federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66, 1–16 (1998).
[Crossref]

Emde, C.

A. Kreuter, C. Emde, and M. Blumthaler, “Measuring the influence of aerosols and albedo on sky polarization,” Atmos. Res. 98, 363–367 (2010).
[Crossref]

Engheta, N.

S. Lin, K. M. Yemelyanov, E. N. Pugh, and N. Engheta, “Polarization enhanced visual surveillance techniques,” in IEEE International Conference on Networking, Sensing and Control (2004), Vol. 1, pp. 216–221.

Fenn, R. W.

E. P. Shettle and R. W. Fenn, “Models for the aerosols for the lower atmosphere and the effects of humidity variations on their optical properties,” (1979).

Fischer, J.

Fournier, G.

D. A. Lavigne, M. Breton, G. Fournier, J. M. Charette, V. Rivet, and A. Bernier, “Target discrimination of man-made objects using passive polarimetric signatures acquired in the visible and infrared spectral bands,” Proc. SPIE 8160, 816007 (2011).
[Crossref]

Fox, M.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Godlen, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, P. E. Lewis, and E. P. Shettle, “MODTRAN5: 2006 update,” Proc. SPIE 6233, 508–515 (2006).
[Crossref]

Galland, F.

Gardner, J. A.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Godlen, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, P. E. Lewis, and E. P. Shettle, “MODTRAN5: 2006 update,” Proc. SPIE 6233, 508–515 (2006).
[Crossref]

Gebeshuber, I. C.

S. B. Karman, S. Z. M. Diah, and I. C. Gebeshuber, “Bio-inspired polarized skylight-based navigation sensor: a review,” Sensors 12, 14232–14261 (2012).
[Crossref]

Goldstein, D. L.

Goloub, P.

Z. Li, P. Goloub, C. Devaux, X. Gu, J. Deuzé, Y. Qiao, and F. Zhao, “Retrieval of aerosol optical and physical properties from ground-based spectral, multi-angular, and polarized sun-photometer measurements,” Remote Sens. Environ. 101, 519–533 (2006).
[Crossref]

Goudail, F.

Gu, X.

Z. Li, P. Goloub, C. Devaux, X. Gu, J. Deuzé, Y. Qiao, and F. Zhao, “Retrieval of aerosol optical and physical properties from ground-based spectral, multi-angular, and polarized sun-photometer measurements,” Remote Sens. Environ. 101, 519–533 (2006).
[Crossref]

Gutt, G.

Hall, S.

D. M. Harrington, J. R. Kuhn, and S. Hall, “Deriving telescope Mueller matrices using daytime sky polarization observations,” Publ. Astron. Soc. Pac. 123, 799–811 (2011).
[Crossref]

Hancock, B.

Hanenburg, H.

C. U. Keller, H. M. Schmid, L. B. Venema, H. Hanenburg, R. Jager, M. Kasper, P. Martinez, F. Rigal, M. Rodenhuis, R. Roelfsema, F. Snik, C. Verninaud, and N. Yaitskova, “EPOL: the exoplanet polarimeter for EPICS at the E-ELT,” in Ground-based and Airborne Instrumentation for Astronomy III (SPIE, 2010), Vol. 7735, paper 77356G.

Hansen, M. P.

M. P. Hansen and D. S. Malchow, “Overview of SWIR detectors, cameras, and applications,” Proc. SPIE 6939, 69390I (2008).
[Crossref]

Harrington, D. M.

D. M. Harrington, J. R. Kuhn, and A. L. Ariste, “Daytime sky polarization calibration limitations,” Proc. SPIE 9912, 99126S (2016).
[Crossref]

D. M. Harrington, J. R. Kuhn, and S. Hall, “Deriving telescope Mueller matrices using daytime sky polarization observations,” Publ. Astron. Soc. Pac. 123, 799–811 (2011).
[Crossref]

Hasekamp, O. P.

G. van Harten, J. de Boer, J. H. H. Rietjens, F. Snik, A. Di Noia, O. P. Hasekamp, J. Vonk, H. Volten, J. M. Smit, J. S. Henzing, and C. U. Keller, “Atmospheric aerosol characterization with a ground-based SPEX spectropolarimetric instrument,” Atmos. Meas. Tech. 7, 4341–4351 (2014).
[Crossref]

Helderman, F.

I. Aben, F. Helderman, D. M. Stam, and P. Stammes, “Spectral fine structure in the polarisation of skylight,” Geophys. Res. Lett. 26, 591–594 (1999).
[Crossref]

Henzing, J. S.

G. van Harten, J. de Boer, J. H. H. Rietjens, F. Snik, A. Di Noia, O. P. Hasekamp, J. Vonk, H. Volten, J. M. Smit, J. S. Henzing, and C. U. Keller, “Atmospheric aerosol characterization with a ground-based SPEX spectropolarimetric instrument,” Atmos. Meas. Tech. 7, 4341–4351 (2014).
[Crossref]

Herman, M.

J. Lenoble, M. Herman, J. L. Deuzé, B. Lafrance, R. Santer, and D. Tanré, “A successive order of scattering code for solving the vector equation of transfer in the earth’s atmosphere with aerosols,” J. Quant. Spectrosc. Radiat. Transfer 107, 479–507 (2007).
[Crossref]

M. Herman, J. L. Deuzé, A. Marchand, B. Roger, and P. Lallart, “Aerosol remote sensing from POLDER/ADEOS over the ocean: improved retrieval using a nonspherical particle model,” J. Geophys. Res. 110, D10S02 (2005).
[Crossref]

Hodgkin, V.

R. G. Driggers, V. Hodgkin, and R. Vollmerhausen, “What good is SWIR? Passive day comparison of VIS, NIR, and SWIR,” Proc. SPIE 8706, 87060L (2013).
[Crossref]

Hoke, M. L.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Godlen, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, P. E. Lewis, and E. P. Shettle, “MODTRAN5: 2006 update,” Proc. SPIE 6233, 508–515 (2006).
[Crossref]

Holben, B.

K. Knobelspiesse, B. van Diedenhoven, A. Marshak, S. Dunagan, B. Holben, and I. Slutsker, “Cloud thermodynamic phase detection with polarimetrically sensitive passive sky radiometers,” Atmos. Meas. Tech. 8, 1537–1554 (2015).
[Crossref]

Holben, B. N.

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanré, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—a federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66, 1–16 (1998).
[Crossref]

Hooper, B. A.

B. A. Hooper, B. Van Pelt, J. Z. Williams, J. P. Dugan, M. Yi, C. C. Piotrowski, and C. Miskey, “Airborne spectral polarimeter for ocean wave research,” J. Atmos. Ocean. Technol. 32, 805–815 (2015).
[Crossref]

Hovenier, J. W.

D. M. Stam, J. F. De Haan, and J. W. Hovenier, “Degree of linear polarization of light emerging from the cloudless atmosphere in the oxygen A band,” J. Geophys. Res. 104, 16843–16858 (1999).
[Crossref]

Howe, J. D.

M. A. Miller, R. V. Blumer, and J. D. Howe, “Active and passive SWIR imaging polarimetry,” Proc. SPIE 4481, 87–99 (2011).
[Crossref]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Iannarilli, F. J.

F. J. Iannarilli, J. A. Shaw, S. H. Jones, and H. E. Scott, “Snapshot LWIR hyperspectral polarimetric imager for ocean surface sensing,” Proc. SPIE 4133, 270–283 (2000).
[Crossref]

Jager, R.

C. U. Keller, H. M. Schmid, L. B. Venema, H. Hanenburg, R. Jager, M. Kasper, P. Martinez, F. Rigal, M. Rodenhuis, R. Roelfsema, F. Snik, C. Verninaud, and N. Yaitskova, “EPOL: the exoplanet polarimeter for EPICS at the E-ELT,” in Ground-based and Airborne Instrumentation for Astronomy III (SPIE, 2010), Vol. 7735, paper 77356G.

Jankowiak, I.

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanré, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—a federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66, 1–16 (1998).
[Crossref]

Jensen, J. R.

J. R. Jensen, Remote Sensing of the Environment: An Earth Resource Perspective (Pearson, 2006).

Jones, S. H.

F. J. Iannarilli, J. A. Shaw, S. H. Jones, and H. E. Scott, “Snapshot LWIR hyperspectral polarimetric imager for ocean surface sensing,” Proc. SPIE 4133, 270–283 (2000).
[Crossref]

Karman, S. B.

S. B. Karman, S. Z. M. Diah, and I. C. Gebeshuber, “Bio-inspired polarized skylight-based navigation sensor: a review,” Sensors 12, 14232–14261 (2012).
[Crossref]

Kasper, M.

C. U. Keller, H. M. Schmid, L. B. Venema, H. Hanenburg, R. Jager, M. Kasper, P. Martinez, F. Rigal, M. Rodenhuis, R. Roelfsema, F. Snik, C. Verninaud, and N. Yaitskova, “EPOL: the exoplanet polarimeter for EPICS at the E-ELT,” in Ground-based and Airborne Instrumentation for Astronomy III (SPIE, 2010), Vol. 7735, paper 77356G.

Kaufman, Y. J.

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanré, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—a federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66, 1–16 (1998).
[Crossref]

Keller, C. U.

G. van Harten, J. de Boer, J. H. H. Rietjens, F. Snik, A. Di Noia, O. P. Hasekamp, J. Vonk, H. Volten, J. M. Smit, J. S. Henzing, and C. U. Keller, “Atmospheric aerosol characterization with a ground-based SPEX spectropolarimetric instrument,” Atmos. Meas. Tech. 7, 4341–4351 (2014).
[Crossref]

C. U. Keller, H. M. Schmid, L. B. Venema, H. Hanenburg, R. Jager, M. Kasper, P. Martinez, F. Rigal, M. Rodenhuis, R. Roelfsema, F. Snik, C. Verninaud, and N. Yaitskova, “EPOL: the exoplanet polarimeter for EPICS at the E-ELT,” in Ground-based and Airborne Instrumentation for Astronomy III (SPIE, 2010), Vol. 7735, paper 77356G.

King, M. D.

O. Dubovik and M. D. King, “A flexible inversion algorithm for retrieval of aerosol optical properties from sun and sky radiance measurements,” J. Geophys. Res. 105, 20673–20696 (2000).
[Crossref]

Knobelspiesse, K.

K. Knobelspiesse, B. van Diedenhoven, A. Marshak, S. Dunagan, B. Holben, and I. Slutsker, “Cloud thermodynamic phase detection with polarimetrically sensitive passive sky radiometers,” Atmos. Meas. Tech. 8, 1537–1554 (2015).
[Crossref]

F. Waquet, B. Cairns, K. Knobelspiesse, J. Chowdhary, L. D. Travis, B. Schmid, and M. I. Mischenko, “Polarimetric remote sensing of aerosols over land,” J. Geophys. Res. 114, D01206 (2009).
[Crossref]

Kobayashi, H.

D. Lambrinos, M. Maris, H. Kobayashi, T. Labhart, R. Pfeifer, and R. Wehner, “An autonomous agent navigating with a polarized light compass,” Adapt. Behav. 6, 131–161 (1997).
[Crossref]

Kreuter, A.

A. Kreuter, C. Emde, and M. Blumthaler, “Measuring the influence of aerosols and albedo on sky polarization,” Atmos. Res. 98, 363–367 (2010).
[Crossref]

Kuhn, J. R.

D. M. Harrington, J. R. Kuhn, and A. L. Ariste, “Daytime sky polarization calibration limitations,” Proc. SPIE 9912, 99126S (2016).
[Crossref]

D. M. Harrington, J. R. Kuhn, and S. Hall, “Deriving telescope Mueller matrices using daytime sky polarization observations,” Publ. Astron. Soc. Pac. 123, 799–811 (2011).
[Crossref]

Labhart, T.

D. Lambrinos, M. Maris, H. Kobayashi, T. Labhart, R. Pfeifer, and R. Wehner, “An autonomous agent navigating with a polarized light compass,” Adapt. Behav. 6, 131–161 (1997).
[Crossref]

Lafrance, B.

J. Lenoble, M. Herman, J. L. Deuzé, B. Lafrance, R. Santer, and D. Tanré, “A successive order of scattering code for solving the vector equation of transfer in the earth’s atmosphere with aerosols,” J. Quant. Spectrosc. Radiat. Transfer 107, 479–507 (2007).
[Crossref]

Lallart, P.

M. Herman, J. L. Deuzé, A. Marchand, B. Roger, and P. Lallart, “Aerosol remote sensing from POLDER/ADEOS over the ocean: improved retrieval using a nonspherical particle model,” J. Geophys. Res. 110, D10S02 (2005).
[Crossref]

Lambrinos, D.

D. Lambrinos, M. Maris, H. Kobayashi, T. Labhart, R. Pfeifer, and R. Wehner, “An autonomous agent navigating with a polarized light compass,” Adapt. Behav. 6, 131–161 (1997).
[Crossref]

Lavenu, F.

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanré, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—a federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66, 1–16 (1998).
[Crossref]

Lavigne, D. A.

D. A. Lavigne, M. Breton, G. Fournier, J. M. Charette, V. Rivet, and A. Bernier, “Target discrimination of man-made objects using passive polarimetric signatures acquired in the visible and infrared spectral bands,” Proc. SPIE 8160, 816007 (2011).
[Crossref]

Lee, J.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Godlen, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, P. E. Lewis, and E. P. Shettle, “MODTRAN5: 2006 update,” Proc. SPIE 6233, 508–515 (2006).
[Crossref]

Lenoble, J.

J. Lenoble, M. Herman, J. L. Deuzé, B. Lafrance, R. Santer, and D. Tanré, “A successive order of scattering code for solving the vector equation of transfer in the earth’s atmosphere with aerosols,” J. Quant. Spectrosc. Radiat. Transfer 107, 479–507 (2007).
[Crossref]

J. Lenoble, “Scattering and polarization of the solar radiation in the Earth’s atmosphere: historical review and present applications,” in AIP Conference Proceedings (2009), pp. 7–10.

Lewis, P. E.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Godlen, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, P. E. Lewis, and E. P. Shettle, “MODTRAN5: 2006 update,” Proc. SPIE 6233, 508–515 (2006).
[Crossref]

Li, Z.

Z. Li, P. Goloub, C. Devaux, X. Gu, J. Deuzé, Y. Qiao, and F. Zhao, “Retrieval of aerosol optical and physical properties from ground-based spectral, multi-angular, and polarized sun-photometer measurements,” Remote Sens. Environ. 101, 519–533 (2006).
[Crossref]

Lin, S.

S. Lin, K. M. Yemelyanov, E. N. Pugh, and N. Engheta, “Polarization enhanced visual surveillance techniques,” in IEEE International Conference on Networking, Sensing and Control (2004), Vol. 1, pp. 216–221.

Lockwood, R. B.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Godlen, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, P. E. Lewis, and E. P. Shettle, “MODTRAN5: 2006 update,” Proc. SPIE 6233, 508–515 (2006).
[Crossref]

Logan, L.

Lompado, A.

T. Aycock, A. Lompado, T. Wolz, and D. Chenault, “Passive optical sensing of atmospheric polarization for GPS denied operations,” Proc. SPIE 9838, 98380Y (2016).
[Crossref]

Malchow, D. S.

M. P. Hansen and D. S. Malchow, “Overview of SWIR detectors, cameras, and applications,” Proc. SPIE 6939, 69390I (2008).
[Crossref]

Marchand, A.

M. Herman, J. L. Deuzé, A. Marchand, B. Roger, and P. Lallart, “Aerosol remote sensing from POLDER/ADEOS over the ocean: improved retrieval using a nonspherical particle model,” J. Geophys. Res. 110, D10S02 (2005).
[Crossref]

Maris, M.

D. Lambrinos, M. Maris, H. Kobayashi, T. Labhart, R. Pfeifer, and R. Wehner, “An autonomous agent navigating with a polarized light compass,” Adapt. Behav. 6, 131–161 (1997).
[Crossref]

Marshak, A.

K. Knobelspiesse, B. van Diedenhoven, A. Marshak, S. Dunagan, B. Holben, and I. Slutsker, “Cloud thermodynamic phase detection with polarimetrically sensitive passive sky radiometers,” Atmos. Meas. Tech. 8, 1537–1554 (2015).
[Crossref]

Martinez, P.

C. U. Keller, H. M. Schmid, L. B. Venema, H. Hanenburg, R. Jager, M. Kasper, P. Martinez, F. Rigal, M. Rodenhuis, R. Roelfsema, F. Snik, C. Verninaud, and N. Yaitskova, “EPOL: the exoplanet polarimeter for EPICS at the E-ELT,” in Ground-based and Airborne Instrumentation for Astronomy III (SPIE, 2010), Vol. 7735, paper 77356G.

McGee, M.

B. Stark, M. McGee, and Y. Chen, “Short wave infrared (SWIR) imaging systems using small Unmanned Aerial Systems (sUAS),” in International Conference on Unmanned Aircraft Systems (ICUAS) (2015), pp. 495–501.

Miller, M. A.

M. A. Miller, R. V. Blumer, and J. D. Howe, “Active and passive SWIR imaging polarimetry,” Proc. SPIE 4481, 87–99 (2011).
[Crossref]

Mischenko, M. I.

F. Waquet, B. Cairns, K. Knobelspiesse, J. Chowdhary, L. D. Travis, B. Schmid, and M. I. Mischenko, “Polarimetric remote sensing of aerosols over land,” J. Geophys. Res. 114, D01206 (2009).
[Crossref]

Miskey, C.

B. A. Hooper, B. Van Pelt, J. Z. Williams, J. P. Dugan, M. Yi, C. C. Piotrowski, and C. Miskey, “Airborne spectral polarimeter for ocean wave research,” J. Atmos. Ocean. Technol. 32, 805–815 (2015).
[Crossref]

Muratov, L.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Godlen, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, P. E. Lewis, and E. P. Shettle, “MODTRAN5: 2006 update,” Proc. SPIE 6233, 508–515 (2006).
[Crossref]

Nakajima, T.

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanré, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—a federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66, 1–16 (1998).
[Crossref]

Palle, E.

M. F. Sterzik, S. Bagnulo, and E. Palle, “Biosignatures as revealed by spectropolarimetry of Earthshine,” Nature 483, 64–66 (2012).
[Crossref]

Pezzaniti, J. L.

J. L. Pezzaniti, D. Chenault, M. Roche, J. Reinhardt, and H. Schultz, “Wave slope measurement using imaging polarimetry,” Proc. SPIE 7317, 73170B (2009).
[Crossref]

Pfeifer, R.

D. Lambrinos, M. Maris, H. Kobayashi, T. Labhart, R. Pfeifer, and R. Wehner, “An autonomous agent navigating with a polarized light compass,” Adapt. Behav. 6, 131–161 (1997).
[Crossref]

Piotrowski, C. C.

B. A. Hooper, B. Van Pelt, J. Z. Williams, J. P. Dugan, M. Yi, C. C. Piotrowski, and C. Miskey, “Airborne spectral polarimeter for ocean wave research,” J. Atmos. Ocean. Technol. 32, 805–815 (2015).
[Crossref]

Preusker, R.

Pugh, E. N.

S. Lin, K. M. Yemelyanov, E. N. Pugh, and N. Engheta, “Polarization enhanced visual surveillance techniques,” in IEEE International Conference on Networking, Sensing and Control (2004), Vol. 1, pp. 216–221.

Pust, N. J.

Qiao, Y.

Z. Li, P. Goloub, C. Devaux, X. Gu, J. Deuzé, Y. Qiao, and F. Zhao, “Retrieval of aerosol optical and physical properties from ground-based spectral, multi-angular, and polarized sun-photometer measurements,” Remote Sens. Environ. 101, 519–533 (2006).
[Crossref]

Rayleigh, L.

L. Rayleigh, “On the transmission of light through an atmosphere containing small particles in suspension, and on the origin of the blue sky,” Philos. Mag. 47(287), 375–384 (1899).
[Crossref]

Reagan, J. A.

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanré, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—a federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66, 1–16 (1998).
[Crossref]

Reinhardt, J.

J. L. Pezzaniti, D. Chenault, M. Roche, J. Reinhardt, and H. Schultz, “Wave slope measurement using imaging polarimetry,” Proc. SPIE 7317, 73170B (2009).
[Crossref]

Rietjens, J. H. H.

G. van Harten, J. de Boer, J. H. H. Rietjens, F. Snik, A. Di Noia, O. P. Hasekamp, J. Vonk, H. Volten, J. M. Smit, J. S. Henzing, and C. U. Keller, “Atmospheric aerosol characterization with a ground-based SPEX spectropolarimetric instrument,” Atmos. Meas. Tech. 7, 4341–4351 (2014).
[Crossref]

Rigal, F.

C. U. Keller, H. M. Schmid, L. B. Venema, H. Hanenburg, R. Jager, M. Kasper, P. Martinez, F. Rigal, M. Rodenhuis, R. Roelfsema, F. Snik, C. Verninaud, and N. Yaitskova, “EPOL: the exoplanet polarimeter for EPICS at the E-ELT,” in Ground-based and Airborne Instrumentation for Astronomy III (SPIE, 2010), Vol. 7735, paper 77356G.

Rivet, V.

D. A. Lavigne, M. Breton, G. Fournier, J. M. Charette, V. Rivet, and A. Bernier, “Target discrimination of man-made objects using passive polarimetric signatures acquired in the visible and infrared spectral bands,” Proc. SPIE 8160, 816007 (2011).
[Crossref]

Roche, M.

J. L. Pezzaniti, D. Chenault, M. Roche, J. Reinhardt, and H. Schultz, “Wave slope measurement using imaging polarimetry,” Proc. SPIE 7317, 73170B (2009).
[Crossref]

Rodenhuis, M.

C. U. Keller, H. M. Schmid, L. B. Venema, H. Hanenburg, R. Jager, M. Kasper, P. Martinez, F. Rigal, M. Rodenhuis, R. Roelfsema, F. Snik, C. Verninaud, and N. Yaitskova, “EPOL: the exoplanet polarimeter for EPICS at the E-ELT,” in Ground-based and Airborne Instrumentation for Astronomy III (SPIE, 2010), Vol. 7735, paper 77356G.

Roelfsema, R.

C. U. Keller, H. M. Schmid, L. B. Venema, H. Hanenburg, R. Jager, M. Kasper, P. Martinez, F. Rigal, M. Rodenhuis, R. Roelfsema, F. Snik, C. Verninaud, and N. Yaitskova, “EPOL: the exoplanet polarimeter for EPICS at the E-ELT,” in Ground-based and Airborne Instrumentation for Astronomy III (SPIE, 2010), Vol. 7735, paper 77356G.

Roger, B.

M. Herman, J. L. Deuzé, A. Marchand, B. Roger, and P. Lallart, “Aerosol remote sensing from POLDER/ADEOS over the ocean: improved retrieval using a nonspherical particle model,” J. Geophys. Res. 110, D10S02 (2005).
[Crossref]

Ruhtz, T.

Santer, R.

J. Lenoble, M. Herman, J. L. Deuzé, B. Lafrance, R. Santer, and D. Tanré, “A successive order of scattering code for solving the vector equation of transfer in the earth’s atmosphere with aerosols,” J. Quant. Spectrosc. Radiat. Transfer 107, 479–507 (2007).
[Crossref]

Schmid, B.

F. Waquet, B. Cairns, K. Knobelspiesse, J. Chowdhary, L. D. Travis, B. Schmid, and M. I. Mischenko, “Polarimetric remote sensing of aerosols over land,” J. Geophys. Res. 114, D01206 (2009).
[Crossref]

Schmid, H. M.

C. U. Keller, H. M. Schmid, L. B. Venema, H. Hanenburg, R. Jager, M. Kasper, P. Martinez, F. Rigal, M. Rodenhuis, R. Roelfsema, F. Snik, C. Verninaud, and N. Yaitskova, “EPOL: the exoplanet polarimeter for EPICS at the E-ELT,” in Ground-based and Airborne Instrumentation for Astronomy III (SPIE, 2010), Vol. 7735, paper 77356G.

Schultz, H.

J. L. Pezzaniti, D. Chenault, M. Roche, J. Reinhardt, and H. Schultz, “Wave slope measurement using imaging polarimetry,” Proc. SPIE 7317, 73170B (2009).
[Crossref]

C. J. Zappa, M. L. Banner, H. Schultz, A. Corrada-Emmanuel, L. B. Wolff, and J. Yalcin, “Retrieval of short ocean wave slope using polarimetric imaging,” Meas. Sci. Technol. 19, 055503 (2008).
[Crossref]

Scott, H. E.

F. J. Iannarilli, J. A. Shaw, S. H. Jones, and H. E. Scott, “Snapshot LWIR hyperspectral polarimetric imager for ocean surface sensing,” Proc. SPIE 4133, 270–283 (2000).
[Crossref]

Setzer, A.

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanré, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—a federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66, 1–16 (1998).
[Crossref]

Shaw, J. A.

L. M. Dahl, M. J. Tauc, and J. A. Shaw, “Cloud thermodynamic phase detection using an all-sky imaging polarimeter,” Proc. SPIE 10407, 104070O (2017).
[Crossref]

L. M. Dahl and J. A. Shaw, “Visible-to-SWIR wavelength variation of skylight polarization,” Proc. SPIE 9613, 96130P (2015).
[Crossref]

N. J. Pust and J. A. Shaw, “Wavelength dependence of the degree of polarization in cloud-free skies: simulations of real environments,” Opt. Express 20, 15559–15568 (2012).
[Crossref]

N. J. Pust, A. Dahlberg, M. Thomas, and J. A. Shaw, “Comparison of full-sky polarization and radiance observations to radiative transfer simulations which employ AERONET products,” Opt. Express 19, 18602–18613 (2011).
[Crossref]

A. Dahlberg, N. J. Pust, and J. A. Shaw, “Effects of surface reflectance on skylight polarization measurements at the Mauna Loa Observatory,” Opt. Express 19, 16008–16021 (2011).
[Crossref]

N. J. Pust and J. A. Shaw, “Digital all-sky polarization imaging of partly cloudy skies,” Appl. Opt. 47, H190–H198 (2008).
[Crossref]

N. J. Pust and J. A. Shaw, “Dual-field imaging polarimeter using liquid crystal variable retarders,” Appl. Opt. 45, 5470–5478 (2006).
[Crossref]

J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt. 45, 5453–5469 (2006).
[Crossref]

J. A. Shaw, “Infrared polarization in the natural earth environment,” Proc. SPIE 4819, 129–138 (2002).
[Crossref]

J. A. Shaw, “Polarimetric measurements of long-wave infrared spectral radiance from water,” Appl. Opt. 40, 5985–5990 (2001).
[Crossref]

F. J. Iannarilli, J. A. Shaw, S. H. Jones, and H. E. Scott, “Snapshot LWIR hyperspectral polarimetric imager for ocean surface sensing,” Proc. SPIE 4133, 270–283 (2000).
[Crossref]

J. A. Shaw, “Degree of linear polarization in spectral radiances from water-viewing infrared radiometers,” Appl. Opt. 38, 3157–3165 (1999).
[Crossref]

Shettle, E. P.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Godlen, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, P. E. Lewis, and E. P. Shettle, “MODTRAN5: 2006 update,” Proc. SPIE 6233, 508–515 (2006).
[Crossref]

E. P. Shettle and R. W. Fenn, “Models for the aerosols for the lower atmosphere and the effects of humidity variations on their optical properties,” (1979).

Slutsker, I.

K. Knobelspiesse, B. van Diedenhoven, A. Marshak, S. Dunagan, B. Holben, and I. Slutsker, “Cloud thermodynamic phase detection with polarimetrically sensitive passive sky radiometers,” Atmos. Meas. Tech. 8, 1537–1554 (2015).
[Crossref]

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanré, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—a federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66, 1–16 (1998).
[Crossref]

Smirnov, A.

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanré, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—a federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66, 1–16 (1998).
[Crossref]

Smit, J. M.

G. van Harten, J. de Boer, J. H. H. Rietjens, F. Snik, A. Di Noia, O. P. Hasekamp, J. Vonk, H. Volten, J. M. Smit, J. S. Henzing, and C. U. Keller, “Atmospheric aerosol characterization with a ground-based SPEX spectropolarimetric instrument,” Atmos. Meas. Tech. 7, 4341–4351 (2014).
[Crossref]

Snik, F.

G. van Harten, J. de Boer, J. H. H. Rietjens, F. Snik, A. Di Noia, O. P. Hasekamp, J. Vonk, H. Volten, J. M. Smit, J. S. Henzing, and C. U. Keller, “Atmospheric aerosol characterization with a ground-based SPEX spectropolarimetric instrument,” Atmos. Meas. Tech. 7, 4341–4351 (2014).
[Crossref]

C. U. Keller, H. M. Schmid, L. B. Venema, H. Hanenburg, R. Jager, M. Kasper, P. Martinez, F. Rigal, M. Rodenhuis, R. Roelfsema, F. Snik, C. Verninaud, and N. Yaitskova, “EPOL: the exoplanet polarimeter for EPICS at the E-ELT,” in Ground-based and Airborne Instrumentation for Astronomy III (SPIE, 2010), Vol. 7735, paper 77356G.

Souaidia, N.

Stam, D. M.

D. M. Stam, “Spectropolarimetric signatures of Earth-like extrasolar planets,” Astron. Astrophys. 482, 989–1007 (2008).
[Crossref]

I. Aben, F. Helderman, D. M. Stam, and P. Stammes, “Spectral fine structure in the polarisation of skylight,” Geophys. Res. Lett. 26, 591–594 (1999).
[Crossref]

D. M. Stam, J. F. De Haan, and J. W. Hovenier, “Degree of linear polarization of light emerging from the cloudless atmosphere in the oxygen A band,” J. Geophys. Res. 104, 16843–16858 (1999).
[Crossref]

Stammes, P.

E. Bosche, P. Stammes, T. Ruhtz, R. Preusker, and J. Fischer, “Effect of aerosol microphysical properties on polarization of skylight: sensitivity study and measurements,” Appl. Opt. 45, 8790–8805 (2006).
[Crossref]

I. Aben, F. Helderman, D. M. Stam, and P. Stammes, “Spectral fine structure in the polarisation of skylight,” Geophys. Res. Lett. 26, 591–594 (1999).
[Crossref]

Stark, B.

B. Stark, M. McGee, and Y. Chen, “Short wave infrared (SWIR) imaging systems using small Unmanned Aerial Systems (sUAS),” in International Conference on Unmanned Aircraft Systems (ICUAS) (2015), pp. 495–501.

Sterzik, M. F.

M. F. Sterzik, S. Bagnulo, and E. Palle, “Biosignatures as revealed by spectropolarimetry of Earthshine,” Nature 483, 64–66 (2012).
[Crossref]

Strutt, J. W.

J. W. Strutt, “On the light from the sky, its polarization and colour,” Philos. Mag. 41(271), 107–120 (1871).
[Crossref]

Takakura, Y.

Tanré, D.

J. Lenoble, M. Herman, J. L. Deuzé, B. Lafrance, R. Santer, and D. Tanré, “A successive order of scattering code for solving the vector equation of transfer in the earth’s atmosphere with aerosols,” J. Quant. Spectrosc. Radiat. Transfer 107, 479–507 (2007).
[Crossref]

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanré, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—a federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66, 1–16 (1998).
[Crossref]

Tauc, M. J.

L. M. Dahl, M. J. Tauc, and J. A. Shaw, “Cloud thermodynamic phase detection using an all-sky imaging polarimeter,” Proc. SPIE 10407, 104070O (2017).
[Crossref]

Terrier, P.

Thomas, M.

Travis, L. D.

F. Waquet, B. Cairns, K. Knobelspiesse, J. Chowdhary, L. D. Travis, B. Schmid, and M. I. Mischenko, “Polarimetric remote sensing of aerosols over land,” J. Geophys. Res. 114, D01206 (2009).
[Crossref]

Tyo, J. S.

van Diedenhoven, B.

K. Knobelspiesse, B. van Diedenhoven, A. Marshak, S. Dunagan, B. Holben, and I. Slutsker, “Cloud thermodynamic phase detection with polarimetrically sensitive passive sky radiometers,” Atmos. Meas. Tech. 8, 1537–1554 (2015).
[Crossref]

van Harten, G.

G. van Harten, J. de Boer, J. H. H. Rietjens, F. Snik, A. Di Noia, O. P. Hasekamp, J. Vonk, H. Volten, J. M. Smit, J. S. Henzing, and C. U. Keller, “Atmospheric aerosol characterization with a ground-based SPEX spectropolarimetric instrument,” Atmos. Meas. Tech. 7, 4341–4351 (2014).
[Crossref]

Van Pelt, B.

B. A. Hooper, B. Van Pelt, J. Z. Williams, J. P. Dugan, M. Yi, C. C. Piotrowski, and C. Miskey, “Airborne spectral polarimeter for ocean wave research,” J. Atmos. Ocean. Technol. 32, 805–815 (2015).
[Crossref]

Venema, L. B.

C. U. Keller, H. M. Schmid, L. B. Venema, H. Hanenburg, R. Jager, M. Kasper, P. Martinez, F. Rigal, M. Rodenhuis, R. Roelfsema, F. Snik, C. Verninaud, and N. Yaitskova, “EPOL: the exoplanet polarimeter for EPICS at the E-ELT,” in Ground-based and Airborne Instrumentation for Astronomy III (SPIE, 2010), Vol. 7735, paper 77356G.

Vermote, E.

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanré, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—a federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66, 1–16 (1998).
[Crossref]

Verninaud, C.

C. U. Keller, H. M. Schmid, L. B. Venema, H. Hanenburg, R. Jager, M. Kasper, P. Martinez, F. Rigal, M. Rodenhuis, R. Roelfsema, F. Snik, C. Verninaud, and N. Yaitskova, “EPOL: the exoplanet polarimeter for EPICS at the E-ELT,” in Ground-based and Airborne Instrumentation for Astronomy III (SPIE, 2010), Vol. 7735, paper 77356G.

Vollmerhausen, R.

R. G. Driggers, V. Hodgkin, and R. Vollmerhausen, “What good is SWIR? Passive day comparison of VIS, NIR, and SWIR,” Proc. SPIE 8706, 87060L (2013).
[Crossref]

Volten, H.

G. van Harten, J. de Boer, J. H. H. Rietjens, F. Snik, A. Di Noia, O. P. Hasekamp, J. Vonk, H. Volten, J. M. Smit, J. S. Henzing, and C. U. Keller, “Atmospheric aerosol characterization with a ground-based SPEX spectropolarimetric instrument,” Atmos. Meas. Tech. 7, 4341–4351 (2014).
[Crossref]

Vonk, J.

G. van Harten, J. de Boer, J. H. H. Rietjens, F. Snik, A. Di Noia, O. P. Hasekamp, J. Vonk, H. Volten, J. M. Smit, J. S. Henzing, and C. U. Keller, “Atmospheric aerosol characterization with a ground-based SPEX spectropolarimetric instrument,” Atmos. Meas. Tech. 7, 4341–4351 (2014).
[Crossref]

Voss, K. J.

Wang, T.

J. Chu, K. Zhao, Q. Zhang, and T. Wang, “Construction and performance test of a novel polarization sensor for navigation,” Sens. Actuators A 148, 75–82 (2008).
[Crossref]

Waquet, F.

F. Waquet, B. Cairns, K. Knobelspiesse, J. Chowdhary, L. D. Travis, B. Schmid, and M. I. Mischenko, “Polarimetric remote sensing of aerosols over land,” J. Geophys. Res. 114, D01206 (2009).
[Crossref]

Wehner, R.

D. Lambrinos, M. Maris, H. Kobayashi, T. Labhart, R. Pfeifer, and R. Wehner, “An autonomous agent navigating with a polarized light compass,” Adapt. Behav. 6, 131–161 (1997).
[Crossref]

Williams, J. Z.

B. A. Hooper, B. Van Pelt, J. Z. Williams, J. P. Dugan, M. Yi, C. C. Piotrowski, and C. Miskey, “Airborne spectral polarimeter for ocean wave research,” J. Atmos. Ocean. Technol. 32, 805–815 (2015).
[Crossref]

Wolff, L. B.

C. J. Zappa, M. L. Banner, H. Schultz, A. Corrada-Emmanuel, L. B. Wolff, and J. Yalcin, “Retrieval of short ocean wave slope using polarimetric imaging,” Meas. Sci. Technol. 19, 055503 (2008).
[Crossref]

Wolz, T.

T. Aycock, A. Lompado, T. Wolz, and D. Chenault, “Passive optical sensing of atmospheric polarization for GPS denied operations,” Proc. SPIE 9838, 98380Y (2016).
[Crossref]

Yaitskova, N.

C. U. Keller, H. M. Schmid, L. B. Venema, H. Hanenburg, R. Jager, M. Kasper, P. Martinez, F. Rigal, M. Rodenhuis, R. Roelfsema, F. Snik, C. Verninaud, and N. Yaitskova, “EPOL: the exoplanet polarimeter for EPICS at the E-ELT,” in Ground-based and Airborne Instrumentation for Astronomy III (SPIE, 2010), Vol. 7735, paper 77356G.

Yalcin, J.

C. J. Zappa, M. L. Banner, H. Schultz, A. Corrada-Emmanuel, L. B. Wolff, and J. Yalcin, “Retrieval of short ocean wave slope using polarimetric imaging,” Meas. Sci. Technol. 19, 055503 (2008).
[Crossref]

Yemelyanov, K. M.

S. Lin, K. M. Yemelyanov, E. N. Pugh, and N. Engheta, “Polarization enhanced visual surveillance techniques,” in IEEE International Conference on Networking, Sensing and Control (2004), Vol. 1, pp. 216–221.

Yi, M.

B. A. Hooper, B. Van Pelt, J. Z. Williams, J. P. Dugan, M. Yi, C. C. Piotrowski, and C. Miskey, “Airborne spectral polarimeter for ocean wave research,” J. Atmos. Ocean. Technol. 32, 805–815 (2015).
[Crossref]

Zappa, C. J.

C. J. Zappa, M. L. Banner, H. Schultz, A. Corrada-Emmanuel, L. B. Wolff, and J. Yalcin, “Retrieval of short ocean wave slope using polarimetric imaging,” Meas. Sci. Technol. 19, 055503 (2008).
[Crossref]

Zhang, Q.

J. Chu, K. Zhao, Q. Zhang, and T. Wang, “Construction and performance test of a novel polarization sensor for navigation,” Sens. Actuators A 148, 75–82 (2008).
[Crossref]

Zhao, F.

Z. Li, P. Goloub, C. Devaux, X. Gu, J. Deuzé, Y. Qiao, and F. Zhao, “Retrieval of aerosol optical and physical properties from ground-based spectral, multi-angular, and polarized sun-photometer measurements,” Remote Sens. Environ. 101, 519–533 (2006).
[Crossref]

Zhao, K.

J. Chu, K. Zhao, Q. Zhang, and T. Wang, “Construction and performance test of a novel polarization sensor for navigation,” Sens. Actuators A 148, 75–82 (2008).
[Crossref]

Adapt. Behav. (1)

D. Lambrinos, M. Maris, H. Kobayashi, T. Labhart, R. Pfeifer, and R. Wehner, “An autonomous agent navigating with a polarized light compass,” Adapt. Behav. 6, 131–161 (1997).
[Crossref]

Appl. Opt. (8)

Astron. Astrophys. (1)

D. M. Stam, “Spectropolarimetric signatures of Earth-like extrasolar planets,” Astron. Astrophys. 482, 989–1007 (2008).
[Crossref]

Atmos. Meas. Tech. (2)

G. van Harten, J. de Boer, J. H. H. Rietjens, F. Snik, A. Di Noia, O. P. Hasekamp, J. Vonk, H. Volten, J. M. Smit, J. S. Henzing, and C. U. Keller, “Atmospheric aerosol characterization with a ground-based SPEX spectropolarimetric instrument,” Atmos. Meas. Tech. 7, 4341–4351 (2014).
[Crossref]

K. Knobelspiesse, B. van Diedenhoven, A. Marshak, S. Dunagan, B. Holben, and I. Slutsker, “Cloud thermodynamic phase detection with polarimetrically sensitive passive sky radiometers,” Atmos. Meas. Tech. 8, 1537–1554 (2015).
[Crossref]

Atmos. Res. (1)

A. Kreuter, C. Emde, and M. Blumthaler, “Measuring the influence of aerosols and albedo on sky polarization,” Atmos. Res. 98, 363–367 (2010).
[Crossref]

Geophys. Res. Lett. (1)

I. Aben, F. Helderman, D. M. Stam, and P. Stammes, “Spectral fine structure in the polarisation of skylight,” Geophys. Res. Lett. 26, 591–594 (1999).
[Crossref]

J. Atmos. Ocean. Technol. (1)

B. A. Hooper, B. Van Pelt, J. Z. Williams, J. P. Dugan, M. Yi, C. C. Piotrowski, and C. Miskey, “Airborne spectral polarimeter for ocean wave research,” J. Atmos. Ocean. Technol. 32, 805–815 (2015).
[Crossref]

J. Geophys. Res. (5)

D. M. Stam, J. F. De Haan, and J. W. Hovenier, “Degree of linear polarization of light emerging from the cloudless atmosphere in the oxygen A band,” J. Geophys. Res. 104, 16843–16858 (1999).
[Crossref]

M. Herman, J. L. Deuzé, A. Marchand, B. Roger, and P. Lallart, “Aerosol remote sensing from POLDER/ADEOS over the ocean: improved retrieval using a nonspherical particle model,” J. Geophys. Res. 110, D10S02 (2005).
[Crossref]

F. Waquet, B. Cairns, K. Knobelspiesse, J. Chowdhary, L. D. Travis, B. Schmid, and M. I. Mischenko, “Polarimetric remote sensing of aerosols over land,” J. Geophys. Res. 114, D01206 (2009).
[Crossref]

M. Chami, “Importance of the polarization in the retrieval of oceanic constituents from the remote sensing reflectance,” J. Geophys. Res. 112, C05026 (2007).
[Crossref]

O. Dubovik and M. D. King, “A flexible inversion algorithm for retrieval of aerosol optical properties from sun and sky radiance measurements,” J. Geophys. Res. 105, 20673–20696 (2000).
[Crossref]

J. Quant. Spectrosc. Radiat. Transfer (1)

J. Lenoble, M. Herman, J. L. Deuzé, B. Lafrance, R. Santer, and D. Tanré, “A successive order of scattering code for solving the vector equation of transfer in the earth’s atmosphere with aerosols,” J. Quant. Spectrosc. Radiat. Transfer 107, 479–507 (2007).
[Crossref]

Meas. Sci. Technol. (1)

C. J. Zappa, M. L. Banner, H. Schultz, A. Corrada-Emmanuel, L. B. Wolff, and J. Yalcin, “Retrieval of short ocean wave slope using polarimetric imaging,” Meas. Sci. Technol. 19, 055503 (2008).
[Crossref]

Nature (1)

M. F. Sterzik, S. Bagnulo, and E. Palle, “Biosignatures as revealed by spectropolarimetry of Earthshine,” Nature 483, 64–66 (2012).
[Crossref]

Opt. Express (5)

Philos. Mag. (2)

J. W. Strutt, “On the light from the sky, its polarization and colour,” Philos. Mag. 41(271), 107–120 (1871).
[Crossref]

L. Rayleigh, “On the transmission of light through an atmosphere containing small particles in suspension, and on the origin of the blue sky,” Philos. Mag. 47(287), 375–384 (1899).
[Crossref]

Planet. Space Sci. (1)

D. R. Bates, “Rayleigh scattering by air,” Planet. Space Sci. 32, 785–790 (1984).
[Crossref]

Proc. SPIE (12)

D. M. Harrington, J. R. Kuhn, and A. L. Ariste, “Daytime sky polarization calibration limitations,” Proc. SPIE 9912, 99126S (2016).
[Crossref]

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Godlen, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, P. E. Lewis, and E. P. Shettle, “MODTRAN5: 2006 update,” Proc. SPIE 6233, 508–515 (2006).
[Crossref]

J. A. Shaw, “Infrared polarization in the natural earth environment,” Proc. SPIE 4819, 129–138 (2002).
[Crossref]

L. M. Dahl and J. A. Shaw, “Visible-to-SWIR wavelength variation of skylight polarization,” Proc. SPIE 9613, 96130P (2015).
[Crossref]

D. A. Lavigne, M. Breton, G. Fournier, J. M. Charette, V. Rivet, and A. Bernier, “Target discrimination of man-made objects using passive polarimetric signatures acquired in the visible and infrared spectral bands,” Proc. SPIE 8160, 816007 (2011).
[Crossref]

M. A. Miller, R. V. Blumer, and J. D. Howe, “Active and passive SWIR imaging polarimetry,” Proc. SPIE 4481, 87–99 (2011).
[Crossref]

R. G. Driggers, V. Hodgkin, and R. Vollmerhausen, “What good is SWIR? Passive day comparison of VIS, NIR, and SWIR,” Proc. SPIE 8706, 87060L (2013).
[Crossref]

M. P. Hansen and D. S. Malchow, “Overview of SWIR detectors, cameras, and applications,” Proc. SPIE 6939, 69390I (2008).
[Crossref]

T. Aycock, A. Lompado, T. Wolz, and D. Chenault, “Passive optical sensing of atmospheric polarization for GPS denied operations,” Proc. SPIE 9838, 98380Y (2016).
[Crossref]

J. L. Pezzaniti, D. Chenault, M. Roche, J. Reinhardt, and H. Schultz, “Wave slope measurement using imaging polarimetry,” Proc. SPIE 7317, 73170B (2009).
[Crossref]

L. M. Dahl, M. J. Tauc, and J. A. Shaw, “Cloud thermodynamic phase detection using an all-sky imaging polarimeter,” Proc. SPIE 10407, 104070O (2017).
[Crossref]

F. J. Iannarilli, J. A. Shaw, S. H. Jones, and H. E. Scott, “Snapshot LWIR hyperspectral polarimetric imager for ocean surface sensing,” Proc. SPIE 4133, 270–283 (2000).
[Crossref]

Publ. Astron. Soc. Pac. (1)

D. M. Harrington, J. R. Kuhn, and S. Hall, “Deriving telescope Mueller matrices using daytime sky polarization observations,” Publ. Astron. Soc. Pac. 123, 799–811 (2011).
[Crossref]

Remote Sens. Environ. (2)

Z. Li, P. Goloub, C. Devaux, X. Gu, J. Deuzé, Y. Qiao, and F. Zhao, “Retrieval of aerosol optical and physical properties from ground-based spectral, multi-angular, and polarized sun-photometer measurements,” Remote Sens. Environ. 101, 519–533 (2006).
[Crossref]

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanré, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—a federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66, 1–16 (1998).
[Crossref]

Sens. Actuators A (1)

J. Chu, K. Zhao, Q. Zhang, and T. Wang, “Construction and performance test of a novel polarization sensor for navigation,” Sens. Actuators A 148, 75–82 (2008).
[Crossref]

Sensors (1)

S. B. Karman, S. Z. M. Diah, and I. C. Gebeshuber, “Bio-inspired polarized skylight-based navigation sensor: a review,” Sensors 12, 14232–14261 (2012).
[Crossref]

Tellus (1)

A. Ångström, “The parameters of atmospheric turbidity,” Tellus 16, 64–75 (1964).

Other (9)

E. P. Shettle and R. W. Fenn, “Models for the aerosols for the lower atmosphere and the effects of humidity variations on their optical properties,” (1979).

J. R. Jensen, Remote Sensing of the Environment: An Earth Resource Perspective (Pearson, 2006).

J. Lenoble, “Scattering and polarization of the solar radiation in the Earth’s atmosphere: historical review and present applications,” in AIP Conference Proceedings (2009), pp. 7–10.

Bozeman AERONET Site, https://aeronet.gsfc.nasa.gov/ .

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

S. Lin, K. M. Yemelyanov, E. N. Pugh, and N. Engheta, “Polarization enhanced visual surveillance techniques,” in IEEE International Conference on Networking, Sensing and Control (2004), Vol. 1, pp. 216–221.

C. U. Keller, H. M. Schmid, L. B. Venema, H. Hanenburg, R. Jager, M. Kasper, P. Martinez, F. Rigal, M. Rodenhuis, R. Roelfsema, F. Snik, C. Verninaud, and N. Yaitskova, “EPOL: the exoplanet polarimeter for EPICS at the E-ELT,” in Ground-based and Airborne Instrumentation for Astronomy III (SPIE, 2010), Vol. 7735, paper 77356G.

B. Stark, M. McGee, and Y. Chen, “Short wave infrared (SWIR) imaging systems using small Unmanned Aerial Systems (sUAS),” in International Conference on Unmanned Aircraft Systems (ICUAS) (2015), pp. 495–501.

K. L. Coulson, Polarization and Intensity of Light in the Atmosphere (Deepak, 1988).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (27)

Fig. 1.
Fig. 1. Photographs from 20 October 2014 and 10 August 2014, showing conditions similar to the “clean” (top) and “smoky” (bottom) aerosol cases, respectively. For the modeled smoky case on 3 August 2014, there would have been significantly more haze, as the aerosol content was higher (500 nm AOD of 1.03, compared with 0.3 on 10 August).
Fig. 2.
Fig. 2. Outline of the radiative transfer model used to determine the DoLP for skylight viewed from the ground. The input parameters included AERONET aerosol parameters, MODTRAN transmission spectra, and measured surface reflectance spectra.
Fig. 3.
Fig. 3. MODTRAN simulated transmission spectrum for a zenith path through the 1976 U. S. Standard Atmosphere with no aerosols or clouds on 18 August 2014.
Fig. 4.
Fig. 4. MODTRAN simulation of molecular absorption bands for an atmosphere containing no aerosols or clouds.
Fig. 5.
Fig. 5. Interpolated and extrapolated AERONET Rayleigh optical depths and aerosol optical depths for a clean atmosphere on 19 October 2014, a moderately hazy atmosphere on 18 August 2014, and a smoky atmosphere on 3 August 2014.
Fig. 6.
Fig. 6. Interpolated AERONET complex indices of refraction for a clean atmosphere on 19 October 2014, a moderately hazy atmosphere on 18 August 2014, and a smoky atmosphere on 3 August 2014.
Fig. 7.
Fig. 7. AERONET-retrieved aerosol volume size distributions (dV(r)/dln(r) [μm3/μm2]) for a clean atmosphere on 19 October 2014, a moderately hazy atmosphere on 18 August 2014, and a smoky atmosphere on 3 August 2014.
Fig. 8.
Fig. 8. Maximum skylight DoLP modeled using full measured aerosol parameters with green grass surface reflectance.
Fig. 9.
Fig. 9. Maximum skylight DoLP modeled for the three test days using full measured aerosol parameters and zero surface reflectance.
Fig. 10.
Fig. 10. Maximum skylight DoLP modeled with five different spectrally constant surface reflectance values and measured aerosol parameters from 18 August 2014. Skylight polarization over the entire VIS–SWIR spectrum has a similar spectral shape for the different surface reflectance values.
Fig. 11.
Fig. 11. Green grass and sand surface reflectance measurements with their corresponding modeled maximum skylight DoLP. For green vegetation, the absorption bands of chlorophyll are responsible for low reflectance values in the VIS spectrum, leading to a higher polarization.
Fig. 12.
Fig. 12. Modeled maximum skylight degree of linear polarization for a Rayleigh scattering environment with the aerosol optical depth spectrally fixed to 106 (essentially zero) and with zero surface reflectance. With no aerosols, maximum skylight polarization in the SWIR reached an upper limit of 95%.
Fig. 13.
Fig. 13. Modeled maximum skylight DoLP for three different values of spectrally fixed aerosol optical depth (τaer) with zero surface reflectance and AERONET data products (Rayleigh optical depth, aerosol volume size distribution, and aerosol index of refraction) from 18 August 2014. In the SWIR, with the aerosol optical depth greater than the Rayleigh optical depth, the skylight polarization decreased with wavelength.
Fig. 14.
Fig. 14. Modeled maximum skylight DoLP for a constant aerosol optical depth (τaer=0.001) greater than the SWIR Rayleigh optical depth, paired with different AERONET-retrieved aerosol volume size distributions from three varying environments: a clean atmosphere on 19 October 2014, a moderately hazy atmosphere on 18 August 2014, and a smoke-filled atmosphere on 3 August 2014.
Fig. 15.
Fig. 15. Maximum skylight DoLP modeled using AERONET-retrieved aerosol optical depths and index of refraction with zero surface reflectance for different volume size distributions.
Fig. 16.
Fig. 16. Spectral scattering cross section and the phase matrix P12 element from each day.
Fig. 17.
Fig. 17. Maximum skylight DoLP modeled with the aerosol optical depth and volume size distribution from 18 August 2014 paired with the different AERONET-retrieved refractive indices for the three test days.
Fig. 18.
Fig. 18. SWIR rotating-polarizer imaging polarimeter.
Fig. 19.
Fig. 19. Interpolated and extrapolated AERONET aerosol optical depths for a clean atmosphere on 28 April 2015 and a smoky atmosphere on 20 August 2015.
Fig. 20.
Fig. 20. AERONET-retrieved aerosol volume size distributions (dV(r)/dln(r) [μm3/μm2]) for a clean atmosphere on 28 April 2015 and a smoky atmosphere on 20 August 2015.
Fig. 21.
Fig. 21. Interpolated AERONET complex indices of refraction for a clean atmosphere on 28 April 2015 and a smoky atmosphere on 20 August 2015.
Fig. 22.
Fig. 22. Measured green grass spectra and MODIS-retrieved surface reflectance in the 1.628–1.652 μm band and spatially averaged over a circle of 50 km radius centered on our observation site.
Fig. 23.
Fig. 23. Reference image of our measurement on 28 April 2015. The solar azimuth and elevation angles were 114° and 41°, respectively.
Fig. 24.
Fig. 24. SOS modeled maximum skylight polarization across the 1.5–1.8 μm validation band for a clean sky on 28 April 2015 and a sky containing thick wildfire smoke on 20 August 2015.
Fig. 25.
Fig. 25. (Top) Measured DoLP on 28 April 2015. Skylight polarization was measured to decrease top-down from 13% to 8%. (Bottom) Fisheye modeled maximum DoLP dependence averaged over 1.5–1.8 μm. The red arrow indicates the polarimeter pointing direction, where the modeled maximum polarization was 8%.
Fig. 26.
Fig. 26. Reference image of our measurement on 20 August 2015. The solar azimuth and elevation angles were 193° and 56°, respectively.
Fig. 27.
Fig. 27. (Top) Measured DoLP on 20 August 2015. Skylight DoLP was measured to decrease top-down from 45% to 36%. (Bottom) Simulated all-sky fisheye DoLP image averaged over 1.5–1.8 μm. Across the band of maximum polarization, the modeled DoLP ranged from 45% to 54%, with a band-average value of 48%. The red arrow indicates the portion of sky the polarimeter was viewing, in which the modeled polarization was 46%–44%.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

DoLP=S12+S22S0,
T=e(τaer+τray+τmol),
α=ln(τ1τ2)ln(λ1λ2),
τλ=τ0(λλ0)α.