Abstract

A figure measuring interferometer (FMI) method is proposed for high-accuracy measurement of the focal length and distortion of optical systems simultaneously. FMI uses the Zernike coefficients of interference fringe to identify the image point position precisely, and then measures the distance between the image points under the different fields to determine the image height. The field of view can also be accurately obtained by a precise rotating platform. Linear fitting between the field of view and the image height is used to calculate the focal length and distortion. The experimental results indicate that FMI has a relative expanded standard uncertainty of less than 0.01% for focal length and 0.02% for distortion. In brief, the proposed method is feasible for measurement of the focal length and distortion with high accuracy, promising further industrial applications.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Use of diffraction grating for measuring the focal length and distortion of optical systems

Antonin Miks and Petr Pokorny
Appl. Opt. 54(34) 10200-10206 (2015)

Calibration method for high-accuracy measurement of long focal length with Talbot interferometry

Xiaorong Jin, Jinchun Zhang, Jian Bai, Changlun Hou, and Xiyun Hou
Appl. Opt. 51(13) 2407-2413 (2012)

Focal length measurement based on the wavefront difference method by a Fizeau interferometer

Zhongming Yang, Zhishan Gao, Jiantai Dou, and Xinxing Wang
Appl. Opt. 53(25) 5598-5605 (2014)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (34)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription