Abstract

Recently, holographic display and computer-generated holograms calculated from real existing objects have been more actively investigated to support holographic video applications. In this paper, we proposed a method of generating 360-degree color holograms of real 3D objects in an efficient manner. 360-degree 3D images are generated using the actual 3D image acquisition system consisting of a depth camera and a turntable and intermediate view generation. Then, 360-degree color holograms are calculated using a viewing-window-based computer-generated hologram. We confirmed that floating 3D objects are faithfully reconstructed around a 360-degree direction using our 360-degree tabletop color holographic display.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Practical system for generating digital mixed reality video holograms

Joongseok Song, Changseob Kim, Hanhoon Park, and Jong-Il Park
Appl. Opt. 55(20) 5362-5371 (2016)

Acceleration of integral imaging based incoherent Fourier hologram capture using graphic processing unit

Kyeong-Min Jeong, Hee-Seung Kim, Sung-In Hong, Sung-Keun Lee, Na-Young Jo, Yong-Soo Kim, Hong-Gi Lim, and Jae-Hyeung Park
Opt. Express 20(21) 23735-23743 (2012)

Three-dimensional display technologies

Jason Geng
Adv. Opt. Photon. 5(4) 456-535 (2013)

References

  • View by:
  • |
  • |
  • |

  1. J. Hahn, H. Kim, Y. Lim, G. Park, and B. Lee, “Wide viewing angle dynamic holographic stereogram with a curved array of spatial light modulators,” Opt. Express 16, 12372–12386 (2008).
    [Crossref]
  2. F. Yaraş, H. Kang, and L. Onural, “Circular holographic video display system,” Opt. Express 19, 9147–9156 (2011).
    [Crossref]
  3. M. Park, B. G. Chae, H.-E. Kim, J. Hahn, H. Kim, C. H. Park, K. Moon, and J. Kim, “Digital holographic display system with large screen based on viewing window movement for 3D video service,” ETRI J. 36, 232–241 (2014).
    [Crossref]
  4. S. Yoshida, “fVisiOn: 360-degree viewable glasses-free tabletop 3D display composed of conical screen and modular projector arrays,” Opt. Express 24, 13194–13203 (2016).
    [Crossref]
  5. T. Inoue and Y. Takaki, “Table screen 360-degree holographic display using circular viewing-zone scanning,” Opt. Express 23, 6533–6542 (2015).
    [Crossref]
  6. Y. Lim, K. Hong, H. Kim, H.-E. Kim, E.-Y. Chang, S. Lee, T. Kim, J. Nam, H.-G. Choo, J. Kim, and J. Hahn, “360-degree tabletop electronic holographic display,” Opt. Express 24, 24999–25009 (2016).
    [Crossref]
  7. J. Kim, Y. Lim, K. Hong, E.-Y. Chang, and H.-G. Choo, “360-degree tabletop color holographic display,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (online) (Optical Society of America, 2017), paper W3A.1.
  8. Y. Zhao, L. Cao, H. Zhang, D. Kong, and G. Jin, “Accurate calculation of computer-generated holograms using angular-spectrum layer-oriented method,” Opt. Express 23, 25440–25449 (2015).
    [Crossref]
  9. H. Zhang, L. Cao, and G. Jin, “Computer-generated hologram with occlusion effect using layer-based processing,” Appl. Opt. 56, F138–F143 (2017).
    [Crossref]
  10. https://developer.microsoft.com/en-us/windows/kinect .
  11. MIT Media Lab, http://www.media.mit.edu/ .
  12. K. Nomura, R. Oi, T. Kurita, and T. Hamamoto, “Electronic hologram generation using high quality color and depth information of natural scene,” in Proceedings of the Picture Coding Symposium (PCS) Conference (2010), pp. 46–49.
  13. S.-C. Kim, D.-C. Hwang, D.-H. Lee, and E.-S. Kim, “Computer-generated holograms of a real three-dimensional object based on stereoscopic video images,” Appl. Opt. 45, 5669–5676 (2006).
    [Crossref]
  14. S. Ding, S. Cao, Y. F. Zheng, and R. L. Ewing, “From image pair to a computer generated hologram for a real-world scene,” Appl. Opt. 55, 7583–7592 (2016).
    [Crossref]
  15. E.-Y. Chang, Y.-S. Kang, K. Moon, Y.-S. Ho, and J. Kim, “Computer-generated hologram for 3D scene from multi-view images,” Proc. SPIE 8738, 87380H (2013).
    [Crossref]
  16. Y. Takaki and K. Ikeda, “Simplified calculation method for computer-generated holographic stereograms from multi-view images,” Opt. Express 21, 9652–9663 (2013).
    [Crossref]
  17. H. Kang, E. Stoykova, and H. Yoshikawa, “Fast phase-added stereo-gram algorithm for generation of photorealistic 3D content,” Appl. Opt. 55, A135–A143 (2016).
    [Crossref]
  18. S. Lee, E.-Y. Chang, H.-G. Choo, and J. Kim, “Computer-generated-hologram for holographic display based on viewing window and removal of conjugate images,” in Proceedings of the 3DSA Conference (2015).
  19. Y. Cui and D. Stricker, “3D body scanning with one Kinect,” in Proceedings of the 3D Body Scanning Technologies (3DBST) Conference (2015).
  20. A. Mao, H. Zhang, Y. Liu, Y. Zheng, G. Li, and G. Han, “Easy and fast reconstruction of a 3D avatar with an RGB-D sensor,” Sensors 17, 1113 (2017).
    [Crossref]
  21. Y. He, B. Liang, J. Yang, S. Li, and J. He, “An iterative closest points algorithm for registration of 3D laser scanner point clouds with geometric features,” Sensors 17, 1862 (2017).
    [Crossref]
  22. W.-Y. Chen, Y.-L. Chang, S.-F. Lin, L.-F. Ding, and L.-G. Chen, “Efficient depth image based rendering with edge dependent depth filter and interpolation,” in IEEE International Conference on Multimedia and Expo (2005), pp. 1314–1317.
  23. Y. Mao, G. Cheung, A. Ortega, and Y. Ji, “Expansion hole filling in depth-image-based rendering using graph-based interpolation,” in Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2013).
  24. M. Solh and G. AlRegib, “Hierarchical hole-filling for depth-based view synthesis in FTV and 3D video,” IEEE J. Sel. Top. Signal Process. 6, 495–504 (2012).
    [Crossref]
  25. S.-W. Nam, K.-H. Jang, Y.-J. Ban, H.-S. Kim, and S.-I. Chien, “Hole-filling methods using depth and color information for generating multiview images,” ETRI J. 38, 996–1007 (2016).
    [Crossref]
  26. K.-J. Oh, S. Yea, and Y.-S. Ho, “Hole filling method using depth based in-painting for view synthesis in free viewpoint television and 3-D video,” in Proceedings of the Picture Coding Symposium (PCS) Conference (2009), pp. 1–4.
  27. E.-Y. Chang, J. Choi, S. Lee, S. Kwon, J. Yoo, H.-G. Choo, and J. Kim, “360-degree color hologram generation for real 3D object,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (online) (Optical Society of America, 2017), paper W2A.28.
  28. “CUDA toolkit,” https://developer.nvidia.com/cuda-toolkit/ .
  29. S. Reichelt, R. Haussler, N. Leister, G. Futterer, and A. Schwerdtner, “Large holographic 3D displays for tomorrow’s TV and monitors—solutions, challenges, and prospects,” in LEOS 2008—21st Annual Meeting of the IEEE Lasers and Electro-Optics Society (2008), pp. 194–195.
  30. T. Kim, H.-E. Kim, E.-Y. Chang, H.-G. Choo, and J. Kim, “Analysis of viewing window motion and a simple CGH technique for a table–top hologram display,” in Proceedings of the 3DSA Conference (2015).

2017 (3)

A. Mao, H. Zhang, Y. Liu, Y. Zheng, G. Li, and G. Han, “Easy and fast reconstruction of a 3D avatar with an RGB-D sensor,” Sensors 17, 1113 (2017).
[Crossref]

Y. He, B. Liang, J. Yang, S. Li, and J. He, “An iterative closest points algorithm for registration of 3D laser scanner point clouds with geometric features,” Sensors 17, 1862 (2017).
[Crossref]

H. Zhang, L. Cao, and G. Jin, “Computer-generated hologram with occlusion effect using layer-based processing,” Appl. Opt. 56, F138–F143 (2017).
[Crossref]

2016 (5)

2015 (2)

2014 (1)

M. Park, B. G. Chae, H.-E. Kim, J. Hahn, H. Kim, C. H. Park, K. Moon, and J. Kim, “Digital holographic display system with large screen based on viewing window movement for 3D video service,” ETRI J. 36, 232–241 (2014).
[Crossref]

2013 (2)

E.-Y. Chang, Y.-S. Kang, K. Moon, Y.-S. Ho, and J. Kim, “Computer-generated hologram for 3D scene from multi-view images,” Proc. SPIE 8738, 87380H (2013).
[Crossref]

Y. Takaki and K. Ikeda, “Simplified calculation method for computer-generated holographic stereograms from multi-view images,” Opt. Express 21, 9652–9663 (2013).
[Crossref]

2012 (1)

M. Solh and G. AlRegib, “Hierarchical hole-filling for depth-based view synthesis in FTV and 3D video,” IEEE J. Sel. Top. Signal Process. 6, 495–504 (2012).
[Crossref]

2011 (1)

2008 (1)

2006 (1)

AlRegib, G.

M. Solh and G. AlRegib, “Hierarchical hole-filling for depth-based view synthesis in FTV and 3D video,” IEEE J. Sel. Top. Signal Process. 6, 495–504 (2012).
[Crossref]

Ban, Y.-J.

S.-W. Nam, K.-H. Jang, Y.-J. Ban, H.-S. Kim, and S.-I. Chien, “Hole-filling methods using depth and color information for generating multiview images,” ETRI J. 38, 996–1007 (2016).
[Crossref]

Cao, L.

Cao, S.

Chae, B. G.

M. Park, B. G. Chae, H.-E. Kim, J. Hahn, H. Kim, C. H. Park, K. Moon, and J. Kim, “Digital holographic display system with large screen based on viewing window movement for 3D video service,” ETRI J. 36, 232–241 (2014).
[Crossref]

Chang, E.-Y.

Y. Lim, K. Hong, H. Kim, H.-E. Kim, E.-Y. Chang, S. Lee, T. Kim, J. Nam, H.-G. Choo, J. Kim, and J. Hahn, “360-degree tabletop electronic holographic display,” Opt. Express 24, 24999–25009 (2016).
[Crossref]

E.-Y. Chang, Y.-S. Kang, K. Moon, Y.-S. Ho, and J. Kim, “Computer-generated hologram for 3D scene from multi-view images,” Proc. SPIE 8738, 87380H (2013).
[Crossref]

T. Kim, H.-E. Kim, E.-Y. Chang, H.-G. Choo, and J. Kim, “Analysis of viewing window motion and a simple CGH technique for a table–top hologram display,” in Proceedings of the 3DSA Conference (2015).

E.-Y. Chang, J. Choi, S. Lee, S. Kwon, J. Yoo, H.-G. Choo, and J. Kim, “360-degree color hologram generation for real 3D object,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (online) (Optical Society of America, 2017), paper W2A.28.

S. Lee, E.-Y. Chang, H.-G. Choo, and J. Kim, “Computer-generated-hologram for holographic display based on viewing window and removal of conjugate images,” in Proceedings of the 3DSA Conference (2015).

J. Kim, Y. Lim, K. Hong, E.-Y. Chang, and H.-G. Choo, “360-degree tabletop color holographic display,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (online) (Optical Society of America, 2017), paper W3A.1.

Chang, Y.-L.

W.-Y. Chen, Y.-L. Chang, S.-F. Lin, L.-F. Ding, and L.-G. Chen, “Efficient depth image based rendering with edge dependent depth filter and interpolation,” in IEEE International Conference on Multimedia and Expo (2005), pp. 1314–1317.

Chen, L.-G.

W.-Y. Chen, Y.-L. Chang, S.-F. Lin, L.-F. Ding, and L.-G. Chen, “Efficient depth image based rendering with edge dependent depth filter and interpolation,” in IEEE International Conference on Multimedia and Expo (2005), pp. 1314–1317.

Chen, W.-Y.

W.-Y. Chen, Y.-L. Chang, S.-F. Lin, L.-F. Ding, and L.-G. Chen, “Efficient depth image based rendering with edge dependent depth filter and interpolation,” in IEEE International Conference on Multimedia and Expo (2005), pp. 1314–1317.

Cheung, G.

Y. Mao, G. Cheung, A. Ortega, and Y. Ji, “Expansion hole filling in depth-image-based rendering using graph-based interpolation,” in Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2013).

Chien, S.-I.

S.-W. Nam, K.-H. Jang, Y.-J. Ban, H.-S. Kim, and S.-I. Chien, “Hole-filling methods using depth and color information for generating multiview images,” ETRI J. 38, 996–1007 (2016).
[Crossref]

Choi, J.

E.-Y. Chang, J. Choi, S. Lee, S. Kwon, J. Yoo, H.-G. Choo, and J. Kim, “360-degree color hologram generation for real 3D object,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (online) (Optical Society of America, 2017), paper W2A.28.

Choo, H.-G.

Y. Lim, K. Hong, H. Kim, H.-E. Kim, E.-Y. Chang, S. Lee, T. Kim, J. Nam, H.-G. Choo, J. Kim, and J. Hahn, “360-degree tabletop electronic holographic display,” Opt. Express 24, 24999–25009 (2016).
[Crossref]

E.-Y. Chang, J. Choi, S. Lee, S. Kwon, J. Yoo, H.-G. Choo, and J. Kim, “360-degree color hologram generation for real 3D object,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (online) (Optical Society of America, 2017), paper W2A.28.

J. Kim, Y. Lim, K. Hong, E.-Y. Chang, and H.-G. Choo, “360-degree tabletop color holographic display,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (online) (Optical Society of America, 2017), paper W3A.1.

S. Lee, E.-Y. Chang, H.-G. Choo, and J. Kim, “Computer-generated-hologram for holographic display based on viewing window and removal of conjugate images,” in Proceedings of the 3DSA Conference (2015).

T. Kim, H.-E. Kim, E.-Y. Chang, H.-G. Choo, and J. Kim, “Analysis of viewing window motion and a simple CGH technique for a table–top hologram display,” in Proceedings of the 3DSA Conference (2015).

Cui, Y.

Y. Cui and D. Stricker, “3D body scanning with one Kinect,” in Proceedings of the 3D Body Scanning Technologies (3DBST) Conference (2015).

Ding, L.-F.

W.-Y. Chen, Y.-L. Chang, S.-F. Lin, L.-F. Ding, and L.-G. Chen, “Efficient depth image based rendering with edge dependent depth filter and interpolation,” in IEEE International Conference on Multimedia and Expo (2005), pp. 1314–1317.

Ding, S.

Ewing, R. L.

Futterer, G.

S. Reichelt, R. Haussler, N. Leister, G. Futterer, and A. Schwerdtner, “Large holographic 3D displays for tomorrow’s TV and monitors—solutions, challenges, and prospects,” in LEOS 2008—21st Annual Meeting of the IEEE Lasers and Electro-Optics Society (2008), pp. 194–195.

Hahn, J.

Hamamoto, T.

K. Nomura, R. Oi, T. Kurita, and T. Hamamoto, “Electronic hologram generation using high quality color and depth information of natural scene,” in Proceedings of the Picture Coding Symposium (PCS) Conference (2010), pp. 46–49.

Han, G.

A. Mao, H. Zhang, Y. Liu, Y. Zheng, G. Li, and G. Han, “Easy and fast reconstruction of a 3D avatar with an RGB-D sensor,” Sensors 17, 1113 (2017).
[Crossref]

Haussler, R.

S. Reichelt, R. Haussler, N. Leister, G. Futterer, and A. Schwerdtner, “Large holographic 3D displays for tomorrow’s TV and monitors—solutions, challenges, and prospects,” in LEOS 2008—21st Annual Meeting of the IEEE Lasers and Electro-Optics Society (2008), pp. 194–195.

He, J.

Y. He, B. Liang, J. Yang, S. Li, and J. He, “An iterative closest points algorithm for registration of 3D laser scanner point clouds with geometric features,” Sensors 17, 1862 (2017).
[Crossref]

He, Y.

Y. He, B. Liang, J. Yang, S. Li, and J. He, “An iterative closest points algorithm for registration of 3D laser scanner point clouds with geometric features,” Sensors 17, 1862 (2017).
[Crossref]

Ho, Y.-S.

E.-Y. Chang, Y.-S. Kang, K. Moon, Y.-S. Ho, and J. Kim, “Computer-generated hologram for 3D scene from multi-view images,” Proc. SPIE 8738, 87380H (2013).
[Crossref]

K.-J. Oh, S. Yea, and Y.-S. Ho, “Hole filling method using depth based in-painting for view synthesis in free viewpoint television and 3-D video,” in Proceedings of the Picture Coding Symposium (PCS) Conference (2009), pp. 1–4.

Hong, K.

Y. Lim, K. Hong, H. Kim, H.-E. Kim, E.-Y. Chang, S. Lee, T. Kim, J. Nam, H.-G. Choo, J. Kim, and J. Hahn, “360-degree tabletop electronic holographic display,” Opt. Express 24, 24999–25009 (2016).
[Crossref]

J. Kim, Y. Lim, K. Hong, E.-Y. Chang, and H.-G. Choo, “360-degree tabletop color holographic display,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (online) (Optical Society of America, 2017), paper W3A.1.

Hwang, D.-C.

Ikeda, K.

Inoue, T.

Jang, K.-H.

S.-W. Nam, K.-H. Jang, Y.-J. Ban, H.-S. Kim, and S.-I. Chien, “Hole-filling methods using depth and color information for generating multiview images,” ETRI J. 38, 996–1007 (2016).
[Crossref]

Ji, Y.

Y. Mao, G. Cheung, A. Ortega, and Y. Ji, “Expansion hole filling in depth-image-based rendering using graph-based interpolation,” in Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2013).

Jin, G.

Kang, H.

Kang, Y.-S.

E.-Y. Chang, Y.-S. Kang, K. Moon, Y.-S. Ho, and J. Kim, “Computer-generated hologram for 3D scene from multi-view images,” Proc. SPIE 8738, 87380H (2013).
[Crossref]

Kim, E.-S.

Kim, H.

Kim, H.-E.

Y. Lim, K. Hong, H. Kim, H.-E. Kim, E.-Y. Chang, S. Lee, T. Kim, J. Nam, H.-G. Choo, J. Kim, and J. Hahn, “360-degree tabletop electronic holographic display,” Opt. Express 24, 24999–25009 (2016).
[Crossref]

M. Park, B. G. Chae, H.-E. Kim, J. Hahn, H. Kim, C. H. Park, K. Moon, and J. Kim, “Digital holographic display system with large screen based on viewing window movement for 3D video service,” ETRI J. 36, 232–241 (2014).
[Crossref]

T. Kim, H.-E. Kim, E.-Y. Chang, H.-G. Choo, and J. Kim, “Analysis of viewing window motion and a simple CGH technique for a table–top hologram display,” in Proceedings of the 3DSA Conference (2015).

Kim, H.-S.

S.-W. Nam, K.-H. Jang, Y.-J. Ban, H.-S. Kim, and S.-I. Chien, “Hole-filling methods using depth and color information for generating multiview images,” ETRI J. 38, 996–1007 (2016).
[Crossref]

Kim, J.

Y. Lim, K. Hong, H. Kim, H.-E. Kim, E.-Y. Chang, S. Lee, T. Kim, J. Nam, H.-G. Choo, J. Kim, and J. Hahn, “360-degree tabletop electronic holographic display,” Opt. Express 24, 24999–25009 (2016).
[Crossref]

M. Park, B. G. Chae, H.-E. Kim, J. Hahn, H. Kim, C. H. Park, K. Moon, and J. Kim, “Digital holographic display system with large screen based on viewing window movement for 3D video service,” ETRI J. 36, 232–241 (2014).
[Crossref]

E.-Y. Chang, Y.-S. Kang, K. Moon, Y.-S. Ho, and J. Kim, “Computer-generated hologram for 3D scene from multi-view images,” Proc. SPIE 8738, 87380H (2013).
[Crossref]

T. Kim, H.-E. Kim, E.-Y. Chang, H.-G. Choo, and J. Kim, “Analysis of viewing window motion and a simple CGH technique for a table–top hologram display,” in Proceedings of the 3DSA Conference (2015).

S. Lee, E.-Y. Chang, H.-G. Choo, and J. Kim, “Computer-generated-hologram for holographic display based on viewing window and removal of conjugate images,” in Proceedings of the 3DSA Conference (2015).

J. Kim, Y. Lim, K. Hong, E.-Y. Chang, and H.-G. Choo, “360-degree tabletop color holographic display,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (online) (Optical Society of America, 2017), paper W3A.1.

E.-Y. Chang, J. Choi, S. Lee, S. Kwon, J. Yoo, H.-G. Choo, and J. Kim, “360-degree color hologram generation for real 3D object,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (online) (Optical Society of America, 2017), paper W2A.28.

Kim, S.-C.

Kim, T.

Y. Lim, K. Hong, H. Kim, H.-E. Kim, E.-Y. Chang, S. Lee, T. Kim, J. Nam, H.-G. Choo, J. Kim, and J. Hahn, “360-degree tabletop electronic holographic display,” Opt. Express 24, 24999–25009 (2016).
[Crossref]

T. Kim, H.-E. Kim, E.-Y. Chang, H.-G. Choo, and J. Kim, “Analysis of viewing window motion and a simple CGH technique for a table–top hologram display,” in Proceedings of the 3DSA Conference (2015).

Kong, D.

Kurita, T.

K. Nomura, R. Oi, T. Kurita, and T. Hamamoto, “Electronic hologram generation using high quality color and depth information of natural scene,” in Proceedings of the Picture Coding Symposium (PCS) Conference (2010), pp. 46–49.

Kwon, S.

E.-Y. Chang, J. Choi, S. Lee, S. Kwon, J. Yoo, H.-G. Choo, and J. Kim, “360-degree color hologram generation for real 3D object,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (online) (Optical Society of America, 2017), paper W2A.28.

Lee, B.

Lee, D.-H.

Lee, S.

Y. Lim, K. Hong, H. Kim, H.-E. Kim, E.-Y. Chang, S. Lee, T. Kim, J. Nam, H.-G. Choo, J. Kim, and J. Hahn, “360-degree tabletop electronic holographic display,” Opt. Express 24, 24999–25009 (2016).
[Crossref]

E.-Y. Chang, J. Choi, S. Lee, S. Kwon, J. Yoo, H.-G. Choo, and J. Kim, “360-degree color hologram generation for real 3D object,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (online) (Optical Society of America, 2017), paper W2A.28.

S. Lee, E.-Y. Chang, H.-G. Choo, and J. Kim, “Computer-generated-hologram for holographic display based on viewing window and removal of conjugate images,” in Proceedings of the 3DSA Conference (2015).

Leister, N.

S. Reichelt, R. Haussler, N. Leister, G. Futterer, and A. Schwerdtner, “Large holographic 3D displays for tomorrow’s TV and monitors—solutions, challenges, and prospects,” in LEOS 2008—21st Annual Meeting of the IEEE Lasers and Electro-Optics Society (2008), pp. 194–195.

Li, G.

A. Mao, H. Zhang, Y. Liu, Y. Zheng, G. Li, and G. Han, “Easy and fast reconstruction of a 3D avatar with an RGB-D sensor,” Sensors 17, 1113 (2017).
[Crossref]

Li, S.

Y. He, B. Liang, J. Yang, S. Li, and J. He, “An iterative closest points algorithm for registration of 3D laser scanner point clouds with geometric features,” Sensors 17, 1862 (2017).
[Crossref]

Liang, B.

Y. He, B. Liang, J. Yang, S. Li, and J. He, “An iterative closest points algorithm for registration of 3D laser scanner point clouds with geometric features,” Sensors 17, 1862 (2017).
[Crossref]

Lim, Y.

Lin, S.-F.

W.-Y. Chen, Y.-L. Chang, S.-F. Lin, L.-F. Ding, and L.-G. Chen, “Efficient depth image based rendering with edge dependent depth filter and interpolation,” in IEEE International Conference on Multimedia and Expo (2005), pp. 1314–1317.

Liu, Y.

A. Mao, H. Zhang, Y. Liu, Y. Zheng, G. Li, and G. Han, “Easy and fast reconstruction of a 3D avatar with an RGB-D sensor,” Sensors 17, 1113 (2017).
[Crossref]

Mao, A.

A. Mao, H. Zhang, Y. Liu, Y. Zheng, G. Li, and G. Han, “Easy and fast reconstruction of a 3D avatar with an RGB-D sensor,” Sensors 17, 1113 (2017).
[Crossref]

Mao, Y.

Y. Mao, G. Cheung, A. Ortega, and Y. Ji, “Expansion hole filling in depth-image-based rendering using graph-based interpolation,” in Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2013).

Moon, K.

M. Park, B. G. Chae, H.-E. Kim, J. Hahn, H. Kim, C. H. Park, K. Moon, and J. Kim, “Digital holographic display system with large screen based on viewing window movement for 3D video service,” ETRI J. 36, 232–241 (2014).
[Crossref]

E.-Y. Chang, Y.-S. Kang, K. Moon, Y.-S. Ho, and J. Kim, “Computer-generated hologram for 3D scene from multi-view images,” Proc. SPIE 8738, 87380H (2013).
[Crossref]

Nam, J.

Nam, S.-W.

S.-W. Nam, K.-H. Jang, Y.-J. Ban, H.-S. Kim, and S.-I. Chien, “Hole-filling methods using depth and color information for generating multiview images,” ETRI J. 38, 996–1007 (2016).
[Crossref]

Nomura, K.

K. Nomura, R. Oi, T. Kurita, and T. Hamamoto, “Electronic hologram generation using high quality color and depth information of natural scene,” in Proceedings of the Picture Coding Symposium (PCS) Conference (2010), pp. 46–49.

Oh, K.-J.

K.-J. Oh, S. Yea, and Y.-S. Ho, “Hole filling method using depth based in-painting for view synthesis in free viewpoint television and 3-D video,” in Proceedings of the Picture Coding Symposium (PCS) Conference (2009), pp. 1–4.

Oi, R.

K. Nomura, R. Oi, T. Kurita, and T. Hamamoto, “Electronic hologram generation using high quality color and depth information of natural scene,” in Proceedings of the Picture Coding Symposium (PCS) Conference (2010), pp. 46–49.

Onural, L.

Ortega, A.

Y. Mao, G. Cheung, A. Ortega, and Y. Ji, “Expansion hole filling in depth-image-based rendering using graph-based interpolation,” in Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2013).

Park, C. H.

M. Park, B. G. Chae, H.-E. Kim, J. Hahn, H. Kim, C. H. Park, K. Moon, and J. Kim, “Digital holographic display system with large screen based on viewing window movement for 3D video service,” ETRI J. 36, 232–241 (2014).
[Crossref]

Park, G.

Park, M.

M. Park, B. G. Chae, H.-E. Kim, J. Hahn, H. Kim, C. H. Park, K. Moon, and J. Kim, “Digital holographic display system with large screen based on viewing window movement for 3D video service,” ETRI J. 36, 232–241 (2014).
[Crossref]

Reichelt, S.

S. Reichelt, R. Haussler, N. Leister, G. Futterer, and A. Schwerdtner, “Large holographic 3D displays for tomorrow’s TV and monitors—solutions, challenges, and prospects,” in LEOS 2008—21st Annual Meeting of the IEEE Lasers and Electro-Optics Society (2008), pp. 194–195.

Schwerdtner, A.

S. Reichelt, R. Haussler, N. Leister, G. Futterer, and A. Schwerdtner, “Large holographic 3D displays for tomorrow’s TV and monitors—solutions, challenges, and prospects,” in LEOS 2008—21st Annual Meeting of the IEEE Lasers and Electro-Optics Society (2008), pp. 194–195.

Solh, M.

M. Solh and G. AlRegib, “Hierarchical hole-filling for depth-based view synthesis in FTV and 3D video,” IEEE J. Sel. Top. Signal Process. 6, 495–504 (2012).
[Crossref]

Stoykova, E.

Stricker, D.

Y. Cui and D. Stricker, “3D body scanning with one Kinect,” in Proceedings of the 3D Body Scanning Technologies (3DBST) Conference (2015).

Takaki, Y.

Yang, J.

Y. He, B. Liang, J. Yang, S. Li, and J. He, “An iterative closest points algorithm for registration of 3D laser scanner point clouds with geometric features,” Sensors 17, 1862 (2017).
[Crossref]

Yaras, F.

Yea, S.

K.-J. Oh, S. Yea, and Y.-S. Ho, “Hole filling method using depth based in-painting for view synthesis in free viewpoint television and 3-D video,” in Proceedings of the Picture Coding Symposium (PCS) Conference (2009), pp. 1–4.

Yoo, J.

E.-Y. Chang, J. Choi, S. Lee, S. Kwon, J. Yoo, H.-G. Choo, and J. Kim, “360-degree color hologram generation for real 3D object,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (online) (Optical Society of America, 2017), paper W2A.28.

Yoshida, S.

Yoshikawa, H.

Zhang, H.

Zhao, Y.

Zheng, Y.

A. Mao, H. Zhang, Y. Liu, Y. Zheng, G. Li, and G. Han, “Easy and fast reconstruction of a 3D avatar with an RGB-D sensor,” Sensors 17, 1113 (2017).
[Crossref]

Zheng, Y. F.

Appl. Opt. (4)

ETRI J. (2)

M. Park, B. G. Chae, H.-E. Kim, J. Hahn, H. Kim, C. H. Park, K. Moon, and J. Kim, “Digital holographic display system with large screen based on viewing window movement for 3D video service,” ETRI J. 36, 232–241 (2014).
[Crossref]

S.-W. Nam, K.-H. Jang, Y.-J. Ban, H.-S. Kim, and S.-I. Chien, “Hole-filling methods using depth and color information for generating multiview images,” ETRI J. 38, 996–1007 (2016).
[Crossref]

IEEE J. Sel. Top. Signal Process. (1)

M. Solh and G. AlRegib, “Hierarchical hole-filling for depth-based view synthesis in FTV and 3D video,” IEEE J. Sel. Top. Signal Process. 6, 495–504 (2012).
[Crossref]

Opt. Express (7)

Proc. SPIE (1)

E.-Y. Chang, Y.-S. Kang, K. Moon, Y.-S. Ho, and J. Kim, “Computer-generated hologram for 3D scene from multi-view images,” Proc. SPIE 8738, 87380H (2013).
[Crossref]

Sensors (2)

A. Mao, H. Zhang, Y. Liu, Y. Zheng, G. Li, and G. Han, “Easy and fast reconstruction of a 3D avatar with an RGB-D sensor,” Sensors 17, 1113 (2017).
[Crossref]

Y. He, B. Liang, J. Yang, S. Li, and J. He, “An iterative closest points algorithm for registration of 3D laser scanner point clouds with geometric features,” Sensors 17, 1862 (2017).
[Crossref]

Other (13)

W.-Y. Chen, Y.-L. Chang, S.-F. Lin, L.-F. Ding, and L.-G. Chen, “Efficient depth image based rendering with edge dependent depth filter and interpolation,” in IEEE International Conference on Multimedia and Expo (2005), pp. 1314–1317.

Y. Mao, G. Cheung, A. Ortega, and Y. Ji, “Expansion hole filling in depth-image-based rendering using graph-based interpolation,” in Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2013).

J. Kim, Y. Lim, K. Hong, E.-Y. Chang, and H.-G. Choo, “360-degree tabletop color holographic display,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (online) (Optical Society of America, 2017), paper W3A.1.

S. Lee, E.-Y. Chang, H.-G. Choo, and J. Kim, “Computer-generated-hologram for holographic display based on viewing window and removal of conjugate images,” in Proceedings of the 3DSA Conference (2015).

Y. Cui and D. Stricker, “3D body scanning with one Kinect,” in Proceedings of the 3D Body Scanning Technologies (3DBST) Conference (2015).

K.-J. Oh, S. Yea, and Y.-S. Ho, “Hole filling method using depth based in-painting for view synthesis in free viewpoint television and 3-D video,” in Proceedings of the Picture Coding Symposium (PCS) Conference (2009), pp. 1–4.

E.-Y. Chang, J. Choi, S. Lee, S. Kwon, J. Yoo, H.-G. Choo, and J. Kim, “360-degree color hologram generation for real 3D object,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (online) (Optical Society of America, 2017), paper W2A.28.

“CUDA toolkit,” https://developer.nvidia.com/cuda-toolkit/ .

S. Reichelt, R. Haussler, N. Leister, G. Futterer, and A. Schwerdtner, “Large holographic 3D displays for tomorrow’s TV and monitors—solutions, challenges, and prospects,” in LEOS 2008—21st Annual Meeting of the IEEE Lasers and Electro-Optics Society (2008), pp. 194–195.

T. Kim, H.-E. Kim, E.-Y. Chang, H.-G. Choo, and J. Kim, “Analysis of viewing window motion and a simple CGH technique for a table–top hologram display,” in Proceedings of the 3DSA Conference (2015).

https://developer.microsoft.com/en-us/windows/kinect .

MIT Media Lab, http://www.media.mit.edu/ .

K. Nomura, R. Oi, T. Kurita, and T. Hamamoto, “Electronic hologram generation using high quality color and depth information of natural scene,” in Proceedings of the Picture Coding Symposium (PCS) Conference (2010), pp. 46–49.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

3D image acquisition system.

Fig. 2.
Fig. 2.

Captured color and depth map images (a) before calibration and registration and (b) after calibration and registration.

Fig. 3.
Fig. 3.

3D image capture software (a) before depth range adjustment and ROI selection and (b) after depth range adjustment and ROI selection.

Fig. 4.
Fig. 4.

Intermediate view generation.

Fig. 5.
Fig. 5.

Virtual view computation in a (a) CPU and (b) GPU environment.

Fig. 6.
Fig. 6.

Schematic diagram of a hologram generation method [18].

Fig. 7.
Fig. 7.

360-degree 3D information generation results with intermediate view generation of a (a) man, (b) doll, (c) flower, and (d) robot.

Fig. 8.
Fig. 8.

Intermediate view generation results for a robot without or with the approximation of rotation matrix RV (a) left image, (b) right image, (c) virtual view images without approximation, and (d) virtual view images with approximation; (e) difference images from (c) and (d).

Fig. 9.
Fig. 9.

Computational efficiency comparison results on CPU versus GPU environment (a) computation time, and (b) utilization of CPU and GPU.

Fig. 10.
Fig. 10.

360-degree tabletop color holographic display [7].

Fig. 11.
Fig. 11.

R/G/B color binary hologram of the (a) man, (b) doll, (c) flower, and (d) robot for the 1st view image.

Fig. 12.
Fig. 12.

Optical reconstructions of the (a) man, (b) doll, (c) flower, and (d) robot obtained at different viewing positions.

Tables (4)

Tables Icon

Table 1. Test Results for Acquisition of the Test Objects

Tables Icon

Table 2. Test Results for Intermediate View Generation without or with Rotation Matrix Approximation

Tables Icon

Table 3. Test Results for 360-degree 3D Information Generation

Tables Icon

Table 4. Specification of the 360-degree Holographic 3D Display

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

NV=1,024NC.
[XYZ1]=RTK1[xy1]RTt,
Z(i,j)=1.0{D(i,j)255.0×(1.0MINZ1.0MAXZ)+1.0MAXZ}.
[xvyv1]=KV[RV|tV][XYZ1],
KV=(1Ratio)×KL+Ratio×KR,
RV=(1Ratio)×RL+Ratio×RR,
tV=(1Ratio)×tL+Ratio×tR,
Ratio=virtual_view_indexNV+1.
KV=K,
RV=RL,
RV=RR.
UVW(u,v)=exp{jk2(fd)(u2+v2)}iλ(fd)ffd×U(xdn,ydn)exp{j2πλ(fd)}dxdndydn,
UH(x,y)=jλfUvw(u,v)exp(jk2f(u2+v2))exp(j2πλf(xu+yv))dudv.