Abstract

A grapefruit microstructured fiber-based resonator embedded with iron oxide nanoparticles is demonstrated in this paper. Due to efficient photon-to-heat conversion and transfer of the magnetic nanoparticles, such a device possesses broadband all-optical wavelength tuning with high sensitivity. Experimental results show that the tuning range and sensitivity can be up to 5.32  nm and 0.106 nm/mW, respectively, when pump laser with a wavelength of 1550 nm is injected into the resonator. Moreover, it exhibits other excellent features such as ease of fabrication and excellent repeatability, making it a good candidate for potential applications in the area of optical filtering.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Iron-oxide nanoparticles embedded silica microsphere resonator exhibiting broadband all-optical wavelength tunability

Ping Zhao, Lei Shi, Yang Liu, Zheqi Wang, Shengli Pu, and Xinliang Zhang
Opt. Lett. 39(13) 3845-3848 (2014)

Strain-induced spectral tuning of the whispering gallery modes in a cylindrical micro-resonator formed by a polymer optical fiber

Vishnu Kavungal, Arun Kumar Mallik, Gerald Farrell, Qiang Wu, and Yuliya Semenova
Appl. Opt. 56(5) 1339-1345 (2017)

Thermo-optic tuning of a packaged whispering gallery mode resonator filled with nematic liquid crystal

Vishnu Kavungal, Gerald Farrell, Qiang Wu, Arun Kumar Mallik, and Yuliya Semenova
Opt. Express 26(7) 8431-8442 (2018)

References

  • View by:
  • |
  • |
  • |

  1. K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
    [Crossref]
  2. M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21, 453–455 (1996).
    [Crossref]
  3. Y. C. Li, F. Abolmaali, K. W. Allen, N. I. Limberopoulos, A. Urbas, Y. Rakovich, and V. N. Astratov, “Whispering gallery mode hybridization in photonic molecules,” Laser Photon. Rev. 11, 1600278 (2017).
    [Crossref]
  4. S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002).
    [Crossref]
  5. A. J. Campillo, J. D. Eversole, and H. B. Lin, “Cavity quantum electrodynamic enhancement of stimulated emission in microdroplets,” Phys. Rev. Lett. 67, 437–440 (1991).
    [Crossref]
  6. Y. Yang, J. Ward, and S. N. Chormaic, “Quasi-droplet microbubbles for high resolution sensing applications,” Opt. Express 22, 6881–6898 (2014).
    [Crossref]
  7. T. Tang, X. Wu, L. Y. Liu, and L. Xu, “Packaged optofluidic microbubble resonators for optical sensing,” Appl. Opt. 55, 395–399 (2016).
    [Crossref]
  8. E. Kim, M. D. Baaske, and F. Vollmer, “Towards next-generation label-free biosensors: recent advances in whispering gallery mode sensors,” Lab Chip 17, 1190–1205 (2017).
    [Crossref]
  9. W. V. Klitzing, R. Long, V. S. Ilchenko, J. Hare, and V. Lefevre-Seguin, “Tunable whispering gallery modes for spectroscopy and CQED experiments,” New J. Phys. 3, 14 (2001).
    [Crossref]
  10. G. P. Lin, Y. Candela, O. Tillement, Z. P. Cai, V. Lefèvre-Seguin, and J. Hare, “Thermal bistability-based method for real-time optimization of ultralow-threshold whispering gallery mode microlasers,” Opt. Lett. 37, 5193–5195 (2012).
    [Crossref]
  11. D. Farnesi, A. Barucci, G. C. Righini, S. Berneschi, S. Soria, and G. Nunzi Conti, “Optical frequency conversion in silica-whispering-gallery-mode microspherical resonators,” Phys. Rev. Lett. 112, 093901 (2014).
    [Crossref]
  12. V. S. Ilchenko and A. B. Matsko, “Optical resonators with whispering-gallery modes—part II: applications,” IEEE J. Sel. Top. Quantum Electron. 12, 15–32 (2006).
    [Crossref]
  13. S. C. Yang, Y. Wang, and H. D. Sun, “Advances and prospects for whispering gallery mode microcavities,” Adv. Opt. Mater. 3, 1136–1162 (2015).
    [Crossref]
  14. A. L. Huston and J. D. Eversole, “Strain-sensitive elastic scattering from cylinders,” Opt. Lett. 18, 1104–1106 (1993).
    [Crossref]
  15. C. L. Linslal, M. Kailasnath, S. Mathew, T. K. Nideep, P. Radhakrishnan, V. P. N. Nampoori, and C. P. G. Vallabhan, “Tuning whispering gallery lasing modes from polymer fibers under tensile strain,” Opt. Lett. 41, 551–554 (2016).
    [Crossref]
  16. R. Henze, T. Seifert, J. Ward, and O. Benson, “Tuning whispering gallery modes using internal aerostatic pressure,” Opt. Lett. 36, 4536–4538 (2011).
    [Crossref]
  17. M. Humar, M. Ravnik, S. Pajk, and I. Musevic, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3, 595–600 (2009).
    [Crossref]
  18. D. M. Huang, W. Huang, J. Zeng, M. Deng, L. L. Shi, and T. Zhu, “Electrical thermo-optic tuning of whispering gallery mode microtube resonator,” IEEE Photon. Technol. Lett. 29, 169–172 (2017).
    [Crossref]
  19. A. Mahmood, V. Kavungal, S. S. Ahmed, G. Farrell, and Y. Semenova, “Magnetic-field sensor based on whispering-gallery modes in a photonic crystal fiber infiltrated with magnetic fluid,” Opt. Lett. 40, 4983–4986 (2015).
    [Crossref]
  20. A. Mahmood, V. Kavungal, S. S. Ahmed, P. Kopcansky, V. Zavisova, G. Farrell, and Y. Semenova, “Magnetic field sensing using whispering-gallery modes in a cylindrical microresonator infiltrated with ferronematic liquid crystal,” Opt. Express 25, 12195–12202 (2017).
    [Crossref]
  21. W. Lin, H. Zhang, B. Liu, B. B. Song, Y. T. Li, C. K. Yang, and Y. G. Liu, “Laser-tuned whispering gallery modes in a solid-core microstructured optical fibre integrated with magnetic fluids,” Sci. Rep. 5, 17791 (2015).
    [Crossref]
  22. I. Torres-Díaz, C. Rinaldi, S. Khushrushahi, and M. Zahn, “Observations of ferrofluid flow under a uniform rotating magnetic field in a spherical cavity,” J. Appl. Phys. 111, 07B313 (2012).
    [Crossref]
  23. M. Deng, X. K. Sun, H. F. Wei, and J. Li, “Photonic crystal fiber-based modal interferometer for refractive index sensing,” IEEE Photon. Technol. Lett. 26, 531–534 (2014).
    [Crossref]
  24. Y. Liu, L. Shi, X. B. Xu, P. Zhao, Z. Q. Wang, S. L. Pu, and X. L. Zhang, “All-optical tuning of a magnetic-fluid-filled optofluidic ring resonator,” Lab Chip 14, 3004–3010 (2014).
    [Crossref]
  25. R. Naderali, A. Jafari, and H. Motiei, “Nonlinear optical properties of carboxymethyl starch nanocomposite by Z-scan technique using a Nd-YAG laser,” Appl. Phys. B 120, 681–687 (2015).
    [Crossref]
  26. L. L. Shi, T. Zhu, D. M. Huang, and M. Liu, “Thermo-optic tuning of integrated polymethyl methacrylate sphere whispering gallery mode resonator,” IEEE Photon. J. 8, 2701307 (2016).
    [Crossref]
  27. N. Lin, L. Jiang, S. M. Wang, H. Xiao, Y. F. Lu, and H. Tsai, “Thermostable refractive index sensors based on whispering gallery modes in a microsphere coated with poly(methyl methacrylate),” Appl. Opt. 50, 992–998 (2011).
    [Crossref]

2017 (4)

Y. C. Li, F. Abolmaali, K. W. Allen, N. I. Limberopoulos, A. Urbas, Y. Rakovich, and V. N. Astratov, “Whispering gallery mode hybridization in photonic molecules,” Laser Photon. Rev. 11, 1600278 (2017).
[Crossref]

E. Kim, M. D. Baaske, and F. Vollmer, “Towards next-generation label-free biosensors: recent advances in whispering gallery mode sensors,” Lab Chip 17, 1190–1205 (2017).
[Crossref]

D. M. Huang, W. Huang, J. Zeng, M. Deng, L. L. Shi, and T. Zhu, “Electrical thermo-optic tuning of whispering gallery mode microtube resonator,” IEEE Photon. Technol. Lett. 29, 169–172 (2017).
[Crossref]

A. Mahmood, V. Kavungal, S. S. Ahmed, P. Kopcansky, V. Zavisova, G. Farrell, and Y. Semenova, “Magnetic field sensing using whispering-gallery modes in a cylindrical microresonator infiltrated with ferronematic liquid crystal,” Opt. Express 25, 12195–12202 (2017).
[Crossref]

2016 (3)

2015 (4)

R. Naderali, A. Jafari, and H. Motiei, “Nonlinear optical properties of carboxymethyl starch nanocomposite by Z-scan technique using a Nd-YAG laser,” Appl. Phys. B 120, 681–687 (2015).
[Crossref]

W. Lin, H. Zhang, B. Liu, B. B. Song, Y. T. Li, C. K. Yang, and Y. G. Liu, “Laser-tuned whispering gallery modes in a solid-core microstructured optical fibre integrated with magnetic fluids,” Sci. Rep. 5, 17791 (2015).
[Crossref]

S. C. Yang, Y. Wang, and H. D. Sun, “Advances and prospects for whispering gallery mode microcavities,” Adv. Opt. Mater. 3, 1136–1162 (2015).
[Crossref]

A. Mahmood, V. Kavungal, S. S. Ahmed, G. Farrell, and Y. Semenova, “Magnetic-field sensor based on whispering-gallery modes in a photonic crystal fiber infiltrated with magnetic fluid,” Opt. Lett. 40, 4983–4986 (2015).
[Crossref]

2014 (4)

Y. Yang, J. Ward, and S. N. Chormaic, “Quasi-droplet microbubbles for high resolution sensing applications,” Opt. Express 22, 6881–6898 (2014).
[Crossref]

D. Farnesi, A. Barucci, G. C. Righini, S. Berneschi, S. Soria, and G. Nunzi Conti, “Optical frequency conversion in silica-whispering-gallery-mode microspherical resonators,” Phys. Rev. Lett. 112, 093901 (2014).
[Crossref]

M. Deng, X. K. Sun, H. F. Wei, and J. Li, “Photonic crystal fiber-based modal interferometer for refractive index sensing,” IEEE Photon. Technol. Lett. 26, 531–534 (2014).
[Crossref]

Y. Liu, L. Shi, X. B. Xu, P. Zhao, Z. Q. Wang, S. L. Pu, and X. L. Zhang, “All-optical tuning of a magnetic-fluid-filled optofluidic ring resonator,” Lab Chip 14, 3004–3010 (2014).
[Crossref]

2012 (2)

I. Torres-Díaz, C. Rinaldi, S. Khushrushahi, and M. Zahn, “Observations of ferrofluid flow under a uniform rotating magnetic field in a spherical cavity,” J. Appl. Phys. 111, 07B313 (2012).
[Crossref]

G. P. Lin, Y. Candela, O. Tillement, Z. P. Cai, V. Lefèvre-Seguin, and J. Hare, “Thermal bistability-based method for real-time optimization of ultralow-threshold whispering gallery mode microlasers,” Opt. Lett. 37, 5193–5195 (2012).
[Crossref]

2011 (2)

2009 (1)

M. Humar, M. Ravnik, S. Pajk, and I. Musevic, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3, 595–600 (2009).
[Crossref]

2006 (1)

V. S. Ilchenko and A. B. Matsko, “Optical resonators with whispering-gallery modes—part II: applications,” IEEE J. Sel. Top. Quantum Electron. 12, 15–32 (2006).
[Crossref]

2003 (1)

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[Crossref]

2002 (1)

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002).
[Crossref]

2001 (1)

W. V. Klitzing, R. Long, V. S. Ilchenko, J. Hare, and V. Lefevre-Seguin, “Tunable whispering gallery modes for spectroscopy and CQED experiments,” New J. Phys. 3, 14 (2001).
[Crossref]

1996 (1)

1993 (1)

1991 (1)

A. J. Campillo, J. D. Eversole, and H. B. Lin, “Cavity quantum electrodynamic enhancement of stimulated emission in microdroplets,” Phys. Rev. Lett. 67, 437–440 (1991).
[Crossref]

Abolmaali, F.

Y. C. Li, F. Abolmaali, K. W. Allen, N. I. Limberopoulos, A. Urbas, Y. Rakovich, and V. N. Astratov, “Whispering gallery mode hybridization in photonic molecules,” Laser Photon. Rev. 11, 1600278 (2017).
[Crossref]

Ahmed, S. S.

Allen, K. W.

Y. C. Li, F. Abolmaali, K. W. Allen, N. I. Limberopoulos, A. Urbas, Y. Rakovich, and V. N. Astratov, “Whispering gallery mode hybridization in photonic molecules,” Laser Photon. Rev. 11, 1600278 (2017).
[Crossref]

Astratov, V. N.

Y. C. Li, F. Abolmaali, K. W. Allen, N. I. Limberopoulos, A. Urbas, Y. Rakovich, and V. N. Astratov, “Whispering gallery mode hybridization in photonic molecules,” Laser Photon. Rev. 11, 1600278 (2017).
[Crossref]

Baaske, M. D.

E. Kim, M. D. Baaske, and F. Vollmer, “Towards next-generation label-free biosensors: recent advances in whispering gallery mode sensors,” Lab Chip 17, 1190–1205 (2017).
[Crossref]

Barucci, A.

D. Farnesi, A. Barucci, G. C. Righini, S. Berneschi, S. Soria, and G. Nunzi Conti, “Optical frequency conversion in silica-whispering-gallery-mode microspherical resonators,” Phys. Rev. Lett. 112, 093901 (2014).
[Crossref]

Benson, O.

Berneschi, S.

D. Farnesi, A. Barucci, G. C. Righini, S. Berneschi, S. Soria, and G. Nunzi Conti, “Optical frequency conversion in silica-whispering-gallery-mode microspherical resonators,” Phys. Rev. Lett. 112, 093901 (2014).
[Crossref]

Cai, Z. P.

Campillo, A. J.

A. J. Campillo, J. D. Eversole, and H. B. Lin, “Cavity quantum electrodynamic enhancement of stimulated emission in microdroplets,” Phys. Rev. Lett. 67, 437–440 (1991).
[Crossref]

Candela, Y.

Chormaic, S. N.

Deng, M.

D. M. Huang, W. Huang, J. Zeng, M. Deng, L. L. Shi, and T. Zhu, “Electrical thermo-optic tuning of whispering gallery mode microtube resonator,” IEEE Photon. Technol. Lett. 29, 169–172 (2017).
[Crossref]

M. Deng, X. K. Sun, H. F. Wei, and J. Li, “Photonic crystal fiber-based modal interferometer for refractive index sensing,” IEEE Photon. Technol. Lett. 26, 531–534 (2014).
[Crossref]

Eversole, J. D.

A. L. Huston and J. D. Eversole, “Strain-sensitive elastic scattering from cylinders,” Opt. Lett. 18, 1104–1106 (1993).
[Crossref]

A. J. Campillo, J. D. Eversole, and H. B. Lin, “Cavity quantum electrodynamic enhancement of stimulated emission in microdroplets,” Phys. Rev. Lett. 67, 437–440 (1991).
[Crossref]

Farnesi, D.

D. Farnesi, A. Barucci, G. C. Righini, S. Berneschi, S. Soria, and G. Nunzi Conti, “Optical frequency conversion in silica-whispering-gallery-mode microspherical resonators,” Phys. Rev. Lett. 112, 093901 (2014).
[Crossref]

Farrell, G.

Gorodetsky, M. L.

Hare, J.

G. P. Lin, Y. Candela, O. Tillement, Z. P. Cai, V. Lefèvre-Seguin, and J. Hare, “Thermal bistability-based method for real-time optimization of ultralow-threshold whispering gallery mode microlasers,” Opt. Lett. 37, 5193–5195 (2012).
[Crossref]

W. V. Klitzing, R. Long, V. S. Ilchenko, J. Hare, and V. Lefevre-Seguin, “Tunable whispering gallery modes for spectroscopy and CQED experiments,” New J. Phys. 3, 14 (2001).
[Crossref]

Henze, R.

Huang, D. M.

D. M. Huang, W. Huang, J. Zeng, M. Deng, L. L. Shi, and T. Zhu, “Electrical thermo-optic tuning of whispering gallery mode microtube resonator,” IEEE Photon. Technol. Lett. 29, 169–172 (2017).
[Crossref]

L. L. Shi, T. Zhu, D. M. Huang, and M. Liu, “Thermo-optic tuning of integrated polymethyl methacrylate sphere whispering gallery mode resonator,” IEEE Photon. J. 8, 2701307 (2016).
[Crossref]

Huang, W.

D. M. Huang, W. Huang, J. Zeng, M. Deng, L. L. Shi, and T. Zhu, “Electrical thermo-optic tuning of whispering gallery mode microtube resonator,” IEEE Photon. Technol. Lett. 29, 169–172 (2017).
[Crossref]

Humar, M.

M. Humar, M. Ravnik, S. Pajk, and I. Musevic, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3, 595–600 (2009).
[Crossref]

Huston, A. L.

Ilchenko, V. S.

V. S. Ilchenko and A. B. Matsko, “Optical resonators with whispering-gallery modes—part II: applications,” IEEE J. Sel. Top. Quantum Electron. 12, 15–32 (2006).
[Crossref]

W. V. Klitzing, R. Long, V. S. Ilchenko, J. Hare, and V. Lefevre-Seguin, “Tunable whispering gallery modes for spectroscopy and CQED experiments,” New J. Phys. 3, 14 (2001).
[Crossref]

M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21, 453–455 (1996).
[Crossref]

Jafari, A.

R. Naderali, A. Jafari, and H. Motiei, “Nonlinear optical properties of carboxymethyl starch nanocomposite by Z-scan technique using a Nd-YAG laser,” Appl. Phys. B 120, 681–687 (2015).
[Crossref]

Jiang, L.

Kailasnath, M.

Kavungal, V.

Khushrushahi, S.

I. Torres-Díaz, C. Rinaldi, S. Khushrushahi, and M. Zahn, “Observations of ferrofluid flow under a uniform rotating magnetic field in a spherical cavity,” J. Appl. Phys. 111, 07B313 (2012).
[Crossref]

Kim, E.

E. Kim, M. D. Baaske, and F. Vollmer, “Towards next-generation label-free biosensors: recent advances in whispering gallery mode sensors,” Lab Chip 17, 1190–1205 (2017).
[Crossref]

Kippenberg, T. J.

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002).
[Crossref]

Klitzing, W. V.

W. V. Klitzing, R. Long, V. S. Ilchenko, J. Hare, and V. Lefevre-Seguin, “Tunable whispering gallery modes for spectroscopy and CQED experiments,” New J. Phys. 3, 14 (2001).
[Crossref]

Kopcansky, P.

Lefevre-Seguin, V.

W. V. Klitzing, R. Long, V. S. Ilchenko, J. Hare, and V. Lefevre-Seguin, “Tunable whispering gallery modes for spectroscopy and CQED experiments,” New J. Phys. 3, 14 (2001).
[Crossref]

Lefèvre-Seguin, V.

Li, J.

M. Deng, X. K. Sun, H. F. Wei, and J. Li, “Photonic crystal fiber-based modal interferometer for refractive index sensing,” IEEE Photon. Technol. Lett. 26, 531–534 (2014).
[Crossref]

Li, Y. C.

Y. C. Li, F. Abolmaali, K. W. Allen, N. I. Limberopoulos, A. Urbas, Y. Rakovich, and V. N. Astratov, “Whispering gallery mode hybridization in photonic molecules,” Laser Photon. Rev. 11, 1600278 (2017).
[Crossref]

Li, Y. T.

W. Lin, H. Zhang, B. Liu, B. B. Song, Y. T. Li, C. K. Yang, and Y. G. Liu, “Laser-tuned whispering gallery modes in a solid-core microstructured optical fibre integrated with magnetic fluids,” Sci. Rep. 5, 17791 (2015).
[Crossref]

Limberopoulos, N. I.

Y. C. Li, F. Abolmaali, K. W. Allen, N. I. Limberopoulos, A. Urbas, Y. Rakovich, and V. N. Astratov, “Whispering gallery mode hybridization in photonic molecules,” Laser Photon. Rev. 11, 1600278 (2017).
[Crossref]

Lin, G. P.

Lin, H. B.

A. J. Campillo, J. D. Eversole, and H. B. Lin, “Cavity quantum electrodynamic enhancement of stimulated emission in microdroplets,” Phys. Rev. Lett. 67, 437–440 (1991).
[Crossref]

Lin, N.

Lin, W.

W. Lin, H. Zhang, B. Liu, B. B. Song, Y. T. Li, C. K. Yang, and Y. G. Liu, “Laser-tuned whispering gallery modes in a solid-core microstructured optical fibre integrated with magnetic fluids,” Sci. Rep. 5, 17791 (2015).
[Crossref]

Linslal, C. L.

Liu, B.

W. Lin, H. Zhang, B. Liu, B. B. Song, Y. T. Li, C. K. Yang, and Y. G. Liu, “Laser-tuned whispering gallery modes in a solid-core microstructured optical fibre integrated with magnetic fluids,” Sci. Rep. 5, 17791 (2015).
[Crossref]

Liu, L. Y.

Liu, M.

L. L. Shi, T. Zhu, D. M. Huang, and M. Liu, “Thermo-optic tuning of integrated polymethyl methacrylate sphere whispering gallery mode resonator,” IEEE Photon. J. 8, 2701307 (2016).
[Crossref]

Liu, Y.

Y. Liu, L. Shi, X. B. Xu, P. Zhao, Z. Q. Wang, S. L. Pu, and X. L. Zhang, “All-optical tuning of a magnetic-fluid-filled optofluidic ring resonator,” Lab Chip 14, 3004–3010 (2014).
[Crossref]

Liu, Y. G.

W. Lin, H. Zhang, B. Liu, B. B. Song, Y. T. Li, C. K. Yang, and Y. G. Liu, “Laser-tuned whispering gallery modes in a solid-core microstructured optical fibre integrated with magnetic fluids,” Sci. Rep. 5, 17791 (2015).
[Crossref]

Long, R.

W. V. Klitzing, R. Long, V. S. Ilchenko, J. Hare, and V. Lefevre-Seguin, “Tunable whispering gallery modes for spectroscopy and CQED experiments,” New J. Phys. 3, 14 (2001).
[Crossref]

Lu, Y. F.

Mahmood, A.

Mathew, S.

Matsko, A. B.

V. S. Ilchenko and A. B. Matsko, “Optical resonators with whispering-gallery modes—part II: applications,” IEEE J. Sel. Top. Quantum Electron. 12, 15–32 (2006).
[Crossref]

Motiei, H.

R. Naderali, A. Jafari, and H. Motiei, “Nonlinear optical properties of carboxymethyl starch nanocomposite by Z-scan technique using a Nd-YAG laser,” Appl. Phys. B 120, 681–687 (2015).
[Crossref]

Musevic, I.

M. Humar, M. Ravnik, S. Pajk, and I. Musevic, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3, 595–600 (2009).
[Crossref]

Naderali, R.

R. Naderali, A. Jafari, and H. Motiei, “Nonlinear optical properties of carboxymethyl starch nanocomposite by Z-scan technique using a Nd-YAG laser,” Appl. Phys. B 120, 681–687 (2015).
[Crossref]

Nampoori, V. P. N.

Nideep, T. K.

Nunzi Conti, G.

D. Farnesi, A. Barucci, G. C. Righini, S. Berneschi, S. Soria, and G. Nunzi Conti, “Optical frequency conversion in silica-whispering-gallery-mode microspherical resonators,” Phys. Rev. Lett. 112, 093901 (2014).
[Crossref]

Pajk, S.

M. Humar, M. Ravnik, S. Pajk, and I. Musevic, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3, 595–600 (2009).
[Crossref]

Pu, S. L.

Y. Liu, L. Shi, X. B. Xu, P. Zhao, Z. Q. Wang, S. L. Pu, and X. L. Zhang, “All-optical tuning of a magnetic-fluid-filled optofluidic ring resonator,” Lab Chip 14, 3004–3010 (2014).
[Crossref]

Radhakrishnan, P.

Rakovich, Y.

Y. C. Li, F. Abolmaali, K. W. Allen, N. I. Limberopoulos, A. Urbas, Y. Rakovich, and V. N. Astratov, “Whispering gallery mode hybridization in photonic molecules,” Laser Photon. Rev. 11, 1600278 (2017).
[Crossref]

Ravnik, M.

M. Humar, M. Ravnik, S. Pajk, and I. Musevic, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3, 595–600 (2009).
[Crossref]

Righini, G. C.

D. Farnesi, A. Barucci, G. C. Righini, S. Berneschi, S. Soria, and G. Nunzi Conti, “Optical frequency conversion in silica-whispering-gallery-mode microspherical resonators,” Phys. Rev. Lett. 112, 093901 (2014).
[Crossref]

Rinaldi, C.

I. Torres-Díaz, C. Rinaldi, S. Khushrushahi, and M. Zahn, “Observations of ferrofluid flow under a uniform rotating magnetic field in a spherical cavity,” J. Appl. Phys. 111, 07B313 (2012).
[Crossref]

Savchenkov, A. A.

Seifert, T.

Semenova, Y.

Shi, L.

Y. Liu, L. Shi, X. B. Xu, P. Zhao, Z. Q. Wang, S. L. Pu, and X. L. Zhang, “All-optical tuning of a magnetic-fluid-filled optofluidic ring resonator,” Lab Chip 14, 3004–3010 (2014).
[Crossref]

Shi, L. L.

D. M. Huang, W. Huang, J. Zeng, M. Deng, L. L. Shi, and T. Zhu, “Electrical thermo-optic tuning of whispering gallery mode microtube resonator,” IEEE Photon. Technol. Lett. 29, 169–172 (2017).
[Crossref]

L. L. Shi, T. Zhu, D. M. Huang, and M. Liu, “Thermo-optic tuning of integrated polymethyl methacrylate sphere whispering gallery mode resonator,” IEEE Photon. J. 8, 2701307 (2016).
[Crossref]

Song, B. B.

W. Lin, H. Zhang, B. Liu, B. B. Song, Y. T. Li, C. K. Yang, and Y. G. Liu, “Laser-tuned whispering gallery modes in a solid-core microstructured optical fibre integrated with magnetic fluids,” Sci. Rep. 5, 17791 (2015).
[Crossref]

Soria, S.

D. Farnesi, A. Barucci, G. C. Righini, S. Berneschi, S. Soria, and G. Nunzi Conti, “Optical frequency conversion in silica-whispering-gallery-mode microspherical resonators,” Phys. Rev. Lett. 112, 093901 (2014).
[Crossref]

Spillane, S. M.

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002).
[Crossref]

Sun, H. D.

S. C. Yang, Y. Wang, and H. D. Sun, “Advances and prospects for whispering gallery mode microcavities,” Adv. Opt. Mater. 3, 1136–1162 (2015).
[Crossref]

Sun, X. K.

M. Deng, X. K. Sun, H. F. Wei, and J. Li, “Photonic crystal fiber-based modal interferometer for refractive index sensing,” IEEE Photon. Technol. Lett. 26, 531–534 (2014).
[Crossref]

Tang, T.

Tillement, O.

Torres-Díaz, I.

I. Torres-Díaz, C. Rinaldi, S. Khushrushahi, and M. Zahn, “Observations of ferrofluid flow under a uniform rotating magnetic field in a spherical cavity,” J. Appl. Phys. 111, 07B313 (2012).
[Crossref]

Tsai, H.

Urbas, A.

Y. C. Li, F. Abolmaali, K. W. Allen, N. I. Limberopoulos, A. Urbas, Y. Rakovich, and V. N. Astratov, “Whispering gallery mode hybridization in photonic molecules,” Laser Photon. Rev. 11, 1600278 (2017).
[Crossref]

Vahala, K. J.

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[Crossref]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002).
[Crossref]

Vallabhan, C. P. G.

Vollmer, F.

E. Kim, M. D. Baaske, and F. Vollmer, “Towards next-generation label-free biosensors: recent advances in whispering gallery mode sensors,” Lab Chip 17, 1190–1205 (2017).
[Crossref]

Wang, S. M.

Wang, Y.

S. C. Yang, Y. Wang, and H. D. Sun, “Advances and prospects for whispering gallery mode microcavities,” Adv. Opt. Mater. 3, 1136–1162 (2015).
[Crossref]

Wang, Z. Q.

Y. Liu, L. Shi, X. B. Xu, P. Zhao, Z. Q. Wang, S. L. Pu, and X. L. Zhang, “All-optical tuning of a magnetic-fluid-filled optofluidic ring resonator,” Lab Chip 14, 3004–3010 (2014).
[Crossref]

Ward, J.

Wei, H. F.

M. Deng, X. K. Sun, H. F. Wei, and J. Li, “Photonic crystal fiber-based modal interferometer for refractive index sensing,” IEEE Photon. Technol. Lett. 26, 531–534 (2014).
[Crossref]

Wu, X.

Xiao, H.

Xu, L.

Xu, X. B.

Y. Liu, L. Shi, X. B. Xu, P. Zhao, Z. Q. Wang, S. L. Pu, and X. L. Zhang, “All-optical tuning of a magnetic-fluid-filled optofluidic ring resonator,” Lab Chip 14, 3004–3010 (2014).
[Crossref]

Yang, C. K.

W. Lin, H. Zhang, B. Liu, B. B. Song, Y. T. Li, C. K. Yang, and Y. G. Liu, “Laser-tuned whispering gallery modes in a solid-core microstructured optical fibre integrated with magnetic fluids,” Sci. Rep. 5, 17791 (2015).
[Crossref]

Yang, S. C.

S. C. Yang, Y. Wang, and H. D. Sun, “Advances and prospects for whispering gallery mode microcavities,” Adv. Opt. Mater. 3, 1136–1162 (2015).
[Crossref]

Yang, Y.

Zahn, M.

I. Torres-Díaz, C. Rinaldi, S. Khushrushahi, and M. Zahn, “Observations of ferrofluid flow under a uniform rotating magnetic field in a spherical cavity,” J. Appl. Phys. 111, 07B313 (2012).
[Crossref]

Zavisova, V.

Zeng, J.

D. M. Huang, W. Huang, J. Zeng, M. Deng, L. L. Shi, and T. Zhu, “Electrical thermo-optic tuning of whispering gallery mode microtube resonator,” IEEE Photon. Technol. Lett. 29, 169–172 (2017).
[Crossref]

Zhang, H.

W. Lin, H. Zhang, B. Liu, B. B. Song, Y. T. Li, C. K. Yang, and Y. G. Liu, “Laser-tuned whispering gallery modes in a solid-core microstructured optical fibre integrated with magnetic fluids,” Sci. Rep. 5, 17791 (2015).
[Crossref]

Zhang, X. L.

Y. Liu, L. Shi, X. B. Xu, P. Zhao, Z. Q. Wang, S. L. Pu, and X. L. Zhang, “All-optical tuning of a magnetic-fluid-filled optofluidic ring resonator,” Lab Chip 14, 3004–3010 (2014).
[Crossref]

Zhao, P.

Y. Liu, L. Shi, X. B. Xu, P. Zhao, Z. Q. Wang, S. L. Pu, and X. L. Zhang, “All-optical tuning of a magnetic-fluid-filled optofluidic ring resonator,” Lab Chip 14, 3004–3010 (2014).
[Crossref]

Zhu, T.

D. M. Huang, W. Huang, J. Zeng, M. Deng, L. L. Shi, and T. Zhu, “Electrical thermo-optic tuning of whispering gallery mode microtube resonator,” IEEE Photon. Technol. Lett. 29, 169–172 (2017).
[Crossref]

L. L. Shi, T. Zhu, D. M. Huang, and M. Liu, “Thermo-optic tuning of integrated polymethyl methacrylate sphere whispering gallery mode resonator,” IEEE Photon. J. 8, 2701307 (2016).
[Crossref]

Adv. Opt. Mater. (1)

S. C. Yang, Y. Wang, and H. D. Sun, “Advances and prospects for whispering gallery mode microcavities,” Adv. Opt. Mater. 3, 1136–1162 (2015).
[Crossref]

Appl. Opt. (2)

Appl. Phys. B (1)

R. Naderali, A. Jafari, and H. Motiei, “Nonlinear optical properties of carboxymethyl starch nanocomposite by Z-scan technique using a Nd-YAG laser,” Appl. Phys. B 120, 681–687 (2015).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

V. S. Ilchenko and A. B. Matsko, “Optical resonators with whispering-gallery modes—part II: applications,” IEEE J. Sel. Top. Quantum Electron. 12, 15–32 (2006).
[Crossref]

IEEE Photon. J. (1)

L. L. Shi, T. Zhu, D. M. Huang, and M. Liu, “Thermo-optic tuning of integrated polymethyl methacrylate sphere whispering gallery mode resonator,” IEEE Photon. J. 8, 2701307 (2016).
[Crossref]

IEEE Photon. Technol. Lett. (2)

D. M. Huang, W. Huang, J. Zeng, M. Deng, L. L. Shi, and T. Zhu, “Electrical thermo-optic tuning of whispering gallery mode microtube resonator,” IEEE Photon. Technol. Lett. 29, 169–172 (2017).
[Crossref]

M. Deng, X. K. Sun, H. F. Wei, and J. Li, “Photonic crystal fiber-based modal interferometer for refractive index sensing,” IEEE Photon. Technol. Lett. 26, 531–534 (2014).
[Crossref]

J. Appl. Phys. (1)

I. Torres-Díaz, C. Rinaldi, S. Khushrushahi, and M. Zahn, “Observations of ferrofluid flow under a uniform rotating magnetic field in a spherical cavity,” J. Appl. Phys. 111, 07B313 (2012).
[Crossref]

Lab Chip (2)

Y. Liu, L. Shi, X. B. Xu, P. Zhao, Z. Q. Wang, S. L. Pu, and X. L. Zhang, “All-optical tuning of a magnetic-fluid-filled optofluidic ring resonator,” Lab Chip 14, 3004–3010 (2014).
[Crossref]

E. Kim, M. D. Baaske, and F. Vollmer, “Towards next-generation label-free biosensors: recent advances in whispering gallery mode sensors,” Lab Chip 17, 1190–1205 (2017).
[Crossref]

Laser Photon. Rev. (1)

Y. C. Li, F. Abolmaali, K. W. Allen, N. I. Limberopoulos, A. Urbas, Y. Rakovich, and V. N. Astratov, “Whispering gallery mode hybridization in photonic molecules,” Laser Photon. Rev. 11, 1600278 (2017).
[Crossref]

Nat. Photonics (1)

M. Humar, M. Ravnik, S. Pajk, and I. Musevic, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3, 595–600 (2009).
[Crossref]

Nature (2)

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[Crossref]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002).
[Crossref]

New J. Phys. (1)

W. V. Klitzing, R. Long, V. S. Ilchenko, J. Hare, and V. Lefevre-Seguin, “Tunable whispering gallery modes for spectroscopy and CQED experiments,” New J. Phys. 3, 14 (2001).
[Crossref]

Opt. Express (2)

Opt. Lett. (6)

Phys. Rev. Lett. (2)

D. Farnesi, A. Barucci, G. C. Righini, S. Berneschi, S. Soria, and G. Nunzi Conti, “Optical frequency conversion in silica-whispering-gallery-mode microspherical resonators,” Phys. Rev. Lett. 112, 093901 (2014).
[Crossref]

A. J. Campillo, J. D. Eversole, and H. B. Lin, “Cavity quantum electrodynamic enhancement of stimulated emission in microdroplets,” Phys. Rev. Lett. 67, 437–440 (1991).
[Crossref]

Sci. Rep. (1)

W. Lin, H. Zhang, B. Liu, B. B. Song, Y. T. Li, C. K. Yang, and Y. G. Liu, “Laser-tuned whispering gallery modes in a solid-core microstructured optical fibre integrated with magnetic fluids,” Sci. Rep. 5, 17791 (2015).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Cross section of the grapefruit micro-structured fiber. (b) Splicing point between the micro-structured fiber and the SMF. (c) A spherical-end grapefruit micro-structured fiber. (d) Light coupling between the fiber taper and the MOF-based resonator.
Fig. 2.
Fig. 2. Schematic diagram of the performance test system of the proposed grapefruit MOF-based MR.
Fig. 3.
Fig. 3. Transmission spectrum of the grapefruit MOF-based MR.
Fig. 4.
Fig. 4. Optical tunability of the WGMs excited in the grapefruit MOF-based MR. Panels (a) and (b) show, respectively, the resonance dip of 1550.295 nm red shifts with increment of pump power and blue shifts with decrement of pump power by using a pump laser with a wavelength of 1550 nm.
Fig. 5.
Fig. 5. Panels (a) and (b) show, respectively, the resonance wavelength shift as a function of pump power with a 1550 nm pump laser and a 980 nm pump laser.
Fig. 6.
Fig. 6. (a) Schematic diagram of the response time test system of the proposed grapefruit MOF-based MR. (b) Response time of the grapefruit MOF-based MR as an optical switch.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

λ=2πneffReff/l,
neff=neff0+ξΔT=neff0+ξηΔP,
Reff=Reff0(1+αΔT)=Reff0(1+αηΔP).
S=λP=(α+ξ)λη1λReffReffλλneffneffλ.