Abstract

For the first time, direct detection of gravitational waves occurred in the Laser Interferometer Gravitational-wave Observatory (LIGO) interferometers. These advanced detectors require large fused silica mirrors with optical and mechanical properties and have never been reached until now. This paper details the main achievements of these ion beam sputtering coatings.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Toward a new generation of low-loss mirrors for the advanced gravitational waves interferometers

L. Pinard, B. Sassolas, R. Flaminio, D. Forest, A. Lacoudre, C. Michel, J. L. Montorio, and N. Morgado
Opt. Lett. 36(8) 1407-1409 (2011)

Loss factors of mirrors for a gravitational wave antenna

Shuichi Sato, Shinji Miyoki, Masatake Ohashi, Masa-Katsu Fujimoto, Toshitaka Yamazaki, Mitsuhiro Fukushima, Akitoshi Ueda, Ken-ichi Ueda, Koji Watanabe, Kenji Nakamura, Kazuyuki Etoh, Naoya Kitajima, Kazuhiko Ito, and Izumi Kataoka
Appl. Opt. 38(13) 2880-2885 (1999)

Twin mirrors for laser interferometric gravitational-wave detectors

Benoît Sassolas, Quentin Benoît, Raffaele Flaminio, Danièle Forest, Janyce Franc, Massimo Galimberti, Aline Lacoudre, Christophe Michel, Jean-Luc Montorio, Nazario Morgado, and Laurent Pinard
Appl. Opt. 50(13) 1894-1899 (2011)

References

  • View by:
  • |
  • |
  • |

  1. LIGO Scientific Collaboration and Virgo Collaboration, “Observation of gravitational waves from a binary black hole merger,” Phys. Rev. Lett. 116, 061102 (2016).
    [Crossref]
  2. L. Pinard, B. Sassolas, R. Flaminio, D. Forest, A. Lacoudre, C. Michel, J. L. Montorio, and N. Morgado, “Toward a new generation of low-loss mirrors for the advanced gravitational waves interferometers,” Opt. Lett. 36, 1407–1409 (2011).
    [Crossref]
  3. B. Cimma, D. Forest, P. Ganau, B. Lagrange, J. M. Mackowski, C. Michel, J. L. Montorio, N. Morgado, R. Pignard, L. Pinard, and A. Remillieux, “IBS sputtering coatings on large substrates: towards an improvement of the mechanical and optical performances,” Appl. Opt. 45, 1436–1439 (2006).
    [Crossref]
  4. R. Bonnand, “The Advanced Virgo gravitational waves detector: study of the optical design and development of the mirrors,” Ph.D. dissertation (Université Claude Bernard–Lyon I, 2012)..
  5. M. Granata, E. Saracco, N. Morgado, A. Cajgfinger, G. Cagnoli, J. Degallaix, V. Dolique, D. Forest, J. Franc, C. Michel, L. Pinard, and R. Flaminio, “Mechanical loss in state-of-the-art amorphous optical coatings,” Phys. Rev. D 93, 012007 (2016).
    [Crossref]
  6. B. Sassolas, R. Flaminio, J. Franc, C. Michel, J. L. Montorio, N. Morgado, and L. Pinard, “Masking technique for coating thickness control on large and strongly aspherical optics,” Appl. Opt. 48, 3760–3765 (2009).
    [Crossref]
  7. A. E. Villar, E. D. Black, R. DeSalvo, K. G. Libbrecht, C. Michel, N. Morgado, L. Pinard, I. M. Pinto, V. Pierro, V. Galdi, M. Principe, and I. Taurasi, “Measurement of thermal noise in multilayer coatings with optimized layer thickness,” Phys. Rev. D 81, 122001 (2010).
    [Crossref]

2016 (2)

LIGO Scientific Collaboration and Virgo Collaboration, “Observation of gravitational waves from a binary black hole merger,” Phys. Rev. Lett. 116, 061102 (2016).
[Crossref]

M. Granata, E. Saracco, N. Morgado, A. Cajgfinger, G. Cagnoli, J. Degallaix, V. Dolique, D. Forest, J. Franc, C. Michel, L. Pinard, and R. Flaminio, “Mechanical loss in state-of-the-art amorphous optical coatings,” Phys. Rev. D 93, 012007 (2016).
[Crossref]

2011 (1)

2010 (1)

A. E. Villar, E. D. Black, R. DeSalvo, K. G. Libbrecht, C. Michel, N. Morgado, L. Pinard, I. M. Pinto, V. Pierro, V. Galdi, M. Principe, and I. Taurasi, “Measurement of thermal noise in multilayer coatings with optimized layer thickness,” Phys. Rev. D 81, 122001 (2010).
[Crossref]

2009 (1)

2006 (1)

Black, E. D.

A. E. Villar, E. D. Black, R. DeSalvo, K. G. Libbrecht, C. Michel, N. Morgado, L. Pinard, I. M. Pinto, V. Pierro, V. Galdi, M. Principe, and I. Taurasi, “Measurement of thermal noise in multilayer coatings with optimized layer thickness,” Phys. Rev. D 81, 122001 (2010).
[Crossref]

Bonnand, R.

R. Bonnand, “The Advanced Virgo gravitational waves detector: study of the optical design and development of the mirrors,” Ph.D. dissertation (Université Claude Bernard–Lyon I, 2012)..

Cagnoli, G.

M. Granata, E. Saracco, N. Morgado, A. Cajgfinger, G. Cagnoli, J. Degallaix, V. Dolique, D. Forest, J. Franc, C. Michel, L. Pinard, and R. Flaminio, “Mechanical loss in state-of-the-art amorphous optical coatings,” Phys. Rev. D 93, 012007 (2016).
[Crossref]

Cajgfinger, A.

M. Granata, E. Saracco, N. Morgado, A. Cajgfinger, G. Cagnoli, J. Degallaix, V. Dolique, D. Forest, J. Franc, C. Michel, L. Pinard, and R. Flaminio, “Mechanical loss in state-of-the-art amorphous optical coatings,” Phys. Rev. D 93, 012007 (2016).
[Crossref]

Cimma, B.

Degallaix, J.

M. Granata, E. Saracco, N. Morgado, A. Cajgfinger, G. Cagnoli, J. Degallaix, V. Dolique, D. Forest, J. Franc, C. Michel, L. Pinard, and R. Flaminio, “Mechanical loss in state-of-the-art amorphous optical coatings,” Phys. Rev. D 93, 012007 (2016).
[Crossref]

DeSalvo, R.

A. E. Villar, E. D. Black, R. DeSalvo, K. G. Libbrecht, C. Michel, N. Morgado, L. Pinard, I. M. Pinto, V. Pierro, V. Galdi, M. Principe, and I. Taurasi, “Measurement of thermal noise in multilayer coatings with optimized layer thickness,” Phys. Rev. D 81, 122001 (2010).
[Crossref]

Dolique, V.

M. Granata, E. Saracco, N. Morgado, A. Cajgfinger, G. Cagnoli, J. Degallaix, V. Dolique, D. Forest, J. Franc, C. Michel, L. Pinard, and R. Flaminio, “Mechanical loss in state-of-the-art amorphous optical coatings,” Phys. Rev. D 93, 012007 (2016).
[Crossref]

Flaminio, R.

Forest, D.

Franc, J.

M. Granata, E. Saracco, N. Morgado, A. Cajgfinger, G. Cagnoli, J. Degallaix, V. Dolique, D. Forest, J. Franc, C. Michel, L. Pinard, and R. Flaminio, “Mechanical loss in state-of-the-art amorphous optical coatings,” Phys. Rev. D 93, 012007 (2016).
[Crossref]

B. Sassolas, R. Flaminio, J. Franc, C. Michel, J. L. Montorio, N. Morgado, and L. Pinard, “Masking technique for coating thickness control on large and strongly aspherical optics,” Appl. Opt. 48, 3760–3765 (2009).
[Crossref]

Galdi, V.

A. E. Villar, E. D. Black, R. DeSalvo, K. G. Libbrecht, C. Michel, N. Morgado, L. Pinard, I. M. Pinto, V. Pierro, V. Galdi, M. Principe, and I. Taurasi, “Measurement of thermal noise in multilayer coatings with optimized layer thickness,” Phys. Rev. D 81, 122001 (2010).
[Crossref]

Ganau, P.

Granata, M.

M. Granata, E. Saracco, N. Morgado, A. Cajgfinger, G. Cagnoli, J. Degallaix, V. Dolique, D. Forest, J. Franc, C. Michel, L. Pinard, and R. Flaminio, “Mechanical loss in state-of-the-art amorphous optical coatings,” Phys. Rev. D 93, 012007 (2016).
[Crossref]

Lacoudre, A.

Lagrange, B.

Libbrecht, K. G.

A. E. Villar, E. D. Black, R. DeSalvo, K. G. Libbrecht, C. Michel, N. Morgado, L. Pinard, I. M. Pinto, V. Pierro, V. Galdi, M. Principe, and I. Taurasi, “Measurement of thermal noise in multilayer coatings with optimized layer thickness,” Phys. Rev. D 81, 122001 (2010).
[Crossref]

Mackowski, J. M.

Michel, C.

Montorio, J. L.

Morgado, N.

Pierro, V.

A. E. Villar, E. D. Black, R. DeSalvo, K. G. Libbrecht, C. Michel, N. Morgado, L. Pinard, I. M. Pinto, V. Pierro, V. Galdi, M. Principe, and I. Taurasi, “Measurement of thermal noise in multilayer coatings with optimized layer thickness,” Phys. Rev. D 81, 122001 (2010).
[Crossref]

Pignard, R.

Pinard, L.

Pinto, I. M.

A. E. Villar, E. D. Black, R. DeSalvo, K. G. Libbrecht, C. Michel, N. Morgado, L. Pinard, I. M. Pinto, V. Pierro, V. Galdi, M. Principe, and I. Taurasi, “Measurement of thermal noise in multilayer coatings with optimized layer thickness,” Phys. Rev. D 81, 122001 (2010).
[Crossref]

Principe, M.

A. E. Villar, E. D. Black, R. DeSalvo, K. G. Libbrecht, C. Michel, N. Morgado, L. Pinard, I. M. Pinto, V. Pierro, V. Galdi, M. Principe, and I. Taurasi, “Measurement of thermal noise in multilayer coatings with optimized layer thickness,” Phys. Rev. D 81, 122001 (2010).
[Crossref]

Remillieux, A.

Saracco, E.

M. Granata, E. Saracco, N. Morgado, A. Cajgfinger, G. Cagnoli, J. Degallaix, V. Dolique, D. Forest, J. Franc, C. Michel, L. Pinard, and R. Flaminio, “Mechanical loss in state-of-the-art amorphous optical coatings,” Phys. Rev. D 93, 012007 (2016).
[Crossref]

Sassolas, B.

Taurasi, I.

A. E. Villar, E. D. Black, R. DeSalvo, K. G. Libbrecht, C. Michel, N. Morgado, L. Pinard, I. M. Pinto, V. Pierro, V. Galdi, M. Principe, and I. Taurasi, “Measurement of thermal noise in multilayer coatings with optimized layer thickness,” Phys. Rev. D 81, 122001 (2010).
[Crossref]

Villar, A. E.

A. E. Villar, E. D. Black, R. DeSalvo, K. G. Libbrecht, C. Michel, N. Morgado, L. Pinard, I. M. Pinto, V. Pierro, V. Galdi, M. Principe, and I. Taurasi, “Measurement of thermal noise in multilayer coatings with optimized layer thickness,” Phys. Rev. D 81, 122001 (2010).
[Crossref]

Appl. Opt. (2)

Opt. Lett. (1)

Phys. Rev. D (2)

A. E. Villar, E. D. Black, R. DeSalvo, K. G. Libbrecht, C. Michel, N. Morgado, L. Pinard, I. M. Pinto, V. Pierro, V. Galdi, M. Principe, and I. Taurasi, “Measurement of thermal noise in multilayer coatings with optimized layer thickness,” Phys. Rev. D 81, 122001 (2010).
[Crossref]

M. Granata, E. Saracco, N. Morgado, A. Cajgfinger, G. Cagnoli, J. Degallaix, V. Dolique, D. Forest, J. Franc, C. Michel, L. Pinard, and R. Flaminio, “Mechanical loss in state-of-the-art amorphous optical coatings,” Phys. Rev. D 93, 012007 (2016).
[Crossref]

Phys. Rev. Lett. (1)

LIGO Scientific Collaboration and Virgo Collaboration, “Observation of gravitational waves from a binary black hole merger,” Phys. Rev. Lett. 116, 061102 (2016).
[Crossref]

Other (1)

R. Bonnand, “The Advanced Virgo gravitational waves detector: study of the optical design and development of the mirrors,” Ph.D. dissertation (Université Claude Bernard–Lyon I, 2012)..

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

Advanced Virgo recycling mirror, Ø 35    cm (left), and large beam splitter, Ø 55    cm (right).

Fig. 2.
Fig. 2.

Four Advanced LIGO ITM substrates before coating.

Fig. 3.
Fig. 3.

Point defect map Ø 15    cm of an Advanced Virgo EM.

Fig. 4.
Fig. 4.

Surface flatness (0.19 nm RMS Ø 15    cm ) of an Advanced Virgo EM.

Fig. 5.
Fig. 5.

Absorption map at 1064 nm on Ø 15    cm of a high reflectivity coating of an EM of Advanced Virgo.

Fig. 6.
Fig. 6.

Average scattering map Ø 15    cm on an ITM of Advanced LIGO measured with a CASI scatterometer.

Fig. 7.
Fig. 7.

Zoom of the antireflective spectrum around 1064 nm with sensitivity to errors (of random manufacturing errors + / 1 % on all layers).

Fig. 8.
Fig. 8.

Reflection map at 1064 nm on Ø 16    cm of an antireflective coating of an ITM of Advanced LIGO (average value 13 ppm).

Fig. 9.
Fig. 9.

Large IBS coater.

Fig. 10.
Fig. 10.

Two Ø 35    cm IMs installed in the coater sample holder.

Fig. 11.
Fig. 11.

Average uniformity profile on Ø 24    cm of an EM high reflective coating.

Fig. 12.
Fig. 12.

Flatness of an Advanced Virgo EM on Ø 15    cm (power removed).

Metrics