Abstract

Random anti-reflecting subwavelength surface structures have been reported to enhance transmission of optical windows and lenses. Specifically, for fused silica substrates, 99.9% specular transmission has been verified by various groups. Diffractive optical elements, such as gratings, also experience net Fresnel losses on both their planar and structured surfaces. We investigated the performance of prefabricated 50% duty-cycle, binary, fused silica linear gratings, with a period of 1.6 μm, before and after application of random anti-reflecting subwavelength surface structures, in order to reduce their initial Fresnel reflectivity. We compared the diffraction order directions and their efficiencies at three test wavelengths: 594, 612, and 633 nm, for both TE(s) and TM(p) incident light polarization states, under three different mountings: normal, first Bragg, and second Bragg incidence. We report transmission enhancement of the sum of all propagating grating orders for all cases tested by factors between 2% and 10%, with reduction of the respective reflected orders by similar ratios. Transmission enhancement of the 2 diffraction order at Bragg incidence suggests that the random etch has different rates between the raised and lowered linear grating topography.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Angle-of-incidence performance of random anti-reflection structures on curved surfaces

C. D. Taylor, L. E. Busse, J. Frantz, J. S. Sanghera, I. D. Aggarwal, and M. K. Poutous
Appl. Opt. 55(9) 2203-2213 (2016)

Anti-reflective surface structures for spinel ceramics and fused silica windows, lenses and optical fibers

Lynda E. Busse, Catalin M. Florea, Jesse A. Frantz, L. Brandon Shaw, Ishwar D. Aggarwal, Menelaos K. Poutous, Rajendra Joshi, and Jas S. Sanghera
Opt. Mater. Express 4(12) 2504-2515 (2014)

High-efficiency fused-silica transmission gratings

H. T. Nguyen, B. W. Shore, S. J. Bryan, J. A. Britten, R. D. Boyd, and M. D. Perry
Opt. Lett. 22(3) 142-144 (1997)

References

  • View by:
  • |
  • |
  • |

  1. D. Chen, “Anti-reflection (AR) coatings made by sol-gel processes: a review,” Sol. Energy Mater. Sol. Cells 68, 313–336 (2001).
    [Crossref]
  2. S. Chattopadhyay, Y. Huang, Y.-J. Jen, A. Ganguly, K. Chen, and L. Chen, “Anti-reflecting and photonic nanostructures,” Mater. Sci. Eng. 69, 1–35 (2010).
    [Crossref]
  3. Q. Yang, X. A. Zhang, A. Bagal, W. Guo, and C.-H. Chang, “Antireflection effects at nanostructured material interfaces and the suppression of thin-film interference,” Nanotechnology 24, 235202 (2013).
    [Crossref]
  4. L. E. Busse, J. A. Frantz, L. B. Shaw, I. D. Aggarwal, and J. S. Sanghera, “Review of antireflective surface structures on laser optics and windows,” Appl. Opt. 54, F303–F310 (2015).
    [Crossref]
  5. M. Schulze, H. Fuchs, E. Kley, and A. Tünnermann, “New approach for antireflective fused silica surfaces by statistical nanostructures,” Proc. SPIE 6883, 68830N (2008).
    [Crossref]
  6. D. S. Hobbs, B. D. MacLeod, and J. R. Riccobono, “Update on the development of high performance anti-reflecting surface relief micro-structures,” Proc. SPIE 6545, 65450Y (2007).
    [Crossref]
  7. D. S. Hobbs and B. D. MacLeod, “Design, fabrication, and measured performance of anti-reflecting surface textures in infrared transmitting materials,” Proc. SPIE 5786, 578640 (2005).
    [Crossref]
  8. H. Kikuta, Y. Ohira, H. Kubo, and K. Iwata, “Effective medium theory of two-dimensional subwavelength gratings in the non-quasi-static limit,” J. Opt. Soc. Am. A 15, 1577–1585 (1998).
    [Crossref]
  9. G. Sapkota, J. R. Case, L. E. Busse, J. A. Frantz, L. B. Shaw, J. S. Sanghera, I. D. Aggarwal, and M. K. Poutous, “Characterization of random anti-reflecting surface structures and their polarization response at off-normal angles of incidence,” Proc. SPIE 9927, 992712 (2016).
    [Crossref]
  10. B. Zollars, S. Savoy, Q. Xue, J. John, K. Hoover, G. Elpers, and R. Wood, “Performance measurements of infrared windows with surface structures providing broadband, wide-angle, antireflective properties,” Proc. SPIE 8708, 87080Q (2013).
    [Crossref]
  11. S.-Y. Han, B. K. Paul, and C.-H. Chang, “Nanostructured ZnO as biomimetic anti-reflective coatings on textured silicon using a continuous solution process,” J. Mater. Chem. 22, 22906–22912 (2012).
    [Crossref]
  12. Z.-P. Yang, L. Ci, J. A. Bur, S.-Y. Lin, and P. M. Ajayan, “Experimental observation of an extremely dark material made by a low-density nanotube array,” Nano Lett. 8, 446–451 (2008).
    [Crossref]
  13. J. J. Steele and M. J. Brett, “Nanostructure engineering in porous columnar thin films: recent advances,” J. Mater. Sci. 18, 367–379 (2007).
  14. L. E. Busse, C. M. Florea, J. A. Frantz, L. B. Shaw, I. D. Aggarwal, M. K. Poutous, R. Joshi, and J. S. Sanghera, “Anti-reflective surface structures for spinel ceramics and fused silica windows, lenses and optical fibers,” Opt. Mater. Express 4, 2504–2515 (2014).
    [Crossref]
  15. D. S. Hobbs and B. D. MacLeod, “High laser damage threshold surface relief micro-structures for anti-reflection applications,” Proc. SPIE 6720, 67200L (2007).
    [Crossref]
  16. N. Roxhed, P. Griss, and G. Stemme, “A method for tapered deep reactive ion etching using a modified Bosch process,” J. Micromech. Microeng. 17, 1087–1092 (2007).
    [Crossref]
  17. C. Taylor, L. Busse, J. Frantz, J. Sanghera, I. Aggarwal, and M. Poutous, “Angle-of-incidence performance of random anti-reflection structures on curved surfaces,” Appl. Opt. 55, 2203–2213 (2016).
    [Crossref]
  18. M. Schulze, D. Lehr, M. Helgert, E.-B. Kley, and A. Tünnermann, “Transmission enhanced optical lenses with self-organized antireflective subwavelength structures for the UV range,” Opt. Lett. 36, 3924–3926 (2011).
    [Crossref]
  19. C. Pacholski, C. Morhard, J. P. Spatz, D. Lehr, M. Schulze, E.-B. Kley, A. Tünnermann, M. Helgert, M. Sundermann, and R. Brunner, “Antireflective subwavelength structures on microlens arrays—comparison of various manufacturing techniques,” Appl. Opt. 51, 8–14 (2012).
    [Crossref]
  20. J. Elam, D. Routkevitch, P. Mardilovich, and S. George, “Conformal coating on ultrahigh-aspect-ratio nanopores of anodic alumina by atomic layer deposition,” Chem. Mater. 15, 3507–3517 (2003).
    [Crossref]
  21. T. Alasaarela, T. Saastamoinen, J. Hiltunen, A. Säynätjoki, A. Tervonen, P. Stenberg, M. Kuittinen, and S. Honkanen, “Atomic layer deposited titanium dioxide and its application in resonant waveguide grating,” Appl. Opt. 49, 4321–4325 (2010).
    [Crossref]
  22. A. Szeghalmi, E. B. Kley, and M. Knez, “Theoretical and experimental analysis of the sensitivity of guided mode resonance sensors,” J. Phys. Chem. C 114, 21150–21157 (2010).
    [Crossref]
  23. T. Weber, T. Käsebier, A. Szeghalmi, M. Knez, E.-B. Kley, and A. Tünnermann, “High aspect ratio deep UV wire grid polarizer fabricated by double patterning,” Microelectron. Eng. 98, 433–435 (2012).
    [Crossref]
  24. H. Shimomura, Z. Gemici, R. E. Cohen, and M. F. Rubner, “Layer-by-layer-assembled high-performance broadband antireflection coatings,” ACS Appl. Mater. Interfaces 2, 813–820 (2010).
    [Crossref]
  25. C. Martinet, V. Paillard, A. Gagnaire, and J. Joseph, “Deposition of SiO2 and TiO2 thin films by plasma enhanced chemical vapor deposition for antireflection coating,” J. Non-Cryst. Solids 216, 77–82 (1997).
    [Crossref]
  26. N. Selvakumar and H. C. Barshilia, “Review of physical vapor deposited (PVD) spectrally selective coatings for mid-and high-temperature solar thermal applications,” Sol. Energy Mater. Sol. Cells 98, 1–23 (2012).
    [Crossref]
  27. B. K. Kim, K.-H. Kim, J. Hong, W.-J. Kim, H. Ko, C. Huh, G. Y. Sung, W. I. Jang, S. H. Park, and S. J. Park, “Sensitivity response to coating material thickness for an optical resonant reflective biosensor based on a guided mode resonance filter,” BioChip J. 8, 35–41 (2014).
  28. C.-H. Chang, J. A. Dominguez-Caballero, H. J. Choi, and G. Barbastathis, “Nanostructured gradient-index antireflection diffractive optics,” Opt. Lett. 36, 2354–2356 (2011).
    [Crossref]
  29. A. Peltier, G. Sapkota, M. Potter, L. E. Busse, J. A. Frantz, L. Brandon, J. S. Sanghera, I. D. Aggarwal, and M. K. Poutous, “Control of spectral transmission enhancement properties of random anti-reflecting surface structures fabricated using gold masking,” Proc. SPIE 10115, 101150B (2017).
    [Crossref]
  30. https://www.lighttrans.com/ .
  31. A. Peltier, G. Sapkota, J. R. Case, and M. K. Poutous, “Polarization insensitive performance of randomly structured antireflecting planar surfaces,” Opt. Eng. 57, 037109 (2018).
    [Crossref]

2018 (1)

A. Peltier, G. Sapkota, J. R. Case, and M. K. Poutous, “Polarization insensitive performance of randomly structured antireflecting planar surfaces,” Opt. Eng. 57, 037109 (2018).
[Crossref]

2017 (1)

A. Peltier, G. Sapkota, M. Potter, L. E. Busse, J. A. Frantz, L. Brandon, J. S. Sanghera, I. D. Aggarwal, and M. K. Poutous, “Control of spectral transmission enhancement properties of random anti-reflecting surface structures fabricated using gold masking,” Proc. SPIE 10115, 101150B (2017).
[Crossref]

2016 (2)

G. Sapkota, J. R. Case, L. E. Busse, J. A. Frantz, L. B. Shaw, J. S. Sanghera, I. D. Aggarwal, and M. K. Poutous, “Characterization of random anti-reflecting surface structures and their polarization response at off-normal angles of incidence,” Proc. SPIE 9927, 992712 (2016).
[Crossref]

C. Taylor, L. Busse, J. Frantz, J. Sanghera, I. Aggarwal, and M. Poutous, “Angle-of-incidence performance of random anti-reflection structures on curved surfaces,” Appl. Opt. 55, 2203–2213 (2016).
[Crossref]

2015 (1)

2014 (2)

L. E. Busse, C. M. Florea, J. A. Frantz, L. B. Shaw, I. D. Aggarwal, M. K. Poutous, R. Joshi, and J. S. Sanghera, “Anti-reflective surface structures for spinel ceramics and fused silica windows, lenses and optical fibers,” Opt. Mater. Express 4, 2504–2515 (2014).
[Crossref]

B. K. Kim, K.-H. Kim, J. Hong, W.-J. Kim, H. Ko, C. Huh, G. Y. Sung, W. I. Jang, S. H. Park, and S. J. Park, “Sensitivity response to coating material thickness for an optical resonant reflective biosensor based on a guided mode resonance filter,” BioChip J. 8, 35–41 (2014).

2013 (2)

Q. Yang, X. A. Zhang, A. Bagal, W. Guo, and C.-H. Chang, “Antireflection effects at nanostructured material interfaces and the suppression of thin-film interference,” Nanotechnology 24, 235202 (2013).
[Crossref]

B. Zollars, S. Savoy, Q. Xue, J. John, K. Hoover, G. Elpers, and R. Wood, “Performance measurements of infrared windows with surface structures providing broadband, wide-angle, antireflective properties,” Proc. SPIE 8708, 87080Q (2013).
[Crossref]

2012 (4)

S.-Y. Han, B. K. Paul, and C.-H. Chang, “Nanostructured ZnO as biomimetic anti-reflective coatings on textured silicon using a continuous solution process,” J. Mater. Chem. 22, 22906–22912 (2012).
[Crossref]

C. Pacholski, C. Morhard, J. P. Spatz, D. Lehr, M. Schulze, E.-B. Kley, A. Tünnermann, M. Helgert, M. Sundermann, and R. Brunner, “Antireflective subwavelength structures on microlens arrays—comparison of various manufacturing techniques,” Appl. Opt. 51, 8–14 (2012).
[Crossref]

N. Selvakumar and H. C. Barshilia, “Review of physical vapor deposited (PVD) spectrally selective coatings for mid-and high-temperature solar thermal applications,” Sol. Energy Mater. Sol. Cells 98, 1–23 (2012).
[Crossref]

T. Weber, T. Käsebier, A. Szeghalmi, M. Knez, E.-B. Kley, and A. Tünnermann, “High aspect ratio deep UV wire grid polarizer fabricated by double patterning,” Microelectron. Eng. 98, 433–435 (2012).
[Crossref]

2011 (2)

2010 (4)

S. Chattopadhyay, Y. Huang, Y.-J. Jen, A. Ganguly, K. Chen, and L. Chen, “Anti-reflecting and photonic nanostructures,” Mater. Sci. Eng. 69, 1–35 (2010).
[Crossref]

H. Shimomura, Z. Gemici, R. E. Cohen, and M. F. Rubner, “Layer-by-layer-assembled high-performance broadband antireflection coatings,” ACS Appl. Mater. Interfaces 2, 813–820 (2010).
[Crossref]

T. Alasaarela, T. Saastamoinen, J. Hiltunen, A. Säynätjoki, A. Tervonen, P. Stenberg, M. Kuittinen, and S. Honkanen, “Atomic layer deposited titanium dioxide and its application in resonant waveguide grating,” Appl. Opt. 49, 4321–4325 (2010).
[Crossref]

A. Szeghalmi, E. B. Kley, and M. Knez, “Theoretical and experimental analysis of the sensitivity of guided mode resonance sensors,” J. Phys. Chem. C 114, 21150–21157 (2010).
[Crossref]

2008 (2)

Z.-P. Yang, L. Ci, J. A. Bur, S.-Y. Lin, and P. M. Ajayan, “Experimental observation of an extremely dark material made by a low-density nanotube array,” Nano Lett. 8, 446–451 (2008).
[Crossref]

M. Schulze, H. Fuchs, E. Kley, and A. Tünnermann, “New approach for antireflective fused silica surfaces by statistical nanostructures,” Proc. SPIE 6883, 68830N (2008).
[Crossref]

2007 (4)

D. S. Hobbs, B. D. MacLeod, and J. R. Riccobono, “Update on the development of high performance anti-reflecting surface relief micro-structures,” Proc. SPIE 6545, 65450Y (2007).
[Crossref]

J. J. Steele and M. J. Brett, “Nanostructure engineering in porous columnar thin films: recent advances,” J. Mater. Sci. 18, 367–379 (2007).

D. S. Hobbs and B. D. MacLeod, “High laser damage threshold surface relief micro-structures for anti-reflection applications,” Proc. SPIE 6720, 67200L (2007).
[Crossref]

N. Roxhed, P. Griss, and G. Stemme, “A method for tapered deep reactive ion etching using a modified Bosch process,” J. Micromech. Microeng. 17, 1087–1092 (2007).
[Crossref]

2005 (1)

D. S. Hobbs and B. D. MacLeod, “Design, fabrication, and measured performance of anti-reflecting surface textures in infrared transmitting materials,” Proc. SPIE 5786, 578640 (2005).
[Crossref]

2003 (1)

J. Elam, D. Routkevitch, P. Mardilovich, and S. George, “Conformal coating on ultrahigh-aspect-ratio nanopores of anodic alumina by atomic layer deposition,” Chem. Mater. 15, 3507–3517 (2003).
[Crossref]

2001 (1)

D. Chen, “Anti-reflection (AR) coatings made by sol-gel processes: a review,” Sol. Energy Mater. Sol. Cells 68, 313–336 (2001).
[Crossref]

1998 (1)

1997 (1)

C. Martinet, V. Paillard, A. Gagnaire, and J. Joseph, “Deposition of SiO2 and TiO2 thin films by plasma enhanced chemical vapor deposition for antireflection coating,” J. Non-Cryst. Solids 216, 77–82 (1997).
[Crossref]

Aggarwal, I.

Aggarwal, I. D.

A. Peltier, G. Sapkota, M. Potter, L. E. Busse, J. A. Frantz, L. Brandon, J. S. Sanghera, I. D. Aggarwal, and M. K. Poutous, “Control of spectral transmission enhancement properties of random anti-reflecting surface structures fabricated using gold masking,” Proc. SPIE 10115, 101150B (2017).
[Crossref]

G. Sapkota, J. R. Case, L. E. Busse, J. A. Frantz, L. B. Shaw, J. S. Sanghera, I. D. Aggarwal, and M. K. Poutous, “Characterization of random anti-reflecting surface structures and their polarization response at off-normal angles of incidence,” Proc. SPIE 9927, 992712 (2016).
[Crossref]

L. E. Busse, J. A. Frantz, L. B. Shaw, I. D. Aggarwal, and J. S. Sanghera, “Review of antireflective surface structures on laser optics and windows,” Appl. Opt. 54, F303–F310 (2015).
[Crossref]

L. E. Busse, C. M. Florea, J. A. Frantz, L. B. Shaw, I. D. Aggarwal, M. K. Poutous, R. Joshi, and J. S. Sanghera, “Anti-reflective surface structures for spinel ceramics and fused silica windows, lenses and optical fibers,” Opt. Mater. Express 4, 2504–2515 (2014).
[Crossref]

Ajayan, P. M.

Z.-P. Yang, L. Ci, J. A. Bur, S.-Y. Lin, and P. M. Ajayan, “Experimental observation of an extremely dark material made by a low-density nanotube array,” Nano Lett. 8, 446–451 (2008).
[Crossref]

Alasaarela, T.

Bagal, A.

Q. Yang, X. A. Zhang, A. Bagal, W. Guo, and C.-H. Chang, “Antireflection effects at nanostructured material interfaces and the suppression of thin-film interference,” Nanotechnology 24, 235202 (2013).
[Crossref]

Barbastathis, G.

Barshilia, H. C.

N. Selvakumar and H. C. Barshilia, “Review of physical vapor deposited (PVD) spectrally selective coatings for mid-and high-temperature solar thermal applications,” Sol. Energy Mater. Sol. Cells 98, 1–23 (2012).
[Crossref]

Brandon, L.

A. Peltier, G. Sapkota, M. Potter, L. E. Busse, J. A. Frantz, L. Brandon, J. S. Sanghera, I. D. Aggarwal, and M. K. Poutous, “Control of spectral transmission enhancement properties of random anti-reflecting surface structures fabricated using gold masking,” Proc. SPIE 10115, 101150B (2017).
[Crossref]

Brett, M. J.

J. J. Steele and M. J. Brett, “Nanostructure engineering in porous columnar thin films: recent advances,” J. Mater. Sci. 18, 367–379 (2007).

Brunner, R.

Bur, J. A.

Z.-P. Yang, L. Ci, J. A. Bur, S.-Y. Lin, and P. M. Ajayan, “Experimental observation of an extremely dark material made by a low-density nanotube array,” Nano Lett. 8, 446–451 (2008).
[Crossref]

Busse, L.

Busse, L. E.

A. Peltier, G. Sapkota, M. Potter, L. E. Busse, J. A. Frantz, L. Brandon, J. S. Sanghera, I. D. Aggarwal, and M. K. Poutous, “Control of spectral transmission enhancement properties of random anti-reflecting surface structures fabricated using gold masking,” Proc. SPIE 10115, 101150B (2017).
[Crossref]

G. Sapkota, J. R. Case, L. E. Busse, J. A. Frantz, L. B. Shaw, J. S. Sanghera, I. D. Aggarwal, and M. K. Poutous, “Characterization of random anti-reflecting surface structures and their polarization response at off-normal angles of incidence,” Proc. SPIE 9927, 992712 (2016).
[Crossref]

L. E. Busse, J. A. Frantz, L. B. Shaw, I. D. Aggarwal, and J. S. Sanghera, “Review of antireflective surface structures on laser optics and windows,” Appl. Opt. 54, F303–F310 (2015).
[Crossref]

L. E. Busse, C. M. Florea, J. A. Frantz, L. B. Shaw, I. D. Aggarwal, M. K. Poutous, R. Joshi, and J. S. Sanghera, “Anti-reflective surface structures for spinel ceramics and fused silica windows, lenses and optical fibers,” Opt. Mater. Express 4, 2504–2515 (2014).
[Crossref]

Case, J. R.

A. Peltier, G. Sapkota, J. R. Case, and M. K. Poutous, “Polarization insensitive performance of randomly structured antireflecting planar surfaces,” Opt. Eng. 57, 037109 (2018).
[Crossref]

G. Sapkota, J. R. Case, L. E. Busse, J. A. Frantz, L. B. Shaw, J. S. Sanghera, I. D. Aggarwal, and M. K. Poutous, “Characterization of random anti-reflecting surface structures and their polarization response at off-normal angles of incidence,” Proc. SPIE 9927, 992712 (2016).
[Crossref]

Chang, C.-H.

Q. Yang, X. A. Zhang, A. Bagal, W. Guo, and C.-H. Chang, “Antireflection effects at nanostructured material interfaces and the suppression of thin-film interference,” Nanotechnology 24, 235202 (2013).
[Crossref]

S.-Y. Han, B. K. Paul, and C.-H. Chang, “Nanostructured ZnO as biomimetic anti-reflective coatings on textured silicon using a continuous solution process,” J. Mater. Chem. 22, 22906–22912 (2012).
[Crossref]

C.-H. Chang, J. A. Dominguez-Caballero, H. J. Choi, and G. Barbastathis, “Nanostructured gradient-index antireflection diffractive optics,” Opt. Lett. 36, 2354–2356 (2011).
[Crossref]

Chattopadhyay, S.

S. Chattopadhyay, Y. Huang, Y.-J. Jen, A. Ganguly, K. Chen, and L. Chen, “Anti-reflecting and photonic nanostructures,” Mater. Sci. Eng. 69, 1–35 (2010).
[Crossref]

Chen, D.

D. Chen, “Anti-reflection (AR) coatings made by sol-gel processes: a review,” Sol. Energy Mater. Sol. Cells 68, 313–336 (2001).
[Crossref]

Chen, K.

S. Chattopadhyay, Y. Huang, Y.-J. Jen, A. Ganguly, K. Chen, and L. Chen, “Anti-reflecting and photonic nanostructures,” Mater. Sci. Eng. 69, 1–35 (2010).
[Crossref]

Chen, L.

S. Chattopadhyay, Y. Huang, Y.-J. Jen, A. Ganguly, K. Chen, and L. Chen, “Anti-reflecting and photonic nanostructures,” Mater. Sci. Eng. 69, 1–35 (2010).
[Crossref]

Choi, H. J.

Ci, L.

Z.-P. Yang, L. Ci, J. A. Bur, S.-Y. Lin, and P. M. Ajayan, “Experimental observation of an extremely dark material made by a low-density nanotube array,” Nano Lett. 8, 446–451 (2008).
[Crossref]

Cohen, R. E.

H. Shimomura, Z. Gemici, R. E. Cohen, and M. F. Rubner, “Layer-by-layer-assembled high-performance broadband antireflection coatings,” ACS Appl. Mater. Interfaces 2, 813–820 (2010).
[Crossref]

Dominguez-Caballero, J. A.

Elam, J.

J. Elam, D. Routkevitch, P. Mardilovich, and S. George, “Conformal coating on ultrahigh-aspect-ratio nanopores of anodic alumina by atomic layer deposition,” Chem. Mater. 15, 3507–3517 (2003).
[Crossref]

Elpers, G.

B. Zollars, S. Savoy, Q. Xue, J. John, K. Hoover, G. Elpers, and R. Wood, “Performance measurements of infrared windows with surface structures providing broadband, wide-angle, antireflective properties,” Proc. SPIE 8708, 87080Q (2013).
[Crossref]

Florea, C. M.

Frantz, J.

Frantz, J. A.

A. Peltier, G. Sapkota, M. Potter, L. E. Busse, J. A. Frantz, L. Brandon, J. S. Sanghera, I. D. Aggarwal, and M. K. Poutous, “Control of spectral transmission enhancement properties of random anti-reflecting surface structures fabricated using gold masking,” Proc. SPIE 10115, 101150B (2017).
[Crossref]

G. Sapkota, J. R. Case, L. E. Busse, J. A. Frantz, L. B. Shaw, J. S. Sanghera, I. D. Aggarwal, and M. K. Poutous, “Characterization of random anti-reflecting surface structures and their polarization response at off-normal angles of incidence,” Proc. SPIE 9927, 992712 (2016).
[Crossref]

L. E. Busse, J. A. Frantz, L. B. Shaw, I. D. Aggarwal, and J. S. Sanghera, “Review of antireflective surface structures on laser optics and windows,” Appl. Opt. 54, F303–F310 (2015).
[Crossref]

L. E. Busse, C. M. Florea, J. A. Frantz, L. B. Shaw, I. D. Aggarwal, M. K. Poutous, R. Joshi, and J. S. Sanghera, “Anti-reflective surface structures for spinel ceramics and fused silica windows, lenses and optical fibers,” Opt. Mater. Express 4, 2504–2515 (2014).
[Crossref]

Fuchs, H.

M. Schulze, H. Fuchs, E. Kley, and A. Tünnermann, “New approach for antireflective fused silica surfaces by statistical nanostructures,” Proc. SPIE 6883, 68830N (2008).
[Crossref]

Gagnaire, A.

C. Martinet, V. Paillard, A. Gagnaire, and J. Joseph, “Deposition of SiO2 and TiO2 thin films by plasma enhanced chemical vapor deposition for antireflection coating,” J. Non-Cryst. Solids 216, 77–82 (1997).
[Crossref]

Ganguly, A.

S. Chattopadhyay, Y. Huang, Y.-J. Jen, A. Ganguly, K. Chen, and L. Chen, “Anti-reflecting and photonic nanostructures,” Mater. Sci. Eng. 69, 1–35 (2010).
[Crossref]

Gemici, Z.

H. Shimomura, Z. Gemici, R. E. Cohen, and M. F. Rubner, “Layer-by-layer-assembled high-performance broadband antireflection coatings,” ACS Appl. Mater. Interfaces 2, 813–820 (2010).
[Crossref]

George, S.

J. Elam, D. Routkevitch, P. Mardilovich, and S. George, “Conformal coating on ultrahigh-aspect-ratio nanopores of anodic alumina by atomic layer deposition,” Chem. Mater. 15, 3507–3517 (2003).
[Crossref]

Griss, P.

N. Roxhed, P. Griss, and G. Stemme, “A method for tapered deep reactive ion etching using a modified Bosch process,” J. Micromech. Microeng. 17, 1087–1092 (2007).
[Crossref]

Guo, W.

Q. Yang, X. A. Zhang, A. Bagal, W. Guo, and C.-H. Chang, “Antireflection effects at nanostructured material interfaces and the suppression of thin-film interference,” Nanotechnology 24, 235202 (2013).
[Crossref]

Han, S.-Y.

S.-Y. Han, B. K. Paul, and C.-H. Chang, “Nanostructured ZnO as biomimetic anti-reflective coatings on textured silicon using a continuous solution process,” J. Mater. Chem. 22, 22906–22912 (2012).
[Crossref]

Helgert, M.

Hiltunen, J.

Hobbs, D. S.

D. S. Hobbs and B. D. MacLeod, “High laser damage threshold surface relief micro-structures for anti-reflection applications,” Proc. SPIE 6720, 67200L (2007).
[Crossref]

D. S. Hobbs, B. D. MacLeod, and J. R. Riccobono, “Update on the development of high performance anti-reflecting surface relief micro-structures,” Proc. SPIE 6545, 65450Y (2007).
[Crossref]

D. S. Hobbs and B. D. MacLeod, “Design, fabrication, and measured performance of anti-reflecting surface textures in infrared transmitting materials,” Proc. SPIE 5786, 578640 (2005).
[Crossref]

Hong, J.

B. K. Kim, K.-H. Kim, J. Hong, W.-J. Kim, H. Ko, C. Huh, G. Y. Sung, W. I. Jang, S. H. Park, and S. J. Park, “Sensitivity response to coating material thickness for an optical resonant reflective biosensor based on a guided mode resonance filter,” BioChip J. 8, 35–41 (2014).

Honkanen, S.

Hoover, K.

B. Zollars, S. Savoy, Q. Xue, J. John, K. Hoover, G. Elpers, and R. Wood, “Performance measurements of infrared windows with surface structures providing broadband, wide-angle, antireflective properties,” Proc. SPIE 8708, 87080Q (2013).
[Crossref]

Huang, Y.

S. Chattopadhyay, Y. Huang, Y.-J. Jen, A. Ganguly, K. Chen, and L. Chen, “Anti-reflecting and photonic nanostructures,” Mater. Sci. Eng. 69, 1–35 (2010).
[Crossref]

Huh, C.

B. K. Kim, K.-H. Kim, J. Hong, W.-J. Kim, H. Ko, C. Huh, G. Y. Sung, W. I. Jang, S. H. Park, and S. J. Park, “Sensitivity response to coating material thickness for an optical resonant reflective biosensor based on a guided mode resonance filter,” BioChip J. 8, 35–41 (2014).

Iwata, K.

Jang, W. I.

B. K. Kim, K.-H. Kim, J. Hong, W.-J. Kim, H. Ko, C. Huh, G. Y. Sung, W. I. Jang, S. H. Park, and S. J. Park, “Sensitivity response to coating material thickness for an optical resonant reflective biosensor based on a guided mode resonance filter,” BioChip J. 8, 35–41 (2014).

Jen, Y.-J.

S. Chattopadhyay, Y. Huang, Y.-J. Jen, A. Ganguly, K. Chen, and L. Chen, “Anti-reflecting and photonic nanostructures,” Mater. Sci. Eng. 69, 1–35 (2010).
[Crossref]

John, J.

B. Zollars, S. Savoy, Q. Xue, J. John, K. Hoover, G. Elpers, and R. Wood, “Performance measurements of infrared windows with surface structures providing broadband, wide-angle, antireflective properties,” Proc. SPIE 8708, 87080Q (2013).
[Crossref]

Joseph, J.

C. Martinet, V. Paillard, A. Gagnaire, and J. Joseph, “Deposition of SiO2 and TiO2 thin films by plasma enhanced chemical vapor deposition for antireflection coating,” J. Non-Cryst. Solids 216, 77–82 (1997).
[Crossref]

Joshi, R.

Käsebier, T.

T. Weber, T. Käsebier, A. Szeghalmi, M. Knez, E.-B. Kley, and A. Tünnermann, “High aspect ratio deep UV wire grid polarizer fabricated by double patterning,” Microelectron. Eng. 98, 433–435 (2012).
[Crossref]

Kikuta, H.

Kim, B. K.

B. K. Kim, K.-H. Kim, J. Hong, W.-J. Kim, H. Ko, C. Huh, G. Y. Sung, W. I. Jang, S. H. Park, and S. J. Park, “Sensitivity response to coating material thickness for an optical resonant reflective biosensor based on a guided mode resonance filter,” BioChip J. 8, 35–41 (2014).

Kim, K.-H.

B. K. Kim, K.-H. Kim, J. Hong, W.-J. Kim, H. Ko, C. Huh, G. Y. Sung, W. I. Jang, S. H. Park, and S. J. Park, “Sensitivity response to coating material thickness for an optical resonant reflective biosensor based on a guided mode resonance filter,” BioChip J. 8, 35–41 (2014).

Kim, W.-J.

B. K. Kim, K.-H. Kim, J. Hong, W.-J. Kim, H. Ko, C. Huh, G. Y. Sung, W. I. Jang, S. H. Park, and S. J. Park, “Sensitivity response to coating material thickness for an optical resonant reflective biosensor based on a guided mode resonance filter,” BioChip J. 8, 35–41 (2014).

Kley, E.

M. Schulze, H. Fuchs, E. Kley, and A. Tünnermann, “New approach for antireflective fused silica surfaces by statistical nanostructures,” Proc. SPIE 6883, 68830N (2008).
[Crossref]

Kley, E. B.

A. Szeghalmi, E. B. Kley, and M. Knez, “Theoretical and experimental analysis of the sensitivity of guided mode resonance sensors,” J. Phys. Chem. C 114, 21150–21157 (2010).
[Crossref]

Kley, E.-B.

Knez, M.

T. Weber, T. Käsebier, A. Szeghalmi, M. Knez, E.-B. Kley, and A. Tünnermann, “High aspect ratio deep UV wire grid polarizer fabricated by double patterning,” Microelectron. Eng. 98, 433–435 (2012).
[Crossref]

A. Szeghalmi, E. B. Kley, and M. Knez, “Theoretical and experimental analysis of the sensitivity of guided mode resonance sensors,” J. Phys. Chem. C 114, 21150–21157 (2010).
[Crossref]

Ko, H.

B. K. Kim, K.-H. Kim, J. Hong, W.-J. Kim, H. Ko, C. Huh, G. Y. Sung, W. I. Jang, S. H. Park, and S. J. Park, “Sensitivity response to coating material thickness for an optical resonant reflective biosensor based on a guided mode resonance filter,” BioChip J. 8, 35–41 (2014).

Kubo, H.

Kuittinen, M.

Lehr, D.

Lin, S.-Y.

Z.-P. Yang, L. Ci, J. A. Bur, S.-Y. Lin, and P. M. Ajayan, “Experimental observation of an extremely dark material made by a low-density nanotube array,” Nano Lett. 8, 446–451 (2008).
[Crossref]

MacLeod, B. D.

D. S. Hobbs and B. D. MacLeod, “High laser damage threshold surface relief micro-structures for anti-reflection applications,” Proc. SPIE 6720, 67200L (2007).
[Crossref]

D. S. Hobbs, B. D. MacLeod, and J. R. Riccobono, “Update on the development of high performance anti-reflecting surface relief micro-structures,” Proc. SPIE 6545, 65450Y (2007).
[Crossref]

D. S. Hobbs and B. D. MacLeod, “Design, fabrication, and measured performance of anti-reflecting surface textures in infrared transmitting materials,” Proc. SPIE 5786, 578640 (2005).
[Crossref]

Mardilovich, P.

J. Elam, D. Routkevitch, P. Mardilovich, and S. George, “Conformal coating on ultrahigh-aspect-ratio nanopores of anodic alumina by atomic layer deposition,” Chem. Mater. 15, 3507–3517 (2003).
[Crossref]

Martinet, C.

C. Martinet, V. Paillard, A. Gagnaire, and J. Joseph, “Deposition of SiO2 and TiO2 thin films by plasma enhanced chemical vapor deposition for antireflection coating,” J. Non-Cryst. Solids 216, 77–82 (1997).
[Crossref]

Morhard, C.

Ohira, Y.

Pacholski, C.

Paillard, V.

C. Martinet, V. Paillard, A. Gagnaire, and J. Joseph, “Deposition of SiO2 and TiO2 thin films by plasma enhanced chemical vapor deposition for antireflection coating,” J. Non-Cryst. Solids 216, 77–82 (1997).
[Crossref]

Park, S. H.

B. K. Kim, K.-H. Kim, J. Hong, W.-J. Kim, H. Ko, C. Huh, G. Y. Sung, W. I. Jang, S. H. Park, and S. J. Park, “Sensitivity response to coating material thickness for an optical resonant reflective biosensor based on a guided mode resonance filter,” BioChip J. 8, 35–41 (2014).

Park, S. J.

B. K. Kim, K.-H. Kim, J. Hong, W.-J. Kim, H. Ko, C. Huh, G. Y. Sung, W. I. Jang, S. H. Park, and S. J. Park, “Sensitivity response to coating material thickness for an optical resonant reflective biosensor based on a guided mode resonance filter,” BioChip J. 8, 35–41 (2014).

Paul, B. K.

S.-Y. Han, B. K. Paul, and C.-H. Chang, “Nanostructured ZnO as biomimetic anti-reflective coatings on textured silicon using a continuous solution process,” J. Mater. Chem. 22, 22906–22912 (2012).
[Crossref]

Peltier, A.

A. Peltier, G. Sapkota, J. R. Case, and M. K. Poutous, “Polarization insensitive performance of randomly structured antireflecting planar surfaces,” Opt. Eng. 57, 037109 (2018).
[Crossref]

A. Peltier, G. Sapkota, M. Potter, L. E. Busse, J. A. Frantz, L. Brandon, J. S. Sanghera, I. D. Aggarwal, and M. K. Poutous, “Control of spectral transmission enhancement properties of random anti-reflecting surface structures fabricated using gold masking,” Proc. SPIE 10115, 101150B (2017).
[Crossref]

Potter, M.

A. Peltier, G. Sapkota, M. Potter, L. E. Busse, J. A. Frantz, L. Brandon, J. S. Sanghera, I. D. Aggarwal, and M. K. Poutous, “Control of spectral transmission enhancement properties of random anti-reflecting surface structures fabricated using gold masking,” Proc. SPIE 10115, 101150B (2017).
[Crossref]

Poutous, M.

Poutous, M. K.

A. Peltier, G. Sapkota, J. R. Case, and M. K. Poutous, “Polarization insensitive performance of randomly structured antireflecting planar surfaces,” Opt. Eng. 57, 037109 (2018).
[Crossref]

A. Peltier, G. Sapkota, M. Potter, L. E. Busse, J. A. Frantz, L. Brandon, J. S. Sanghera, I. D. Aggarwal, and M. K. Poutous, “Control of spectral transmission enhancement properties of random anti-reflecting surface structures fabricated using gold masking,” Proc. SPIE 10115, 101150B (2017).
[Crossref]

G. Sapkota, J. R. Case, L. E. Busse, J. A. Frantz, L. B. Shaw, J. S. Sanghera, I. D. Aggarwal, and M. K. Poutous, “Characterization of random anti-reflecting surface structures and their polarization response at off-normal angles of incidence,” Proc. SPIE 9927, 992712 (2016).
[Crossref]

L. E. Busse, C. M. Florea, J. A. Frantz, L. B. Shaw, I. D. Aggarwal, M. K. Poutous, R. Joshi, and J. S. Sanghera, “Anti-reflective surface structures for spinel ceramics and fused silica windows, lenses and optical fibers,” Opt. Mater. Express 4, 2504–2515 (2014).
[Crossref]

Riccobono, J. R.

D. S. Hobbs, B. D. MacLeod, and J. R. Riccobono, “Update on the development of high performance anti-reflecting surface relief micro-structures,” Proc. SPIE 6545, 65450Y (2007).
[Crossref]

Routkevitch, D.

J. Elam, D. Routkevitch, P. Mardilovich, and S. George, “Conformal coating on ultrahigh-aspect-ratio nanopores of anodic alumina by atomic layer deposition,” Chem. Mater. 15, 3507–3517 (2003).
[Crossref]

Roxhed, N.

N. Roxhed, P. Griss, and G. Stemme, “A method for tapered deep reactive ion etching using a modified Bosch process,” J. Micromech. Microeng. 17, 1087–1092 (2007).
[Crossref]

Rubner, M. F.

H. Shimomura, Z. Gemici, R. E. Cohen, and M. F. Rubner, “Layer-by-layer-assembled high-performance broadband antireflection coatings,” ACS Appl. Mater. Interfaces 2, 813–820 (2010).
[Crossref]

Saastamoinen, T.

Sanghera, J.

Sanghera, J. S.

A. Peltier, G. Sapkota, M. Potter, L. E. Busse, J. A. Frantz, L. Brandon, J. S. Sanghera, I. D. Aggarwal, and M. K. Poutous, “Control of spectral transmission enhancement properties of random anti-reflecting surface structures fabricated using gold masking,” Proc. SPIE 10115, 101150B (2017).
[Crossref]

G. Sapkota, J. R. Case, L. E. Busse, J. A. Frantz, L. B. Shaw, J. S. Sanghera, I. D. Aggarwal, and M. K. Poutous, “Characterization of random anti-reflecting surface structures and their polarization response at off-normal angles of incidence,” Proc. SPIE 9927, 992712 (2016).
[Crossref]

L. E. Busse, J. A. Frantz, L. B. Shaw, I. D. Aggarwal, and J. S. Sanghera, “Review of antireflective surface structures on laser optics and windows,” Appl. Opt. 54, F303–F310 (2015).
[Crossref]

L. E. Busse, C. M. Florea, J. A. Frantz, L. B. Shaw, I. D. Aggarwal, M. K. Poutous, R. Joshi, and J. S. Sanghera, “Anti-reflective surface structures for spinel ceramics and fused silica windows, lenses and optical fibers,” Opt. Mater. Express 4, 2504–2515 (2014).
[Crossref]

Sapkota, G.

A. Peltier, G. Sapkota, J. R. Case, and M. K. Poutous, “Polarization insensitive performance of randomly structured antireflecting planar surfaces,” Opt. Eng. 57, 037109 (2018).
[Crossref]

A. Peltier, G. Sapkota, M. Potter, L. E. Busse, J. A. Frantz, L. Brandon, J. S. Sanghera, I. D. Aggarwal, and M. K. Poutous, “Control of spectral transmission enhancement properties of random anti-reflecting surface structures fabricated using gold masking,” Proc. SPIE 10115, 101150B (2017).
[Crossref]

G. Sapkota, J. R. Case, L. E. Busse, J. A. Frantz, L. B. Shaw, J. S. Sanghera, I. D. Aggarwal, and M. K. Poutous, “Characterization of random anti-reflecting surface structures and their polarization response at off-normal angles of incidence,” Proc. SPIE 9927, 992712 (2016).
[Crossref]

Savoy, S.

B. Zollars, S. Savoy, Q. Xue, J. John, K. Hoover, G. Elpers, and R. Wood, “Performance measurements of infrared windows with surface structures providing broadband, wide-angle, antireflective properties,” Proc. SPIE 8708, 87080Q (2013).
[Crossref]

Säynätjoki, A.

Schulze, M.

Selvakumar, N.

N. Selvakumar and H. C. Barshilia, “Review of physical vapor deposited (PVD) spectrally selective coatings for mid-and high-temperature solar thermal applications,” Sol. Energy Mater. Sol. Cells 98, 1–23 (2012).
[Crossref]

Shaw, L. B.

Shimomura, H.

H. Shimomura, Z. Gemici, R. E. Cohen, and M. F. Rubner, “Layer-by-layer-assembled high-performance broadband antireflection coatings,” ACS Appl. Mater. Interfaces 2, 813–820 (2010).
[Crossref]

Spatz, J. P.

Steele, J. J.

J. J. Steele and M. J. Brett, “Nanostructure engineering in porous columnar thin films: recent advances,” J. Mater. Sci. 18, 367–379 (2007).

Stemme, G.

N. Roxhed, P. Griss, and G. Stemme, “A method for tapered deep reactive ion etching using a modified Bosch process,” J. Micromech. Microeng. 17, 1087–1092 (2007).
[Crossref]

Stenberg, P.

Sundermann, M.

Sung, G. Y.

B. K. Kim, K.-H. Kim, J. Hong, W.-J. Kim, H. Ko, C. Huh, G. Y. Sung, W. I. Jang, S. H. Park, and S. J. Park, “Sensitivity response to coating material thickness for an optical resonant reflective biosensor based on a guided mode resonance filter,” BioChip J. 8, 35–41 (2014).

Szeghalmi, A.

T. Weber, T. Käsebier, A. Szeghalmi, M. Knez, E.-B. Kley, and A. Tünnermann, “High aspect ratio deep UV wire grid polarizer fabricated by double patterning,” Microelectron. Eng. 98, 433–435 (2012).
[Crossref]

A. Szeghalmi, E. B. Kley, and M. Knez, “Theoretical and experimental analysis of the sensitivity of guided mode resonance sensors,” J. Phys. Chem. C 114, 21150–21157 (2010).
[Crossref]

Taylor, C.

Tervonen, A.

Tünnermann, A.

T. Weber, T. Käsebier, A. Szeghalmi, M. Knez, E.-B. Kley, and A. Tünnermann, “High aspect ratio deep UV wire grid polarizer fabricated by double patterning,” Microelectron. Eng. 98, 433–435 (2012).
[Crossref]

C. Pacholski, C. Morhard, J. P. Spatz, D. Lehr, M. Schulze, E.-B. Kley, A. Tünnermann, M. Helgert, M. Sundermann, and R. Brunner, “Antireflective subwavelength structures on microlens arrays—comparison of various manufacturing techniques,” Appl. Opt. 51, 8–14 (2012).
[Crossref]

M. Schulze, D. Lehr, M. Helgert, E.-B. Kley, and A. Tünnermann, “Transmission enhanced optical lenses with self-organized antireflective subwavelength structures for the UV range,” Opt. Lett. 36, 3924–3926 (2011).
[Crossref]

M. Schulze, H. Fuchs, E. Kley, and A. Tünnermann, “New approach for antireflective fused silica surfaces by statistical nanostructures,” Proc. SPIE 6883, 68830N (2008).
[Crossref]

Weber, T.

T. Weber, T. Käsebier, A. Szeghalmi, M. Knez, E.-B. Kley, and A. Tünnermann, “High aspect ratio deep UV wire grid polarizer fabricated by double patterning,” Microelectron. Eng. 98, 433–435 (2012).
[Crossref]

Wood, R.

B. Zollars, S. Savoy, Q. Xue, J. John, K. Hoover, G. Elpers, and R. Wood, “Performance measurements of infrared windows with surface structures providing broadband, wide-angle, antireflective properties,” Proc. SPIE 8708, 87080Q (2013).
[Crossref]

Xue, Q.

B. Zollars, S. Savoy, Q. Xue, J. John, K. Hoover, G. Elpers, and R. Wood, “Performance measurements of infrared windows with surface structures providing broadband, wide-angle, antireflective properties,” Proc. SPIE 8708, 87080Q (2013).
[Crossref]

Yang, Q.

Q. Yang, X. A. Zhang, A. Bagal, W. Guo, and C.-H. Chang, “Antireflection effects at nanostructured material interfaces and the suppression of thin-film interference,” Nanotechnology 24, 235202 (2013).
[Crossref]

Yang, Z.-P.

Z.-P. Yang, L. Ci, J. A. Bur, S.-Y. Lin, and P. M. Ajayan, “Experimental observation of an extremely dark material made by a low-density nanotube array,” Nano Lett. 8, 446–451 (2008).
[Crossref]

Zhang, X. A.

Q. Yang, X. A. Zhang, A. Bagal, W. Guo, and C.-H. Chang, “Antireflection effects at nanostructured material interfaces and the suppression of thin-film interference,” Nanotechnology 24, 235202 (2013).
[Crossref]

Zollars, B.

B. Zollars, S. Savoy, Q. Xue, J. John, K. Hoover, G. Elpers, and R. Wood, “Performance measurements of infrared windows with surface structures providing broadband, wide-angle, antireflective properties,” Proc. SPIE 8708, 87080Q (2013).
[Crossref]

ACS Appl. Mater. Interfaces (1)

H. Shimomura, Z. Gemici, R. E. Cohen, and M. F. Rubner, “Layer-by-layer-assembled high-performance broadband antireflection coatings,” ACS Appl. Mater. Interfaces 2, 813–820 (2010).
[Crossref]

Appl. Opt. (4)

BioChip J. (1)

B. K. Kim, K.-H. Kim, J. Hong, W.-J. Kim, H. Ko, C. Huh, G. Y. Sung, W. I. Jang, S. H. Park, and S. J. Park, “Sensitivity response to coating material thickness for an optical resonant reflective biosensor based on a guided mode resonance filter,” BioChip J. 8, 35–41 (2014).

Chem. Mater. (1)

J. Elam, D. Routkevitch, P. Mardilovich, and S. George, “Conformal coating on ultrahigh-aspect-ratio nanopores of anodic alumina by atomic layer deposition,” Chem. Mater. 15, 3507–3517 (2003).
[Crossref]

J. Mater. Chem. (1)

S.-Y. Han, B. K. Paul, and C.-H. Chang, “Nanostructured ZnO as biomimetic anti-reflective coatings on textured silicon using a continuous solution process,” J. Mater. Chem. 22, 22906–22912 (2012).
[Crossref]

J. Mater. Sci. (1)

J. J. Steele and M. J. Brett, “Nanostructure engineering in porous columnar thin films: recent advances,” J. Mater. Sci. 18, 367–379 (2007).

J. Micromech. Microeng. (1)

N. Roxhed, P. Griss, and G. Stemme, “A method for tapered deep reactive ion etching using a modified Bosch process,” J. Micromech. Microeng. 17, 1087–1092 (2007).
[Crossref]

J. Non-Cryst. Solids (1)

C. Martinet, V. Paillard, A. Gagnaire, and J. Joseph, “Deposition of SiO2 and TiO2 thin films by plasma enhanced chemical vapor deposition for antireflection coating,” J. Non-Cryst. Solids 216, 77–82 (1997).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Phys. Chem. C (1)

A. Szeghalmi, E. B. Kley, and M. Knez, “Theoretical and experimental analysis of the sensitivity of guided mode resonance sensors,” J. Phys. Chem. C 114, 21150–21157 (2010).
[Crossref]

Mater. Sci. Eng. (1)

S. Chattopadhyay, Y. Huang, Y.-J. Jen, A. Ganguly, K. Chen, and L. Chen, “Anti-reflecting and photonic nanostructures,” Mater. Sci. Eng. 69, 1–35 (2010).
[Crossref]

Microelectron. Eng. (1)

T. Weber, T. Käsebier, A. Szeghalmi, M. Knez, E.-B. Kley, and A. Tünnermann, “High aspect ratio deep UV wire grid polarizer fabricated by double patterning,” Microelectron. Eng. 98, 433–435 (2012).
[Crossref]

Nano Lett. (1)

Z.-P. Yang, L. Ci, J. A. Bur, S.-Y. Lin, and P. M. Ajayan, “Experimental observation of an extremely dark material made by a low-density nanotube array,” Nano Lett. 8, 446–451 (2008).
[Crossref]

Nanotechnology (1)

Q. Yang, X. A. Zhang, A. Bagal, W. Guo, and C.-H. Chang, “Antireflection effects at nanostructured material interfaces and the suppression of thin-film interference,” Nanotechnology 24, 235202 (2013).
[Crossref]

Opt. Eng. (1)

A. Peltier, G. Sapkota, J. R. Case, and M. K. Poutous, “Polarization insensitive performance of randomly structured antireflecting planar surfaces,” Opt. Eng. 57, 037109 (2018).
[Crossref]

Opt. Lett. (2)

Opt. Mater. Express (1)

Proc. SPIE (7)

D. S. Hobbs and B. D. MacLeod, “High laser damage threshold surface relief micro-structures for anti-reflection applications,” Proc. SPIE 6720, 67200L (2007).
[Crossref]

G. Sapkota, J. R. Case, L. E. Busse, J. A. Frantz, L. B. Shaw, J. S. Sanghera, I. D. Aggarwal, and M. K. Poutous, “Characterization of random anti-reflecting surface structures and their polarization response at off-normal angles of incidence,” Proc. SPIE 9927, 992712 (2016).
[Crossref]

B. Zollars, S. Savoy, Q. Xue, J. John, K. Hoover, G. Elpers, and R. Wood, “Performance measurements of infrared windows with surface structures providing broadband, wide-angle, antireflective properties,” Proc. SPIE 8708, 87080Q (2013).
[Crossref]

M. Schulze, H. Fuchs, E. Kley, and A. Tünnermann, “New approach for antireflective fused silica surfaces by statistical nanostructures,” Proc. SPIE 6883, 68830N (2008).
[Crossref]

D. S. Hobbs, B. D. MacLeod, and J. R. Riccobono, “Update on the development of high performance anti-reflecting surface relief micro-structures,” Proc. SPIE 6545, 65450Y (2007).
[Crossref]

D. S. Hobbs and B. D. MacLeod, “Design, fabrication, and measured performance of anti-reflecting surface textures in infrared transmitting materials,” Proc. SPIE 5786, 578640 (2005).
[Crossref]

A. Peltier, G. Sapkota, M. Potter, L. E. Busse, J. A. Frantz, L. Brandon, J. S. Sanghera, I. D. Aggarwal, and M. K. Poutous, “Control of spectral transmission enhancement properties of random anti-reflecting surface structures fabricated using gold masking,” Proc. SPIE 10115, 101150B (2017).
[Crossref]

Sol. Energy Mater. Sol. Cells (2)

N. Selvakumar and H. C. Barshilia, “Review of physical vapor deposited (PVD) spectrally selective coatings for mid-and high-temperature solar thermal applications,” Sol. Energy Mater. Sol. Cells 98, 1–23 (2012).
[Crossref]

D. Chen, “Anti-reflection (AR) coatings made by sol-gel processes: a review,” Sol. Energy Mater. Sol. Cells 68, 313–336 (2001).
[Crossref]

Other (1)

https://www.lighttrans.com/ .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Scanning electron micrographs of (a) a commercially available linear binary fused silica grating and (b) rARSS fabricated on top of the grating.
Fig. 2.
Fig. 2. Experimental layout for measurement of diffraction efficiencies of all orders for the grating under test (G), using the detector (D) placed on a rotating stage (R). Polarization of incident light is controlled by rotating a half-wave plate (HWP) and a linear polarizer (LP).
Fig. 3.
Fig. 3. AOI test setup for all gratings tested. (a) The grating is aligned at normal incidence. (b) The grating is aligned at first Bragg AOI, where the 1st reflected order goes back in the direction of the incident light. (c) The grating is aligned at second Bragg AOI, where the 0th reflected order is aligned along the normal of the grating.
Fig. 4.
Fig. 4. Simulated transmission diffraction efficiencies of all non-evanescent orders at 594 nm for s polarization, grouped by AOI. Each bar is identified as a diffractive order following the color scheme insert at the top of the figure.
Fig. 5.
Fig. 5. Measured reflection diffraction efficiencies of (a) 0th order and (b) +1 order for normal, first Bragg, and second Bragg AOIs at 594, 612, and 633 nm. Solid bars represent the original grating measurements, while the patterned bars show the same grating post-processed with rARSS.
Fig. 6.
Fig. 6. Normalized transmission diffraction efficiency at normal incidence. Comparison between efficiency of all propagating orders for (a) unprocessed FS grating for s polarization, (b) rARSS FS grating for s polarization, (c) unprocessed FS grating for p polarization, and (d) rARSS FS grating for p polarization, at each test wavelength.
Fig. 7.
Fig. 7. Normalized transmission diffraction efficiency at first Bragg incidence (11.0°±0.5°, 11.5°±0.5°, 11.5°±0.5° for 594, 612, and 633 nm, respectively). Comparison between efficiency of all propagating orders for (a) unprocessed FS grating for s polarization, (b) rARSS FS grating for s polarization, (c) unprocessed FS grating for p polarization, and (d) rARSS FS grating for p polarization, at each test wavelength.
Fig. 8.
Fig. 8. Normalized transmission diffraction efficiency at second Bragg incidence (22.5°±0.5°, 23.0°±0.5°, 24.0°±0.5° for 594, 612, and 633 nm, respectively). Comparison between efficiency of all orders for (a) unprocessed FS grating for s polarization, (b) rARSS FS grating for s polarization, (c) unprocessed FS grating for p polarization, and (d) rARSS FS grating for p polarization, at each test wavelength.

Tables (2)

Tables Icon

Table 1. Comparison of Diffraction Angles of All Propagating Orders between the Measured (ARSS and Blank) and Simulated (Blank) Values at 594, 612, and 633 nm for First Bragg Incidence

Tables Icon

Table 2. Comparison between Total Transmission Intensity of All Propagating Orders for the Original (Blank) and rARSS Grating, for Various AOIs at 594, 612, and 633 nm

Metrics