Abstract

Quantitative label-free imaging is an important tool for the study of living microorganisms that, during the last decade, has attracted wide attention from the optical community. Optical diffraction tomography (ODT) is probably the most relevant technique for quantitative label-free 3D imaging applied in wide-field microscopy in the visible range. The ODT is usually performed using spatially coherent light illumination and specially designed holographic microscopes. Nevertheless, the ODT is also compatible with partially coherent illumination and can be realized in conventional wide-field microscopes by applying refocusing techniques, as it has been recently demonstrated. Here, we compare these two ODT modalities, underlining their pros and cons and discussing the optical setups for their implementation. In particular, we pay special attention to a system that is compatible with a conventional wide-field microscope that can be used for both ODT modalities. It consists of two easily attachable modules: the first for sample illumination engineering based on digital light processing technology; the other for focus scanning by using an electrically driven tunable lens. This hardware allows for a programmable selection of the wavelength and the illumination design, and provides fast data acquisition as well. Its performance is experimentally demonstrated in the case of ODT with partially coherent illumination providing speckle-free 3D quantitative imaging.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Label-free quantitative 3D tomographic imaging for partially coherent light microscopy

Juan M. Soto, José A. Rodrigo, and Tatiana Alieva
Opt. Express 25(14) 15699-15712 (2017)

Fast label-free microscopy technique for 3D dynamic quantitative imaging of living cells

José A. Rodrigo, Juan M. Soto, and Tatiana Alieva
Biomed. Opt. Express 8(12) 5507-5517 (2017)

Three-dimensional quantitative phase imaging via tomographic deconvolution phase microscopy

Micah H. Jenkins and Thomas K. Gaylord
Appl. Opt. 54(31) 9213-9227 (2015)

References

  • View by:
  • |
  • |
  • |

  1. E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun. 1, 153–156 (1969).
    [Crossref]
  2. R. Dandliker and K. Weiss, “Reconstruction of the three-dimensional refractive index from scattered waves,” Opt. Commun. 1, 323–328 (1970).
    [Crossref]
  3. F. Charrière, A. Marian, F. Montfort, J. Kuehn, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, “Cell refractive index tomography by digital holographic microscopy,” Opt. Lett. 31, 178–180 (2006).
    [Crossref]
  4. W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. Dasari, and M. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007).
    [Crossref]
  5. O. Haeberlé, K. Belkebir, H. Giovaninni, and A. Sentenac, “Tomographic diffractive microscopy: basics, techniques and perspectives,” J. Mod. Opt. 57, 686–699 (2010).
    [Crossref]
  6. Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt. Express 17, 266–277 (2009).
    [Crossref]
  7. Y. Cotte, F. M. Toy, C. Arfire, S. S. Kou, D. Boss, I. Bergoënd, and C. Depeursinge, “Realistic 3D coherent transfer function inverse filtering of complex fields,” Biomed. Opt. Express 2, 2216–2230 (2011).
    [Crossref]
  8. Y. Cotte, F. Toy, P. Jourdain, and N. Pavillon, “Marker-free phase nanoscopy,” Nat. Photonics 7, 113–117 (2013).
    [Crossref]
  9. K. Kim, K. Kim, H. Park, J. Ye, and Y. Park, “Real-time visualization of 3-D dynamic microscopic objects using optical diffraction tomography,” Opt. Express 21, 32269–32278 (2013).
    [Crossref]
  10. Y. Kim, H. Shim, K. Kim, H. Park, and J. Heo, “Common-path diffraction optical tomography for investigation of three-dimensional structures and dynamics of biological cells,” Opt. Express 22, 10398–10407 (2014).
    [Crossref]
  11. K. Kim, J. Yoon, and Y. Park, “Simultaneous 3D visualization and position tracking of optically trapped particles using optical diffraction tomography,” Optica 2, 343–346 (2015).
    [Crossref]
  12. J. Jung, K. Kim, J. Yoon, and Y. Park, “Hyperspectral optical diffraction tomography,” Opt. Express 24, 2006–2012 (2016).
    [Crossref]
  13. S. Vertu, J.-J. Delaunay, I. Yamada, and O. Haeberlé, “Diffraction microtomography with sample rotation: influence of a missing apple core in the recorded frequency space,” Open Phys. 7, 22–31 (2009).
    [Crossref]
  14. B. Simon, M. Debailleul, M. Houkal, C. Ecoffet, J. Bailleul, J. Lambert, A. Spangenberg, H. Liu, O. Soppera, and O. Haeberlé, “Tomographic diffractive microscopy with isotropic resolution,” Optica 4, 460–463 (2017).
    [Crossref]
  15. J. Lim, K. Lee, K. H. Jin, S. Shin, S. Lee, Y. Park, and J. C. Ye, “Comparative study of iterative reconstruction algorithms for missing cone problems in optical diffraction tomography,” Opt. Express 23, 16933–16948 (2015).
    [Crossref]
  16. U. S. Kamilov, I. N. Papadopoulos, M. H. Shoreh, A. Goy, C. Vonesch, M. Unser, and D. Psaltis, “Learning approach to optical tomography,” Optica 2, 517–522 (2015).
    [Crossref]
  17. A. Berdeu, F. Momey, B. Laperrousaz, T. Bordy, X. Gidrol, J.-M. Dinten, N. Picollet-D’hahan, and C. Allier, “Comparative study of fully three-dimensional reconstruction algorithms for lens-free microscopy,” Appl. Opt. 56, 3939–3951 (2017).
    [Crossref]
  18. V. Lauer, “New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope,” J. Microsc. 205, 165–176 (2002).
    [Crossref]
  19. M. Debailleul, B. Simon, V. Georges, O. Haeberlé, and V. Lauer, “Holographic microscopy and diffractive microtomography of transparent samples,” Meas. Sci. Technol. 19, 074009 (2008).
    [Crossref]
  20. K. Kim, H. Yoon, M. Diez-Silva, M. Dao, R. R. Dasari, and Y. Park, “High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography,” J. Biomed. Opt. 19, 011005 (2013).
    [Crossref]
  21. T. Kim, R. Zhou, L. L. Goddard, and G. Popescu, “Solving inverse scattering problems in biological samples by quantitative phase imaging,” Laser Photon. Rev. 10, 13–39 (2016).
    [Crossref]
  22. M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).
  23. M. H. Jenkins and T. K. Gaylord, “Three-dimensional quantitative phase imaging via tomographic deconvolution phase microscopy,” Appl. Opt. 54, 9213–9227 (2015).
    [Crossref]
  24. Y. Bao and T. K. Gaylord, “Quantitative phase imaging method based on an analytical nonparaxial partially coherent phase optical transfer function,” J. Opt. Soc. Am. A 33, 2125–2136 (2016).
    [Crossref]
  25. A. J. Devaney, “A filtered backpropagation algorithm for diffraction tomography,” Ultrason. Imaging 4, 336–350 (1982).
    [Crossref]
  26. J. Kostencka, T. Kozacki, A. Kuś, and M. Kujawińska, “Accurate approach to capillary-supported optical diffraction tomography,” Opt. Express 23, 7908–7923 (2015).
    [Crossref]
  27. P. Müller, M. Schürmann, and J. Guck, “The theory of diffraction tomography,” arXiv: 1507.00466 (2015).
  28. N. Streibl, “Three-dimensional imaging by a microscope,” J. Opt. Soc. Am. A 2, 121–127 (1985).
    [Crossref]
  29. M. Chen, L. Tian, and L. Waller, “3D differential phase contrast microscopy,” Biomed. Opt. Express 7, 3940–3950 (2016).
    [Crossref]
  30. J. M. Soto, J. A. Rodrigo, and T. Alieva, “Label-free quantitative 3D tomographic imaging for partially coherent light microscopy,” Opt. Express 25, 15699–15712 (2017).
    [Crossref]
  31. D. S. C. Biggs, “3D deconvolution microscopy,” in Current Protocols in Cytometry (2010), pp. 1–20.
  32. J. A. Rodrigo, J. M. Soto, and T. Alieva, “Fast label-free microscopy technique for 3D dynamic quantitative imaging of living cells,” Biomed. Opt. Express 8, 5507–5517 (2017).
    [Crossref]
  33. A. Kuś, M. Dudek, B. Kemper, M. Kujawińska, and A. Vollmer, “Tomographic phase microscopy of living three-dimensional cell cultures,” J. Biomed. Opt. 19, 046009 (2014).
    [Crossref]
  34. E. C. Samson and C. M. Blanca, “Dynamic contrast enhancement in widefield microscopy using projector-generated illumination patterns,” New J. Phys. 9, 363 (2007).
    [Crossref]
  35. J. A. Rodrigo and T. Alieva, “Illumination coherence engineering and quantitative phase imaging,” Opt. Lett. 39, 5634–5637 (2014).
    [Crossref]
  36. S. Yamanaka, R. Yano, H. Usami, N. Hayashida, M. Ohguchi, H. Takeda, and K. Yoshino, “Optical properties of diatom silica frustule with special reference to blue light,” J. Appl. Phys. 103, 074701 (2008).
    [Crossref]

2017 (4)

2016 (4)

2015 (5)

2014 (3)

2013 (3)

K. Kim, H. Yoon, M. Diez-Silva, M. Dao, R. R. Dasari, and Y. Park, “High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography,” J. Biomed. Opt. 19, 011005 (2013).
[Crossref]

Y. Cotte, F. Toy, P. Jourdain, and N. Pavillon, “Marker-free phase nanoscopy,” Nat. Photonics 7, 113–117 (2013).
[Crossref]

K. Kim, K. Kim, H. Park, J. Ye, and Y. Park, “Real-time visualization of 3-D dynamic microscopic objects using optical diffraction tomography,” Opt. Express 21, 32269–32278 (2013).
[Crossref]

2011 (1)

2010 (1)

O. Haeberlé, K. Belkebir, H. Giovaninni, and A. Sentenac, “Tomographic diffractive microscopy: basics, techniques and perspectives,” J. Mod. Opt. 57, 686–699 (2010).
[Crossref]

2009 (2)

S. Vertu, J.-J. Delaunay, I. Yamada, and O. Haeberlé, “Diffraction microtomography with sample rotation: influence of a missing apple core in the recorded frequency space,” Open Phys. 7, 22–31 (2009).
[Crossref]

Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt. Express 17, 266–277 (2009).
[Crossref]

2008 (2)

M. Debailleul, B. Simon, V. Georges, O. Haeberlé, and V. Lauer, “Holographic microscopy and diffractive microtomography of transparent samples,” Meas. Sci. Technol. 19, 074009 (2008).
[Crossref]

S. Yamanaka, R. Yano, H. Usami, N. Hayashida, M. Ohguchi, H. Takeda, and K. Yoshino, “Optical properties of diatom silica frustule with special reference to blue light,” J. Appl. Phys. 103, 074701 (2008).
[Crossref]

2007 (2)

E. C. Samson and C. M. Blanca, “Dynamic contrast enhancement in widefield microscopy using projector-generated illumination patterns,” New J. Phys. 9, 363 (2007).
[Crossref]

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. Dasari, and M. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007).
[Crossref]

2006 (1)

2002 (1)

V. Lauer, “New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope,” J. Microsc. 205, 165–176 (2002).
[Crossref]

1985 (1)

1982 (1)

A. J. Devaney, “A filtered backpropagation algorithm for diffraction tomography,” Ultrason. Imaging 4, 336–350 (1982).
[Crossref]

1970 (1)

R. Dandliker and K. Weiss, “Reconstruction of the three-dimensional refractive index from scattered waves,” Opt. Commun. 1, 323–328 (1970).
[Crossref]

1969 (1)

E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun. 1, 153–156 (1969).
[Crossref]

Alieva, T.

Allier, C.

Arfire, C.

Badizadegan, K.

Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt. Express 17, 266–277 (2009).
[Crossref]

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. Dasari, and M. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007).
[Crossref]

Bailleul, J.

Bao, Y.

Belkebir, K.

O. Haeberlé, K. Belkebir, H. Giovaninni, and A. Sentenac, “Tomographic diffractive microscopy: basics, techniques and perspectives,” J. Mod. Opt. 57, 686–699 (2010).
[Crossref]

Berdeu, A.

Bergoënd, I.

Biggs, D. S. C.

D. S. C. Biggs, “3D deconvolution microscopy,” in Current Protocols in Cytometry (2010), pp. 1–20.

Blanca, C. M.

E. C. Samson and C. M. Blanca, “Dynamic contrast enhancement in widefield microscopy using projector-generated illumination patterns,” New J. Phys. 9, 363 (2007).
[Crossref]

Bordy, T.

Born, M.

M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).

Boss, D.

Charrière, F.

Chen, M.

Choi, W.

Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt. Express 17, 266–277 (2009).
[Crossref]

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. Dasari, and M. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007).
[Crossref]

Colomb, T.

Cotte, Y.

Cuche, E.

Dandliker, R.

R. Dandliker and K. Weiss, “Reconstruction of the three-dimensional refractive index from scattered waves,” Opt. Commun. 1, 323–328 (1970).
[Crossref]

Dao, M.

K. Kim, H. Yoon, M. Diez-Silva, M. Dao, R. R. Dasari, and Y. Park, “High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography,” J. Biomed. Opt. 19, 011005 (2013).
[Crossref]

Dasari, R.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. Dasari, and M. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007).
[Crossref]

Dasari, R. R.

K. Kim, H. Yoon, M. Diez-Silva, M. Dao, R. R. Dasari, and Y. Park, “High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography,” J. Biomed. Opt. 19, 011005 (2013).
[Crossref]

Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt. Express 17, 266–277 (2009).
[Crossref]

Debailleul, M.

B. Simon, M. Debailleul, M. Houkal, C. Ecoffet, J. Bailleul, J. Lambert, A. Spangenberg, H. Liu, O. Soppera, and O. Haeberlé, “Tomographic diffractive microscopy with isotropic resolution,” Optica 4, 460–463 (2017).
[Crossref]

M. Debailleul, B. Simon, V. Georges, O. Haeberlé, and V. Lauer, “Holographic microscopy and diffractive microtomography of transparent samples,” Meas. Sci. Technol. 19, 074009 (2008).
[Crossref]

Delaunay, J.-J.

S. Vertu, J.-J. Delaunay, I. Yamada, and O. Haeberlé, “Diffraction microtomography with sample rotation: influence of a missing apple core in the recorded frequency space,” Open Phys. 7, 22–31 (2009).
[Crossref]

Depeursinge, C.

Devaney, A. J.

A. J. Devaney, “A filtered backpropagation algorithm for diffraction tomography,” Ultrason. Imaging 4, 336–350 (1982).
[Crossref]

Diez-Silva, M.

K. Kim, H. Yoon, M. Diez-Silva, M. Dao, R. R. Dasari, and Y. Park, “High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography,” J. Biomed. Opt. 19, 011005 (2013).
[Crossref]

Dinten, J.-M.

Dudek, M.

A. Kuś, M. Dudek, B. Kemper, M. Kujawińska, and A. Vollmer, “Tomographic phase microscopy of living three-dimensional cell cultures,” J. Biomed. Opt. 19, 046009 (2014).
[Crossref]

Ecoffet, C.

Fang-Yen, C.

Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt. Express 17, 266–277 (2009).
[Crossref]

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. Dasari, and M. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007).
[Crossref]

Feld, M.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. Dasari, and M. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007).
[Crossref]

Feld, M. S.

Gaylord, T. K.

Georges, V.

M. Debailleul, B. Simon, V. Georges, O. Haeberlé, and V. Lauer, “Holographic microscopy and diffractive microtomography of transparent samples,” Meas. Sci. Technol. 19, 074009 (2008).
[Crossref]

Gidrol, X.

Giovaninni, H.

O. Haeberlé, K. Belkebir, H. Giovaninni, and A. Sentenac, “Tomographic diffractive microscopy: basics, techniques and perspectives,” J. Mod. Opt. 57, 686–699 (2010).
[Crossref]

Goddard, L. L.

T. Kim, R. Zhou, L. L. Goddard, and G. Popescu, “Solving inverse scattering problems in biological samples by quantitative phase imaging,” Laser Photon. Rev. 10, 13–39 (2016).
[Crossref]

Goy, A.

Guck, J.

P. Müller, M. Schürmann, and J. Guck, “The theory of diffraction tomography,” arXiv: 1507.00466 (2015).

Haeberlé, O.

B. Simon, M. Debailleul, M. Houkal, C. Ecoffet, J. Bailleul, J. Lambert, A. Spangenberg, H. Liu, O. Soppera, and O. Haeberlé, “Tomographic diffractive microscopy with isotropic resolution,” Optica 4, 460–463 (2017).
[Crossref]

O. Haeberlé, K. Belkebir, H. Giovaninni, and A. Sentenac, “Tomographic diffractive microscopy: basics, techniques and perspectives,” J. Mod. Opt. 57, 686–699 (2010).
[Crossref]

S. Vertu, J.-J. Delaunay, I. Yamada, and O. Haeberlé, “Diffraction microtomography with sample rotation: influence of a missing apple core in the recorded frequency space,” Open Phys. 7, 22–31 (2009).
[Crossref]

M. Debailleul, B. Simon, V. Georges, O. Haeberlé, and V. Lauer, “Holographic microscopy and diffractive microtomography of transparent samples,” Meas. Sci. Technol. 19, 074009 (2008).
[Crossref]

Hayashida, N.

S. Yamanaka, R. Yano, H. Usami, N. Hayashida, M. Ohguchi, H. Takeda, and K. Yoshino, “Optical properties of diatom silica frustule with special reference to blue light,” J. Appl. Phys. 103, 074701 (2008).
[Crossref]

Heo, J.

Houkal, M.

Jenkins, M. H.

Jin, K. H.

Jourdain, P.

Y. Cotte, F. Toy, P. Jourdain, and N. Pavillon, “Marker-free phase nanoscopy,” Nat. Photonics 7, 113–117 (2013).
[Crossref]

Jung, J.

Kamilov, U. S.

Kemper, B.

A. Kuś, M. Dudek, B. Kemper, M. Kujawińska, and A. Vollmer, “Tomographic phase microscopy of living three-dimensional cell cultures,” J. Biomed. Opt. 19, 046009 (2014).
[Crossref]

Kim, K.

Kim, T.

T. Kim, R. Zhou, L. L. Goddard, and G. Popescu, “Solving inverse scattering problems in biological samples by quantitative phase imaging,” Laser Photon. Rev. 10, 13–39 (2016).
[Crossref]

Kim, Y.

Kostencka, J.

Kou, S. S.

Kozacki, T.

Kuehn, J.

Kujawinska, M.

J. Kostencka, T. Kozacki, A. Kuś, and M. Kujawińska, “Accurate approach to capillary-supported optical diffraction tomography,” Opt. Express 23, 7908–7923 (2015).
[Crossref]

A. Kuś, M. Dudek, B. Kemper, M. Kujawińska, and A. Vollmer, “Tomographic phase microscopy of living three-dimensional cell cultures,” J. Biomed. Opt. 19, 046009 (2014).
[Crossref]

Kus, A.

J. Kostencka, T. Kozacki, A. Kuś, and M. Kujawińska, “Accurate approach to capillary-supported optical diffraction tomography,” Opt. Express 23, 7908–7923 (2015).
[Crossref]

A. Kuś, M. Dudek, B. Kemper, M. Kujawińska, and A. Vollmer, “Tomographic phase microscopy of living three-dimensional cell cultures,” J. Biomed. Opt. 19, 046009 (2014).
[Crossref]

Lambert, J.

Laperrousaz, B.

Lauer, V.

M. Debailleul, B. Simon, V. Georges, O. Haeberlé, and V. Lauer, “Holographic microscopy and diffractive microtomography of transparent samples,” Meas. Sci. Technol. 19, 074009 (2008).
[Crossref]

V. Lauer, “New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope,” J. Microsc. 205, 165–176 (2002).
[Crossref]

Lee, K.

Lee, S.

Lim, J.

Liu, H.

Lue, N.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. Dasari, and M. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007).
[Crossref]

Marian, A.

Marquet, P.

Momey, F.

Montfort, F.

Müller, P.

P. Müller, M. Schürmann, and J. Guck, “The theory of diffraction tomography,” arXiv: 1507.00466 (2015).

Oh, S.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. Dasari, and M. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007).
[Crossref]

Ohguchi, M.

S. Yamanaka, R. Yano, H. Usami, N. Hayashida, M. Ohguchi, H. Takeda, and K. Yoshino, “Optical properties of diatom silica frustule with special reference to blue light,” J. Appl. Phys. 103, 074701 (2008).
[Crossref]

Papadopoulos, I. N.

Park, H.

Park, Y.

Pavillon, N.

Y. Cotte, F. Toy, P. Jourdain, and N. Pavillon, “Marker-free phase nanoscopy,” Nat. Photonics 7, 113–117 (2013).
[Crossref]

Picollet-D’hahan, N.

Popescu, G.

T. Kim, R. Zhou, L. L. Goddard, and G. Popescu, “Solving inverse scattering problems in biological samples by quantitative phase imaging,” Laser Photon. Rev. 10, 13–39 (2016).
[Crossref]

Psaltis, D.

Rodrigo, J. A.

Samson, E. C.

E. C. Samson and C. M. Blanca, “Dynamic contrast enhancement in widefield microscopy using projector-generated illumination patterns,” New J. Phys. 9, 363 (2007).
[Crossref]

Schürmann, M.

P. Müller, M. Schürmann, and J. Guck, “The theory of diffraction tomography,” arXiv: 1507.00466 (2015).

Sentenac, A.

O. Haeberlé, K. Belkebir, H. Giovaninni, and A. Sentenac, “Tomographic diffractive microscopy: basics, techniques and perspectives,” J. Mod. Opt. 57, 686–699 (2010).
[Crossref]

Shim, H.

Shin, S.

Shoreh, M. H.

Simon, B.

B. Simon, M. Debailleul, M. Houkal, C. Ecoffet, J. Bailleul, J. Lambert, A. Spangenberg, H. Liu, O. Soppera, and O. Haeberlé, “Tomographic diffractive microscopy with isotropic resolution,” Optica 4, 460–463 (2017).
[Crossref]

M. Debailleul, B. Simon, V. Georges, O. Haeberlé, and V. Lauer, “Holographic microscopy and diffractive microtomography of transparent samples,” Meas. Sci. Technol. 19, 074009 (2008).
[Crossref]

Soppera, O.

Soto, J. M.

Spangenberg, A.

Streibl, N.

Sung, Y.

Takeda, H.

S. Yamanaka, R. Yano, H. Usami, N. Hayashida, M. Ohguchi, H. Takeda, and K. Yoshino, “Optical properties of diatom silica frustule with special reference to blue light,” J. Appl. Phys. 103, 074701 (2008).
[Crossref]

Tian, L.

Toy, F.

Y. Cotte, F. Toy, P. Jourdain, and N. Pavillon, “Marker-free phase nanoscopy,” Nat. Photonics 7, 113–117 (2013).
[Crossref]

Toy, F. M.

Unser, M.

Usami, H.

S. Yamanaka, R. Yano, H. Usami, N. Hayashida, M. Ohguchi, H. Takeda, and K. Yoshino, “Optical properties of diatom silica frustule with special reference to blue light,” J. Appl. Phys. 103, 074701 (2008).
[Crossref]

Vertu, S.

S. Vertu, J.-J. Delaunay, I. Yamada, and O. Haeberlé, “Diffraction microtomography with sample rotation: influence of a missing apple core in the recorded frequency space,” Open Phys. 7, 22–31 (2009).
[Crossref]

Vollmer, A.

A. Kuś, M. Dudek, B. Kemper, M. Kujawińska, and A. Vollmer, “Tomographic phase microscopy of living three-dimensional cell cultures,” J. Biomed. Opt. 19, 046009 (2014).
[Crossref]

Vonesch, C.

Waller, L.

Weiss, K.

R. Dandliker and K. Weiss, “Reconstruction of the three-dimensional refractive index from scattered waves,” Opt. Commun. 1, 323–328 (1970).
[Crossref]

Wolf, E.

E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun. 1, 153–156 (1969).
[Crossref]

M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).

Yamada, I.

S. Vertu, J.-J. Delaunay, I. Yamada, and O. Haeberlé, “Diffraction microtomography with sample rotation: influence of a missing apple core in the recorded frequency space,” Open Phys. 7, 22–31 (2009).
[Crossref]

Yamanaka, S.

S. Yamanaka, R. Yano, H. Usami, N. Hayashida, M. Ohguchi, H. Takeda, and K. Yoshino, “Optical properties of diatom silica frustule with special reference to blue light,” J. Appl. Phys. 103, 074701 (2008).
[Crossref]

Yano, R.

S. Yamanaka, R. Yano, H. Usami, N. Hayashida, M. Ohguchi, H. Takeda, and K. Yoshino, “Optical properties of diatom silica frustule with special reference to blue light,” J. Appl. Phys. 103, 074701 (2008).
[Crossref]

Ye, J.

Ye, J. C.

Yoon, H.

K. Kim, H. Yoon, M. Diez-Silva, M. Dao, R. R. Dasari, and Y. Park, “High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography,” J. Biomed. Opt. 19, 011005 (2013).
[Crossref]

Yoon, J.

Yoshino, K.

S. Yamanaka, R. Yano, H. Usami, N. Hayashida, M. Ohguchi, H. Takeda, and K. Yoshino, “Optical properties of diatom silica frustule with special reference to blue light,” J. Appl. Phys. 103, 074701 (2008).
[Crossref]

Zhou, R.

T. Kim, R. Zhou, L. L. Goddard, and G. Popescu, “Solving inverse scattering problems in biological samples by quantitative phase imaging,” Laser Photon. Rev. 10, 13–39 (2016).
[Crossref]

Appl. Opt. (2)

Biomed. Opt. Express (3)

J. Appl. Phys. (1)

S. Yamanaka, R. Yano, H. Usami, N. Hayashida, M. Ohguchi, H. Takeda, and K. Yoshino, “Optical properties of diatom silica frustule with special reference to blue light,” J. Appl. Phys. 103, 074701 (2008).
[Crossref]

J. Biomed. Opt. (2)

A. Kuś, M. Dudek, B. Kemper, M. Kujawińska, and A. Vollmer, “Tomographic phase microscopy of living three-dimensional cell cultures,” J. Biomed. Opt. 19, 046009 (2014).
[Crossref]

K. Kim, H. Yoon, M. Diez-Silva, M. Dao, R. R. Dasari, and Y. Park, “High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography,” J. Biomed. Opt. 19, 011005 (2013).
[Crossref]

J. Microsc. (1)

V. Lauer, “New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope,” J. Microsc. 205, 165–176 (2002).
[Crossref]

J. Mod. Opt. (1)

O. Haeberlé, K. Belkebir, H. Giovaninni, and A. Sentenac, “Tomographic diffractive microscopy: basics, techniques and perspectives,” J. Mod. Opt. 57, 686–699 (2010).
[Crossref]

J. Opt. Soc. Am. A (2)

Laser Photon. Rev. (1)

T. Kim, R. Zhou, L. L. Goddard, and G. Popescu, “Solving inverse scattering problems in biological samples by quantitative phase imaging,” Laser Photon. Rev. 10, 13–39 (2016).
[Crossref]

Meas. Sci. Technol. (1)

M. Debailleul, B. Simon, V. Georges, O. Haeberlé, and V. Lauer, “Holographic microscopy and diffractive microtomography of transparent samples,” Meas. Sci. Technol. 19, 074009 (2008).
[Crossref]

Nat. Methods (1)

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. Dasari, and M. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007).
[Crossref]

Nat. Photonics (1)

Y. Cotte, F. Toy, P. Jourdain, and N. Pavillon, “Marker-free phase nanoscopy,” Nat. Photonics 7, 113–117 (2013).
[Crossref]

New J. Phys. (1)

E. C. Samson and C. M. Blanca, “Dynamic contrast enhancement in widefield microscopy using projector-generated illumination patterns,” New J. Phys. 9, 363 (2007).
[Crossref]

Open Phys. (1)

S. Vertu, J.-J. Delaunay, I. Yamada, and O. Haeberlé, “Diffraction microtomography with sample rotation: influence of a missing apple core in the recorded frequency space,” Open Phys. 7, 22–31 (2009).
[Crossref]

Opt. Commun. (2)

E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun. 1, 153–156 (1969).
[Crossref]

R. Dandliker and K. Weiss, “Reconstruction of the three-dimensional refractive index from scattered waves,” Opt. Commun. 1, 323–328 (1970).
[Crossref]

Opt. Express (7)

Opt. Lett. (2)

Optica (3)

Ultrason. Imaging (1)

A. J. Devaney, “A filtered backpropagation algorithm for diffraction tomography,” Ultrason. Imaging 4, 336–350 (1982).
[Crossref]

Other (3)

P. Müller, M. Schürmann, and J. Guck, “The theory of diffraction tomography,” arXiv: 1507.00466 (2015).

D. S. C. Biggs, “3D deconvolution microscopy,” in Current Protocols in Cytometry (2010), pp. 1–20.

M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Flowchart of the information processing approach used in C-ODT for reconstructing the 3D RI. From an intensity measurement for a certain illumination direction (si), the complex field amplitude (CFA) of the light transmitted by the microscope is retrieved at a single plane z0. The type of intensity measurement [hologram(s), refocused images] depends on the method used for phase retrieval (DH, TIE, iterative algorithms). The CFA in the entire sample volume is obtained by numerical propagation of the retrieved CFA in z0. Next, the 3D FT of the CFA is computed. Then, after a background suppression and a deconvolution procedure with the coherent transfer function (CTF), the scattering potential into the corresponding cap of the Ewald sphere is recovered. This procedure is repeated by changing si for a predetermined number of illuminations (N). Later, all the pieces of the scattering potential obtained separately are assembled together in the spectral domain. Finally, by using the 3D inverse FT (IFFT) operation, the scattering potential in the spatial domain and the RI are recovered.

Fig. 2.
Fig. 2.

Comparison between different 2D xz sections of the 3D nonparaxial OTF. The first row summarizes different phase OTFs (POTFs), HP(p), whereas the second row shows the corresponding sections of the absorption transfer function (AOTF), HA(p). OTFs from (a)–(c) columns have been calculated with a different number of illumination plane waves (N), ranging from an almost coherent situation (a) to a coherent regime close to incoherent illumination (c). All the OTFs have been represented by taking λ0=450  nm, NAc=0.95, and NAo=1.4. The black and white arrows indicate the missing-cone region in the frequency domain.

Fig. 3.
Fig. 3.

Flowchart of the information processing approach used in PC-ODT for reconstruction of the object 3D RI. A 3D intensity stack I(r) of refocused intensity images (in bright-field modality) is measured by axial scanning of the sample. Then, an intensity normalization is performed to impose energy conservation, followed by a background removal in I(r). Next, a 3D FT of I(r) is calculated. Later, I^(p) is deconvolved by using the microscope effective transfer function in order to obtain the scattering potential in the spectral domain, P^(p). Finally, the 3D inverse FT is applied to obtain the scattering potential in the spatial domain from which the RI of the sample is obtained.

Fig. 4.
Fig. 4.

Sketch of an interferometric setup for implementation of the C-ODT technique in a holographic microscope. The first turning mirror (TM1) controls the illumination scanning process, while the second one (TM2) is used to preserve the interference angle between the reference and object beams. Note that an input collimated laser beam is divided by using a beam splitter (BS), while the object and reference beams are recombined by a BS mounted in front of the camera (e.g., sCMOS). A convergent lens (L) is used for focusing the collimated illumination beam onto the back focal plane (BFP) of the condenser lens (CL). The microscope objective lens (MO) collects the laser beam passing by the sample (object beam) at a given scanning position. Then the tube lens (TL) images the object beam into the detector plane of the camera.

Fig. 5.
Fig. 5.

Sketch of a non-interferometric setup for implementation of both the PC-ODT and C-ODT techniques in a standard wide-field microscope. The illumination system consists of a DLP projector whose projection lens has been replaced by a 4-f setup to obtain a real image of the DMD display onto a static ground glass diffuser, thus working as a real screen. Such a real image (e.g., the green circle) is then relayed onto the back focal plane of the condenser lens by using two convergent lenses (RL1 and RL2). The refocusing module comprises a relay lens (RL3) and the electrically focused tunable lens (ETL). The required axially scanned images are measured by using a high-speed camera (e.g., sCMOS).

Fig. 6.
Fig. 6.

(a1), (a2) Volumetric representation of the reconstructed 3D RI distribution, Δn(r)=|Re{ns(r)}nm|, of a diatom by using the PC-ODT. The sample exhibits a clearly observable periodicity of the cell wall indents in the axial cross section. Note that part of the upper diatom wall has been broken. (b1)–(b3) 2D RI slices of three different xy planes. The observed circular-like pores have a diameter of 710  nm. (c1)–(c3) 2D intensity slices corresponding to the same RI planes displayed in Figs. (b1)–(b3).

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

(2+k2(r))u(r)=0,
(2+km2)u(r)=V(r)u(r),
u(r)=u0(r)+G(rr)V(r)u(r)dr.
us(r)=BornG(rr)V(r)u0(r)dr=[V(r)u0(r)]*G(r).
u(r)=Bornu0(r)+[V(r)u0(r)]*G(r).
I(r)=|u(r)|2=Born|u0(r)|2+2Re{u0*(r)us(r)}.
u(r|s)=a(|s)exp(ikmsr)+a(|s)[V(r)exp(ikmsr)]*G(r).
u(r|s)=a(|s){exp(ikmsr)*ho(r)+[V(r)exp(ikmsr)]*G(r)*ho(r)}.
u^(p|s)=a(|s)Ho(p)δ(pκms)+a(|s)Ho(p)G^(p)V^(pκms),
V^(p|s)=u^(p+κms|s)a(|s)Ho(p+κms)δ(p)a(|s)Ho(p+κms)G^(p+κms).
Ho(p)=circ(λpx2+py2NAo)step(pzκm),
V(r)=P(r)+iA(r),P(r)=k02(nre2nim2nm2),A(r)=2k02nrenim,
I(r|s)=a2(|s)[|exp(ikmsr)*ho(r)|2+[exp(ikmsr)*ho(r)]*[V(r)exp(ikmsr)]*G(r)*ho(r)+[exp(ikmsr)*ho(r)]{[V(r)exp(ikmsr)]*G(r)*ho(r)}*],
J(r|s)=[(P(r)+iA(r))exp(ikmsr)]*G(r)*ho(r)×[exp(ikmsr)*ho*(r)]+[exp(ikmsr)*ho(r)]×[(P(r)iA(r))exp(ikmsr)]*G*(r)*ho*(r).
J^(p|s)=P^(p)[Ho*(κms)G^(p+κms)Ho(p+κms)+Ho(κms)G^*(p+κms)Ho*(p+κms)]+iA^(p)[Ho*(κms)G^(p+κms)Ho(p+κms)Ho(κms)G^*(p+κms)Ho*(p+κms)].
I^(p)=SI^(p|s)ds=Bδ(p)+A^(p)HA(p)+P^(p)HP(p).
HA(p)=iSa2(|s)[Ho*(κms)G^(p+κms)Ho(p+κms)Ho(κms)G^*(p+κms)Ho*(p+κms)]ds,HP(p)=Sa2(|s)[Ho*(κms)G^(p+κms)Ho(p+κms)+Ho(κms)G^*(p+κms)Ho*(p+κms)]ds.
I^(p)=Bδ(p)+P^(p)×HEFF(p),
P^(p)=I^(p)Bδ(p)HEFF(p).
P^(p)=(I^(p)Bδ(p))HEFF*(p)|HEFF(p)|2+β,
n(r)nre(r)=|n2(r)|+Re{n2(r)}2.

Metrics