Abstract

Opposed-view digital holographic microscopy (OV-DHM) with autofocusing and out-of-focus background suppression was demonstrated and applied to measure the refractive index (RI) of suspended HeLa cells. In OV-DHM, a specimen is illuminated from two sides in a 4π-like configuration. The generated two opposite-view object waves, which have orthogonal polarization orientations, interfere with a common reference wave, and the generated holograms are recorded by a CMOS camera. The image plane of the sample was determined by finding the minimal variation between the two object waves. The out-of-focus background was suppressed by averaging the two object waves. Simultaneous determination of both the cell thickness and the phase retardation was avoided by using a spheroidal model for the detached cell obtained from confocal microscopy. Thus, the RI of suspended HeLa cells was measured from phase images of OV-DHM, with the thickness of the cells estimated by using a constant axial-to-lateral ratio. This measurement strategy reveals the RI with an accuracy of 10% of the RI difference between cells and surrounding medium.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Cell refractive index tomography by digital holographic microscopy

Florian Charrière, Anca Marian, Frédéric Montfort, Jonas Kuehn, Tristan Colomb, Etienne Cuche, Pierre Marquet, and Christian Depeursinge
Opt. Lett. 31(2) 178-180 (2006)

Opposed-view dark-field digital holographic microscopy

Ahmad Faridian, Giancarlo Pedrini, and Wolfgang Osten
Biomed. Opt. Express 5(3) 728-736 (2014)

Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy

Benjamin Rappaz, Pierre Marquet, Etienne Cuche, Yves Emery, Christian Depeursinge, and Pierre J. Magistretti
Opt. Express 13(23) 9361-9373 (2005)

References

  • View by:
  • |
  • |
  • |

  1. B. Kemper and G. von Bally, “Digital holographic microscopy for live cell applications and technical inspection,” Appl. Opt. 47, A52–A61 (2008).
    [Crossref]
  2. W. Osten, A. Faridian, P. Gao, K. Körner, D. Naik, G. Pedrini, A. K. Singh, M. Takeda, and M. Wilke, “Recent advances in digital holography [Invited],” Appl. Opt. 53, G44–G63 (2014).
    [Crossref]
  3. P. Langehanenberg, B. Kemper, D. Dirksen, and G. von Bally, “Autofocusing in digital holographic phase contrast microscopy on pure phase objects for live cell imaging,” Appl. Opt. 47, D176–D182 (2008).
    [Crossref]
  4. V. Mico, Z. Zalevsky, and J. García, “Common-path phase-shifting digital holographic microscopy: a way to quantitative phase imaging and superresolution,” Opt. Commun. 281, 4273–4281 (2008).
    [Crossref]
  5. G. Popescu, L. P. Deflores, J. C. Vaughan, K. Badizadegan, H. Iwai, R. R. Dasari, and M. S. Feld, “Fourier phase microscopy for investigation of biological structures and dynamics,” Opt. Lett. 29, 2503–2505 (2004).
    [Crossref]
  6. P. Gao, G. Pedrini, and W. Osten, “Structured illumination for resolution enhancement and autofocusing in digital holographic microscopy,” Opt. Lett. 38, 1328–1330 (2013).
    [Crossref]
  7. P. Gao, B. L. Yao, J. W. Min, R. L. Guo, B. H. Ma, J. J. Zheng, M. Lei, S. H. Yan, D. Dan, and T. Ye, “Autofocusing of digital holographic microscopy based on off-axis illuminations,” Opt. Lett. 37, 3630–3632 (2012).
    [Crossref]
  8. C. J. Yuan, G. Situ, G. Pedrini, J. Ma, and W. Osten, “Resolution improvement in digital holography by angular and polarization multiplexing,” Appl. Opt. 50, B6–B11 (2011).
    [Crossref]
  9. C. J. Schwarz, Y. Kuznetsova, and S. R. J. Brueck, “Imaging interferometric microscopy,” Opt. Lett. 28, 1424–1426 (2003).
    [Crossref]
  10. Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7, 418 (2013).
    [Crossref]
  11. M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. USA 102, 13081–13086 (2005).
    [Crossref]
  12. G. Kim, N. Nagarajan, E. Pastuzyn, K. Jenks, M. Capecchi, J. Shepherd, and R. Menon, “Deep-brain imaging via epi-fluorescence Computational Cannula Microscopy,” Sci. Rep. 7, 44791 (2017).
    [Crossref]
  13. P. F. Almoro and S. G. Hanson, “Object wave reconstruction by speckle illumination and phase retrieval,” J. Eur. Opt. Soc. 4, 09002 (2009).
    [Crossref]
  14. P. F. Almoro, G. Pedrini, and W. Osten, “Aperture synthesis in phase retrieval using a volume-speckle field,” Opt. Lett. 32, 733–735 (2007).
    [Crossref]
  15. Y. Park, W. Choi, Z. Yaqoob, R. Dasari, K. Badizadegan, and M. S. Feld, “Speckle-field digital holographic microscopy,” Opt. Express 17, 12285–12292 (2009).
    [Crossref]
  16. J. J. Zheng, G. Pedrini, P. Gao, B. L. Yao, and W. Osten, “Autofocusing and resolution enhancement in digital holographic microscopy by using speckle-illumination,” J. Opt. 17, 085301 (2015).
    [Crossref]
  17. J. Rosen and G. Brooker, “Digital spatially incoherent Fresnel holography,” Opt. Lett. 32, 912–914 (2007).
    [Crossref]
  18. M. K. Kim, “Adaptive optics by incoherent digital holography,” Opt. Lett. 37, 2694–2696 (2012).
    [Crossref]
  19. A. Faridian, G. Pedrini, and W. Osten, “Opposed-view dark-field digital holographic microscopy,” Biomed. Opt. Express 5, 728–736 (2014).
    [Crossref]
  20. A. Faridian, G. Pedrini, and W. Osten, “High-contrast multilayer imaging of biological organisms through dark-field digital refocusing,” J. Biomed. Opt. 18, 086009 (2013).
    [Crossref]
  21. J. J. Zheng, P. Gao, and X. P. Shao, “Opposite-view digital holographic microscopy with autofocusing capability,” Sci. Rep. 7, 425 (2017).
    [Crossref]
  22. C. L. Curl, C. J. Bellair, T. Harris, B. E. Allman, P. J. Harris, A. G. Stewart, A. Roberts, K. A. Nugent, and L. M. D. Delbridge, “Refractive index measurement in viable cells using quantitative phase-amplitude microscopy and confocal microscopy,” Cytometry A 65A, 88–92 (2005).
    [Crossref]
  23. F. Charrière, A. Marian, F. Montfort, J. Kuehn, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, “Cell refractive index tomography by digital holographic microscopy,” Opt. Lett. 31, 178–180 (2006).
    [Crossref]
  24. B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schafer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11, 034005 (2006).
    [Crossref]
  25. B. Kemper, S. Kosmeier, P. Langehanenberg, G. von Bally, I. Bredebusch, W. Domschke, and J. Schnekenburger, “Integral refractive index determination of living suspension cells by multifocus digital holographic phase contrast microscopy,” J. Biomed. Opt. 12, 054009 (2007).
    [Crossref]
  26. B. Rappaz, F. Charriere, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Simultaneous cell morphometry and refractive index measurement with dual-wavelength digital holographic microscopy and dye-enhanced dispersion of perfusion medium,” Opt. Lett. 33, 744–746 (2008).
    [Crossref]
  27. P. Gao, B. Yao, I. Harder, J. Min, R. Guo, J. Zheng, and T. Ye, “Parallel two-step phase-shifting digital holograph microscopy based on a grating pair,” J. Opt. Soc. Am. A 28, 434–440 (2011).
    [Crossref]
  28. J. J. Zheng, Y. L. Yang, M. Lei, B. L. Yao, P. Gao, and T. Ye, “Fluorescence volume imaging with an axicon: simulation study based on scalar diffraction method,” Appl. Opt. 51, 7236–7245 (2012).
    [Crossref]
  29. F. Dubois, C. Schockaert, N. Callens, and C. Yourassowsky, “Focus plane detection criteria in digital holography microscopy by amplitude analysis,” Opt. Express 14, 5895–5908 (2006).
    [Crossref]
  30. W. Li, N. C. Loomis, Q. Hu, and C. S. Davis, “Focus detection from digital in-line holograms based on spectral l1 norms,” J. Opt. Soc. Am. A 24, 3054–3062 (2007).
    [Crossref]
  31. P. Gao, B. L. Yao, R. Rupp, J. W. Min, R. L. Guo, B. H. Ma, J. J. Zheng, M. Lei, S. H. Yan, D. Dan, and T. Ye, “Autofocusing based on wavelength dependence of diffraction in two-wavelength digital holographic microscopy,” Opt. Lett. 37, 1172–1174 (2012).
    [Crossref]
  32. P. Memmolo, C. Distante, M. Paturzo, A. Finizio, P. Ferraro, and B. Javidi, “Automatic focusing in digital holography and its application to stretched holograms,” Opt. Lett. 36, 1945–1947 (2011).
    [Crossref]
  33. J. Gillespie and R. A. King, “The use of self-entropy as a focus measure in digital holography,” Pattern Recogn. Lett. 9, 19–25 (1989).
    [Crossref]
  34. E. Ruoslahti, “Fibronectin in cell adhesion and invasion,” Cancer Metastasis Rev. 3, 43–51 (1984).
    [Crossref]
  35. M. Zanoni, F. Piccinini, C. Arienti, A. Zamagni, S. Santi, R. Polico, A. Bevilacqua, and A. Tesei, “3D tumor spheroid models for in vitro therapeutic screening: a systematic approach to enhance the biological relevance of data obtained,” Sci. Rep. 6, 19103 (2016).
    [Crossref]
  36. M. M. Kozlov and L. V. Chernomordik, “Membrane tension and membrane fusion,” Curr. Opin. Struct. Biol. 33, 61–67 (2015).
    [Crossref]
  37. V. Lee, G. Singh, J. P. Trasatti, C. Bjornsson, X. W. Xu, T. N. Tran, S. S. Yoo, G. H. Dai, and P. Karande, “Design and fabrication of human skin by three-dimensional bioprinting,” Tissue Eng. C 20, 473–484 (2014).
    [Crossref]
  38. P. Gao, B. Prunsche, L. Zhou, K. Nienhaus, and G. U. Nienhaus, “Background suppression in fluorescence nanoscopy with stimulated emission double depletion,” Nat. Photonics 11, 163–169 (2017).
    [Crossref]
  39. P. Gao and G. U. Nienhaus, “Precise background subtraction in stimulated emission double depletion nanoscopy,” Opt. Lett. 42, 831–834 (2017).
    [Crossref]
  40. M. T. Rinehart, H. S. Park, and A. Wax, “Influence of defocus on quantitative analysis of microscopic objects and individual cells with digital holography,” Biomed. Opt. Express 6, 2067–2075 (2015).
    [Crossref]

2017 (4)

G. Kim, N. Nagarajan, E. Pastuzyn, K. Jenks, M. Capecchi, J. Shepherd, and R. Menon, “Deep-brain imaging via epi-fluorescence Computational Cannula Microscopy,” Sci. Rep. 7, 44791 (2017).
[Crossref]

J. J. Zheng, P. Gao, and X. P. Shao, “Opposite-view digital holographic microscopy with autofocusing capability,” Sci. Rep. 7, 425 (2017).
[Crossref]

P. Gao, B. Prunsche, L. Zhou, K. Nienhaus, and G. U. Nienhaus, “Background suppression in fluorescence nanoscopy with stimulated emission double depletion,” Nat. Photonics 11, 163–169 (2017).
[Crossref]

P. Gao and G. U. Nienhaus, “Precise background subtraction in stimulated emission double depletion nanoscopy,” Opt. Lett. 42, 831–834 (2017).
[Crossref]

2016 (1)

M. Zanoni, F. Piccinini, C. Arienti, A. Zamagni, S. Santi, R. Polico, A. Bevilacqua, and A. Tesei, “3D tumor spheroid models for in vitro therapeutic screening: a systematic approach to enhance the biological relevance of data obtained,” Sci. Rep. 6, 19103 (2016).
[Crossref]

2015 (3)

M. M. Kozlov and L. V. Chernomordik, “Membrane tension and membrane fusion,” Curr. Opin. Struct. Biol. 33, 61–67 (2015).
[Crossref]

J. J. Zheng, G. Pedrini, P. Gao, B. L. Yao, and W. Osten, “Autofocusing and resolution enhancement in digital holographic microscopy by using speckle-illumination,” J. Opt. 17, 085301 (2015).
[Crossref]

M. T. Rinehart, H. S. Park, and A. Wax, “Influence of defocus on quantitative analysis of microscopic objects and individual cells with digital holography,” Biomed. Opt. Express 6, 2067–2075 (2015).
[Crossref]

2014 (3)

2013 (3)

A. Faridian, G. Pedrini, and W. Osten, “High-contrast multilayer imaging of biological organisms through dark-field digital refocusing,” J. Biomed. Opt. 18, 086009 (2013).
[Crossref]

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7, 418 (2013).
[Crossref]

P. Gao, G. Pedrini, and W. Osten, “Structured illumination for resolution enhancement and autofocusing in digital holographic microscopy,” Opt. Lett. 38, 1328–1330 (2013).
[Crossref]

2012 (4)

2011 (3)

2009 (2)

Y. Park, W. Choi, Z. Yaqoob, R. Dasari, K. Badizadegan, and M. S. Feld, “Speckle-field digital holographic microscopy,” Opt. Express 17, 12285–12292 (2009).
[Crossref]

P. F. Almoro and S. G. Hanson, “Object wave reconstruction by speckle illumination and phase retrieval,” J. Eur. Opt. Soc. 4, 09002 (2009).
[Crossref]

2008 (4)

2007 (4)

2006 (3)

2005 (2)

M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. USA 102, 13081–13086 (2005).
[Crossref]

C. L. Curl, C. J. Bellair, T. Harris, B. E. Allman, P. J. Harris, A. G. Stewart, A. Roberts, K. A. Nugent, and L. M. D. Delbridge, “Refractive index measurement in viable cells using quantitative phase-amplitude microscopy and confocal microscopy,” Cytometry A 65A, 88–92 (2005).
[Crossref]

2004 (1)

2003 (1)

1989 (1)

J. Gillespie and R. A. King, “The use of self-entropy as a focus measure in digital holography,” Pattern Recogn. Lett. 9, 19–25 (1989).
[Crossref]

1984 (1)

E. Ruoslahti, “Fibronectin in cell adhesion and invasion,” Cancer Metastasis Rev. 3, 43–51 (1984).
[Crossref]

Allman, B. E.

C. L. Curl, C. J. Bellair, T. Harris, B. E. Allman, P. J. Harris, A. G. Stewart, A. Roberts, K. A. Nugent, and L. M. D. Delbridge, “Refractive index measurement in viable cells using quantitative phase-amplitude microscopy and confocal microscopy,” Cytometry A 65A, 88–92 (2005).
[Crossref]

Almoro, P. F.

P. F. Almoro and S. G. Hanson, “Object wave reconstruction by speckle illumination and phase retrieval,” J. Eur. Opt. Soc. 4, 09002 (2009).
[Crossref]

P. F. Almoro, G. Pedrini, and W. Osten, “Aperture synthesis in phase retrieval using a volume-speckle field,” Opt. Lett. 32, 733–735 (2007).
[Crossref]

Arienti, C.

M. Zanoni, F. Piccinini, C. Arienti, A. Zamagni, S. Santi, R. Polico, A. Bevilacqua, and A. Tesei, “3D tumor spheroid models for in vitro therapeutic screening: a systematic approach to enhance the biological relevance of data obtained,” Sci. Rep. 6, 19103 (2016).
[Crossref]

Badizadegan, K.

Bellair, C. J.

C. L. Curl, C. J. Bellair, T. Harris, B. E. Allman, P. J. Harris, A. G. Stewart, A. Roberts, K. A. Nugent, and L. M. D. Delbridge, “Refractive index measurement in viable cells using quantitative phase-amplitude microscopy and confocal microscopy,” Cytometry A 65A, 88–92 (2005).
[Crossref]

Bevilacqua, A.

M. Zanoni, F. Piccinini, C. Arienti, A. Zamagni, S. Santi, R. Polico, A. Bevilacqua, and A. Tesei, “3D tumor spheroid models for in vitro therapeutic screening: a systematic approach to enhance the biological relevance of data obtained,” Sci. Rep. 6, 19103 (2016).
[Crossref]

Bjornsson, C.

V. Lee, G. Singh, J. P. Trasatti, C. Bjornsson, X. W. Xu, T. N. Tran, S. S. Yoo, G. H. Dai, and P. Karande, “Design and fabrication of human skin by three-dimensional bioprinting,” Tissue Eng. C 20, 473–484 (2014).
[Crossref]

Boss, D.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7, 418 (2013).
[Crossref]

Bredebusch, I.

B. Kemper, S. Kosmeier, P. Langehanenberg, G. von Bally, I. Bredebusch, W. Domschke, and J. Schnekenburger, “Integral refractive index determination of living suspension cells by multifocus digital holographic phase contrast microscopy,” J. Biomed. Opt. 12, 054009 (2007).
[Crossref]

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schafer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11, 034005 (2006).
[Crossref]

Brooker, G.

Brueck, S. R. J.

Callens, N.

Capecchi, M.

G. Kim, N. Nagarajan, E. Pastuzyn, K. Jenks, M. Capecchi, J. Shepherd, and R. Menon, “Deep-brain imaging via epi-fluorescence Computational Cannula Microscopy,” Sci. Rep. 7, 44791 (2017).
[Crossref]

Carl, D.

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schafer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11, 034005 (2006).
[Crossref]

Charriere, F.

Charrière, F.

Chernomordik, L. V.

M. M. Kozlov and L. V. Chernomordik, “Membrane tension and membrane fusion,” Curr. Opin. Struct. Biol. 33, 61–67 (2015).
[Crossref]

Choi, W.

Colomb, T.

Cotte, Y.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7, 418 (2013).
[Crossref]

Cuche, E.

Curl, C. L.

C. L. Curl, C. J. Bellair, T. Harris, B. E. Allman, P. J. Harris, A. G. Stewart, A. Roberts, K. A. Nugent, and L. M. D. Delbridge, “Refractive index measurement in viable cells using quantitative phase-amplitude microscopy and confocal microscopy,” Cytometry A 65A, 88–92 (2005).
[Crossref]

Dai, G. H.

V. Lee, G. Singh, J. P. Trasatti, C. Bjornsson, X. W. Xu, T. N. Tran, S. S. Yoo, G. H. Dai, and P. Karande, “Design and fabrication of human skin by three-dimensional bioprinting,” Tissue Eng. C 20, 473–484 (2014).
[Crossref]

Dan, D.

Dasari, R.

Dasari, R. R.

Davis, C. S.

Deflores, L. P.

Delbridge, L. M. D.

C. L. Curl, C. J. Bellair, T. Harris, B. E. Allman, P. J. Harris, A. G. Stewart, A. Roberts, K. A. Nugent, and L. M. D. Delbridge, “Refractive index measurement in viable cells using quantitative phase-amplitude microscopy and confocal microscopy,” Cytometry A 65A, 88–92 (2005).
[Crossref]

Depeursinge, C.

Dirksen, D.

Distante, C.

Domschke, W.

B. Kemper, S. Kosmeier, P. Langehanenberg, G. von Bally, I. Bredebusch, W. Domschke, and J. Schnekenburger, “Integral refractive index determination of living suspension cells by multifocus digital holographic phase contrast microscopy,” J. Biomed. Opt. 12, 054009 (2007).
[Crossref]

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schafer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11, 034005 (2006).
[Crossref]

Dubois, F.

Faridian, A.

Feld, M. S.

Ferraro, P.

Finizio, A.

Gao, P.

P. Gao, B. Prunsche, L. Zhou, K. Nienhaus, and G. U. Nienhaus, “Background suppression in fluorescence nanoscopy with stimulated emission double depletion,” Nat. Photonics 11, 163–169 (2017).
[Crossref]

J. J. Zheng, P. Gao, and X. P. Shao, “Opposite-view digital holographic microscopy with autofocusing capability,” Sci. Rep. 7, 425 (2017).
[Crossref]

P. Gao and G. U. Nienhaus, “Precise background subtraction in stimulated emission double depletion nanoscopy,” Opt. Lett. 42, 831–834 (2017).
[Crossref]

J. J. Zheng, G. Pedrini, P. Gao, B. L. Yao, and W. Osten, “Autofocusing and resolution enhancement in digital holographic microscopy by using speckle-illumination,” J. Opt. 17, 085301 (2015).
[Crossref]

W. Osten, A. Faridian, P. Gao, K. Körner, D. Naik, G. Pedrini, A. K. Singh, M. Takeda, and M. Wilke, “Recent advances in digital holography [Invited],” Appl. Opt. 53, G44–G63 (2014).
[Crossref]

P. Gao, G. Pedrini, and W. Osten, “Structured illumination for resolution enhancement and autofocusing in digital holographic microscopy,” Opt. Lett. 38, 1328–1330 (2013).
[Crossref]

P. Gao, B. L. Yao, R. Rupp, J. W. Min, R. L. Guo, B. H. Ma, J. J. Zheng, M. Lei, S. H. Yan, D. Dan, and T. Ye, “Autofocusing based on wavelength dependence of diffraction in two-wavelength digital holographic microscopy,” Opt. Lett. 37, 1172–1174 (2012).
[Crossref]

P. Gao, B. L. Yao, J. W. Min, R. L. Guo, B. H. Ma, J. J. Zheng, M. Lei, S. H. Yan, D. Dan, and T. Ye, “Autofocusing of digital holographic microscopy based on off-axis illuminations,” Opt. Lett. 37, 3630–3632 (2012).
[Crossref]

J. J. Zheng, Y. L. Yang, M. Lei, B. L. Yao, P. Gao, and T. Ye, “Fluorescence volume imaging with an axicon: simulation study based on scalar diffraction method,” Appl. Opt. 51, 7236–7245 (2012).
[Crossref]

P. Gao, B. Yao, I. Harder, J. Min, R. Guo, J. Zheng, and T. Ye, “Parallel two-step phase-shifting digital holograph microscopy based on a grating pair,” J. Opt. Soc. Am. A 28, 434–440 (2011).
[Crossref]

García, J.

V. Mico, Z. Zalevsky, and J. García, “Common-path phase-shifting digital holographic microscopy: a way to quantitative phase imaging and superresolution,” Opt. Commun. 281, 4273–4281 (2008).
[Crossref]

Gillespie, J.

J. Gillespie and R. A. King, “The use of self-entropy as a focus measure in digital holography,” Pattern Recogn. Lett. 9, 19–25 (1989).
[Crossref]

Guo, R.

Guo, R. L.

Gustafsson, M. G. L.

M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. USA 102, 13081–13086 (2005).
[Crossref]

Hanson, S. G.

P. F. Almoro and S. G. Hanson, “Object wave reconstruction by speckle illumination and phase retrieval,” J. Eur. Opt. Soc. 4, 09002 (2009).
[Crossref]

Harder, I.

Harris, P. J.

C. L. Curl, C. J. Bellair, T. Harris, B. E. Allman, P. J. Harris, A. G. Stewart, A. Roberts, K. A. Nugent, and L. M. D. Delbridge, “Refractive index measurement in viable cells using quantitative phase-amplitude microscopy and confocal microscopy,” Cytometry A 65A, 88–92 (2005).
[Crossref]

Harris, T.

C. L. Curl, C. J. Bellair, T. Harris, B. E. Allman, P. J. Harris, A. G. Stewart, A. Roberts, K. A. Nugent, and L. M. D. Delbridge, “Refractive index measurement in viable cells using quantitative phase-amplitude microscopy and confocal microscopy,” Cytometry A 65A, 88–92 (2005).
[Crossref]

Hu, Q.

Iwai, H.

Javidi, B.

Jenks, K.

G. Kim, N. Nagarajan, E. Pastuzyn, K. Jenks, M. Capecchi, J. Shepherd, and R. Menon, “Deep-brain imaging via epi-fluorescence Computational Cannula Microscopy,” Sci. Rep. 7, 44791 (2017).
[Crossref]

Jourdain, P.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7, 418 (2013).
[Crossref]

Karande, P.

V. Lee, G. Singh, J. P. Trasatti, C. Bjornsson, X. W. Xu, T. N. Tran, S. S. Yoo, G. H. Dai, and P. Karande, “Design and fabrication of human skin by three-dimensional bioprinting,” Tissue Eng. C 20, 473–484 (2014).
[Crossref]

Kemper, B.

B. Kemper and G. von Bally, “Digital holographic microscopy for live cell applications and technical inspection,” Appl. Opt. 47, A52–A61 (2008).
[Crossref]

P. Langehanenberg, B. Kemper, D. Dirksen, and G. von Bally, “Autofocusing in digital holographic phase contrast microscopy on pure phase objects for live cell imaging,” Appl. Opt. 47, D176–D182 (2008).
[Crossref]

B. Kemper, S. Kosmeier, P. Langehanenberg, G. von Bally, I. Bredebusch, W. Domschke, and J. Schnekenburger, “Integral refractive index determination of living suspension cells by multifocus digital holographic phase contrast microscopy,” J. Biomed. Opt. 12, 054009 (2007).
[Crossref]

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schafer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11, 034005 (2006).
[Crossref]

Kim, G.

G. Kim, N. Nagarajan, E. Pastuzyn, K. Jenks, M. Capecchi, J. Shepherd, and R. Menon, “Deep-brain imaging via epi-fluorescence Computational Cannula Microscopy,” Sci. Rep. 7, 44791 (2017).
[Crossref]

Kim, M. K.

King, R. A.

J. Gillespie and R. A. King, “The use of self-entropy as a focus measure in digital holography,” Pattern Recogn. Lett. 9, 19–25 (1989).
[Crossref]

Körner, K.

Kosmeier, S.

B. Kemper, S. Kosmeier, P. Langehanenberg, G. von Bally, I. Bredebusch, W. Domschke, and J. Schnekenburger, “Integral refractive index determination of living suspension cells by multifocus digital holographic phase contrast microscopy,” J. Biomed. Opt. 12, 054009 (2007).
[Crossref]

Kozlov, M. M.

M. M. Kozlov and L. V. Chernomordik, “Membrane tension and membrane fusion,” Curr. Opin. Struct. Biol. 33, 61–67 (2015).
[Crossref]

Kuehn, J.

Kuznetsova, Y.

Langehanenberg, P.

P. Langehanenberg, B. Kemper, D. Dirksen, and G. von Bally, “Autofocusing in digital holographic phase contrast microscopy on pure phase objects for live cell imaging,” Appl. Opt. 47, D176–D182 (2008).
[Crossref]

B. Kemper, S. Kosmeier, P. Langehanenberg, G. von Bally, I. Bredebusch, W. Domschke, and J. Schnekenburger, “Integral refractive index determination of living suspension cells by multifocus digital holographic phase contrast microscopy,” J. Biomed. Opt. 12, 054009 (2007).
[Crossref]

Lee, V.

V. Lee, G. Singh, J. P. Trasatti, C. Bjornsson, X. W. Xu, T. N. Tran, S. S. Yoo, G. H. Dai, and P. Karande, “Design and fabrication of human skin by three-dimensional bioprinting,” Tissue Eng. C 20, 473–484 (2014).
[Crossref]

Lei, M.

Li, W.

Loomis, N. C.

Ma, B. H.

Ma, J.

Magistretti, P.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7, 418 (2013).
[Crossref]

Magistretti, P. J.

Marian, A.

Marquet, P.

Memmolo, P.

Menon, R.

G. Kim, N. Nagarajan, E. Pastuzyn, K. Jenks, M. Capecchi, J. Shepherd, and R. Menon, “Deep-brain imaging via epi-fluorescence Computational Cannula Microscopy,” Sci. Rep. 7, 44791 (2017).
[Crossref]

Mico, V.

V. Mico, Z. Zalevsky, and J. García, “Common-path phase-shifting digital holographic microscopy: a way to quantitative phase imaging and superresolution,” Opt. Commun. 281, 4273–4281 (2008).
[Crossref]

Min, J.

Min, J. W.

Montfort, F.

Nagarajan, N.

G. Kim, N. Nagarajan, E. Pastuzyn, K. Jenks, M. Capecchi, J. Shepherd, and R. Menon, “Deep-brain imaging via epi-fluorescence Computational Cannula Microscopy,” Sci. Rep. 7, 44791 (2017).
[Crossref]

Naik, D.

Nienhaus, G. U.

P. Gao and G. U. Nienhaus, “Precise background subtraction in stimulated emission double depletion nanoscopy,” Opt. Lett. 42, 831–834 (2017).
[Crossref]

P. Gao, B. Prunsche, L. Zhou, K. Nienhaus, and G. U. Nienhaus, “Background suppression in fluorescence nanoscopy with stimulated emission double depletion,” Nat. Photonics 11, 163–169 (2017).
[Crossref]

Nienhaus, K.

P. Gao, B. Prunsche, L. Zhou, K. Nienhaus, and G. U. Nienhaus, “Background suppression in fluorescence nanoscopy with stimulated emission double depletion,” Nat. Photonics 11, 163–169 (2017).
[Crossref]

Nugent, K. A.

C. L. Curl, C. J. Bellair, T. Harris, B. E. Allman, P. J. Harris, A. G. Stewart, A. Roberts, K. A. Nugent, and L. M. D. Delbridge, “Refractive index measurement in viable cells using quantitative phase-amplitude microscopy and confocal microscopy,” Cytometry A 65A, 88–92 (2005).
[Crossref]

Osten, W.

Park, H. S.

Park, Y.

Pastuzyn, E.

G. Kim, N. Nagarajan, E. Pastuzyn, K. Jenks, M. Capecchi, J. Shepherd, and R. Menon, “Deep-brain imaging via epi-fluorescence Computational Cannula Microscopy,” Sci. Rep. 7, 44791 (2017).
[Crossref]

Paturzo, M.

Pavillon, N.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7, 418 (2013).
[Crossref]

Pedrini, G.

Piccinini, F.

M. Zanoni, F. Piccinini, C. Arienti, A. Zamagni, S. Santi, R. Polico, A. Bevilacqua, and A. Tesei, “3D tumor spheroid models for in vitro therapeutic screening: a systematic approach to enhance the biological relevance of data obtained,” Sci. Rep. 6, 19103 (2016).
[Crossref]

Polico, R.

M. Zanoni, F. Piccinini, C. Arienti, A. Zamagni, S. Santi, R. Polico, A. Bevilacqua, and A. Tesei, “3D tumor spheroid models for in vitro therapeutic screening: a systematic approach to enhance the biological relevance of data obtained,” Sci. Rep. 6, 19103 (2016).
[Crossref]

Popescu, G.

Prunsche, B.

P. Gao, B. Prunsche, L. Zhou, K. Nienhaus, and G. U. Nienhaus, “Background suppression in fluorescence nanoscopy with stimulated emission double depletion,” Nat. Photonics 11, 163–169 (2017).
[Crossref]

Rappaz, B.

Rinehart, M. T.

Roberts, A.

C. L. Curl, C. J. Bellair, T. Harris, B. E. Allman, P. J. Harris, A. G. Stewart, A. Roberts, K. A. Nugent, and L. M. D. Delbridge, “Refractive index measurement in viable cells using quantitative phase-amplitude microscopy and confocal microscopy,” Cytometry A 65A, 88–92 (2005).
[Crossref]

Rosen, J.

Ruoslahti, E.

E. Ruoslahti, “Fibronectin in cell adhesion and invasion,” Cancer Metastasis Rev. 3, 43–51 (1984).
[Crossref]

Rupp, R.

Santi, S.

M. Zanoni, F. Piccinini, C. Arienti, A. Zamagni, S. Santi, R. Polico, A. Bevilacqua, and A. Tesei, “3D tumor spheroid models for in vitro therapeutic screening: a systematic approach to enhance the biological relevance of data obtained,” Sci. Rep. 6, 19103 (2016).
[Crossref]

Schafer, M.

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schafer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11, 034005 (2006).
[Crossref]

Schnekenburger, J.

B. Kemper, S. Kosmeier, P. Langehanenberg, G. von Bally, I. Bredebusch, W. Domschke, and J. Schnekenburger, “Integral refractive index determination of living suspension cells by multifocus digital holographic phase contrast microscopy,” J. Biomed. Opt. 12, 054009 (2007).
[Crossref]

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schafer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11, 034005 (2006).
[Crossref]

Schockaert, C.

Schwarz, C. J.

Shao, X. P.

J. J. Zheng, P. Gao, and X. P. Shao, “Opposite-view digital holographic microscopy with autofocusing capability,” Sci. Rep. 7, 425 (2017).
[Crossref]

Shepherd, J.

G. Kim, N. Nagarajan, E. Pastuzyn, K. Jenks, M. Capecchi, J. Shepherd, and R. Menon, “Deep-brain imaging via epi-fluorescence Computational Cannula Microscopy,” Sci. Rep. 7, 44791 (2017).
[Crossref]

Singh, A. K.

Singh, G.

V. Lee, G. Singh, J. P. Trasatti, C. Bjornsson, X. W. Xu, T. N. Tran, S. S. Yoo, G. H. Dai, and P. Karande, “Design and fabrication of human skin by three-dimensional bioprinting,” Tissue Eng. C 20, 473–484 (2014).
[Crossref]

Situ, G.

Stewart, A. G.

C. L. Curl, C. J. Bellair, T. Harris, B. E. Allman, P. J. Harris, A. G. Stewart, A. Roberts, K. A. Nugent, and L. M. D. Delbridge, “Refractive index measurement in viable cells using quantitative phase-amplitude microscopy and confocal microscopy,” Cytometry A 65A, 88–92 (2005).
[Crossref]

Takeda, M.

Tesei, A.

M. Zanoni, F. Piccinini, C. Arienti, A. Zamagni, S. Santi, R. Polico, A. Bevilacqua, and A. Tesei, “3D tumor spheroid models for in vitro therapeutic screening: a systematic approach to enhance the biological relevance of data obtained,” Sci. Rep. 6, 19103 (2016).
[Crossref]

Toy, F.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7, 418 (2013).
[Crossref]

Tran, T. N.

V. Lee, G. Singh, J. P. Trasatti, C. Bjornsson, X. W. Xu, T. N. Tran, S. S. Yoo, G. H. Dai, and P. Karande, “Design and fabrication of human skin by three-dimensional bioprinting,” Tissue Eng. C 20, 473–484 (2014).
[Crossref]

Trasatti, J. P.

V. Lee, G. Singh, J. P. Trasatti, C. Bjornsson, X. W. Xu, T. N. Tran, S. S. Yoo, G. H. Dai, and P. Karande, “Design and fabrication of human skin by three-dimensional bioprinting,” Tissue Eng. C 20, 473–484 (2014).
[Crossref]

Vaughan, J. C.

von Bally, G.

P. Langehanenberg, B. Kemper, D. Dirksen, and G. von Bally, “Autofocusing in digital holographic phase contrast microscopy on pure phase objects for live cell imaging,” Appl. Opt. 47, D176–D182 (2008).
[Crossref]

B. Kemper and G. von Bally, “Digital holographic microscopy for live cell applications and technical inspection,” Appl. Opt. 47, A52–A61 (2008).
[Crossref]

B. Kemper, S. Kosmeier, P. Langehanenberg, G. von Bally, I. Bredebusch, W. Domschke, and J. Schnekenburger, “Integral refractive index determination of living suspension cells by multifocus digital holographic phase contrast microscopy,” J. Biomed. Opt. 12, 054009 (2007).
[Crossref]

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schafer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11, 034005 (2006).
[Crossref]

Wax, A.

Wilke, M.

Xu, X. W.

V. Lee, G. Singh, J. P. Trasatti, C. Bjornsson, X. W. Xu, T. N. Tran, S. S. Yoo, G. H. Dai, and P. Karande, “Design and fabrication of human skin by three-dimensional bioprinting,” Tissue Eng. C 20, 473–484 (2014).
[Crossref]

Yan, S. H.

Yang, Y. L.

Yao, B.

Yao, B. L.

Yaqoob, Z.

Ye, T.

Yoo, S. S.

V. Lee, G. Singh, J. P. Trasatti, C. Bjornsson, X. W. Xu, T. N. Tran, S. S. Yoo, G. H. Dai, and P. Karande, “Design and fabrication of human skin by three-dimensional bioprinting,” Tissue Eng. C 20, 473–484 (2014).
[Crossref]

Yourassowsky, C.

Yuan, C. J.

Zalevsky, Z.

V. Mico, Z. Zalevsky, and J. García, “Common-path phase-shifting digital holographic microscopy: a way to quantitative phase imaging and superresolution,” Opt. Commun. 281, 4273–4281 (2008).
[Crossref]

Zamagni, A.

M. Zanoni, F. Piccinini, C. Arienti, A. Zamagni, S. Santi, R. Polico, A. Bevilacqua, and A. Tesei, “3D tumor spheroid models for in vitro therapeutic screening: a systematic approach to enhance the biological relevance of data obtained,” Sci. Rep. 6, 19103 (2016).
[Crossref]

Zanoni, M.

M. Zanoni, F. Piccinini, C. Arienti, A. Zamagni, S. Santi, R. Polico, A. Bevilacqua, and A. Tesei, “3D tumor spheroid models for in vitro therapeutic screening: a systematic approach to enhance the biological relevance of data obtained,” Sci. Rep. 6, 19103 (2016).
[Crossref]

Zheng, J.

Zheng, J. J.

Zhou, L.

P. Gao, B. Prunsche, L. Zhou, K. Nienhaus, and G. U. Nienhaus, “Background suppression in fluorescence nanoscopy with stimulated emission double depletion,” Nat. Photonics 11, 163–169 (2017).
[Crossref]

Appl. Opt. (5)

Biomed. Opt. Express (2)

Cancer Metastasis Rev. (1)

E. Ruoslahti, “Fibronectin in cell adhesion and invasion,” Cancer Metastasis Rev. 3, 43–51 (1984).
[Crossref]

Curr. Opin. Struct. Biol. (1)

M. M. Kozlov and L. V. Chernomordik, “Membrane tension and membrane fusion,” Curr. Opin. Struct. Biol. 33, 61–67 (2015).
[Crossref]

Cytometry A (1)

C. L. Curl, C. J. Bellair, T. Harris, B. E. Allman, P. J. Harris, A. G. Stewart, A. Roberts, K. A. Nugent, and L. M. D. Delbridge, “Refractive index measurement in viable cells using quantitative phase-amplitude microscopy and confocal microscopy,” Cytometry A 65A, 88–92 (2005).
[Crossref]

J. Biomed. Opt. (3)

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schafer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11, 034005 (2006).
[Crossref]

B. Kemper, S. Kosmeier, P. Langehanenberg, G. von Bally, I. Bredebusch, W. Domschke, and J. Schnekenburger, “Integral refractive index determination of living suspension cells by multifocus digital holographic phase contrast microscopy,” J. Biomed. Opt. 12, 054009 (2007).
[Crossref]

A. Faridian, G. Pedrini, and W. Osten, “High-contrast multilayer imaging of biological organisms through dark-field digital refocusing,” J. Biomed. Opt. 18, 086009 (2013).
[Crossref]

J. Eur. Opt. Soc. (1)

P. F. Almoro and S. G. Hanson, “Object wave reconstruction by speckle illumination and phase retrieval,” J. Eur. Opt. Soc. 4, 09002 (2009).
[Crossref]

J. Opt. (1)

J. J. Zheng, G. Pedrini, P. Gao, B. L. Yao, and W. Osten, “Autofocusing and resolution enhancement in digital holographic microscopy by using speckle-illumination,” J. Opt. 17, 085301 (2015).
[Crossref]

J. Opt. Soc. Am. A (2)

Nat. Photonics (2)

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7, 418 (2013).
[Crossref]

P. Gao, B. Prunsche, L. Zhou, K. Nienhaus, and G. U. Nienhaus, “Background suppression in fluorescence nanoscopy with stimulated emission double depletion,” Nat. Photonics 11, 163–169 (2017).
[Crossref]

Opt. Commun. (1)

V. Mico, Z. Zalevsky, and J. García, “Common-path phase-shifting digital holographic microscopy: a way to quantitative phase imaging and superresolution,” Opt. Commun. 281, 4273–4281 (2008).
[Crossref]

Opt. Express (2)

Opt. Lett. (12)

P. Gao, G. Pedrini, and W. Osten, “Structured illumination for resolution enhancement and autofocusing in digital holographic microscopy,” Opt. Lett. 38, 1328–1330 (2013).
[Crossref]

P. Memmolo, C. Distante, M. Paturzo, A. Finizio, P. Ferraro, and B. Javidi, “Automatic focusing in digital holography and its application to stretched holograms,” Opt. Lett. 36, 1945–1947 (2011).
[Crossref]

P. Gao, B. L. Yao, R. Rupp, J. W. Min, R. L. Guo, B. H. Ma, J. J. Zheng, M. Lei, S. H. Yan, D. Dan, and T. Ye, “Autofocusing based on wavelength dependence of diffraction in two-wavelength digital holographic microscopy,” Opt. Lett. 37, 1172–1174 (2012).
[Crossref]

M. K. Kim, “Adaptive optics by incoherent digital holography,” Opt. Lett. 37, 2694–2696 (2012).
[Crossref]

P. Gao, B. L. Yao, J. W. Min, R. L. Guo, B. H. Ma, J. J. Zheng, M. Lei, S. H. Yan, D. Dan, and T. Ye, “Autofocusing of digital holographic microscopy based on off-axis illuminations,” Opt. Lett. 37, 3630–3632 (2012).
[Crossref]

P. F. Almoro, G. Pedrini, and W. Osten, “Aperture synthesis in phase retrieval using a volume-speckle field,” Opt. Lett. 32, 733–735 (2007).
[Crossref]

J. Rosen and G. Brooker, “Digital spatially incoherent Fresnel holography,” Opt. Lett. 32, 912–914 (2007).
[Crossref]

B. Rappaz, F. Charriere, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Simultaneous cell morphometry and refractive index measurement with dual-wavelength digital holographic microscopy and dye-enhanced dispersion of perfusion medium,” Opt. Lett. 33, 744–746 (2008).
[Crossref]

C. J. Schwarz, Y. Kuznetsova, and S. R. J. Brueck, “Imaging interferometric microscopy,” Opt. Lett. 28, 1424–1426 (2003).
[Crossref]

G. Popescu, L. P. Deflores, J. C. Vaughan, K. Badizadegan, H. Iwai, R. R. Dasari, and M. S. Feld, “Fourier phase microscopy for investigation of biological structures and dynamics,” Opt. Lett. 29, 2503–2505 (2004).
[Crossref]

F. Charrière, A. Marian, F. Montfort, J. Kuehn, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, “Cell refractive index tomography by digital holographic microscopy,” Opt. Lett. 31, 178–180 (2006).
[Crossref]

P. Gao and G. U. Nienhaus, “Precise background subtraction in stimulated emission double depletion nanoscopy,” Opt. Lett. 42, 831–834 (2017).
[Crossref]

Pattern Recogn. Lett. (1)

J. Gillespie and R. A. King, “The use of self-entropy as a focus measure in digital holography,” Pattern Recogn. Lett. 9, 19–25 (1989).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. USA 102, 13081–13086 (2005).
[Crossref]

Sci. Rep. (3)

G. Kim, N. Nagarajan, E. Pastuzyn, K. Jenks, M. Capecchi, J. Shepherd, and R. Menon, “Deep-brain imaging via epi-fluorescence Computational Cannula Microscopy,” Sci. Rep. 7, 44791 (2017).
[Crossref]

J. J. Zheng, P. Gao, and X. P. Shao, “Opposite-view digital holographic microscopy with autofocusing capability,” Sci. Rep. 7, 425 (2017).
[Crossref]

M. Zanoni, F. Piccinini, C. Arienti, A. Zamagni, S. Santi, R. Polico, A. Bevilacqua, and A. Tesei, “3D tumor spheroid models for in vitro therapeutic screening: a systematic approach to enhance the biological relevance of data obtained,” Sci. Rep. 6, 19103 (2016).
[Crossref]

Tissue Eng. C (1)

V. Lee, G. Singh, J. P. Trasatti, C. Bjornsson, X. W. Xu, T. N. Tran, S. S. Yoo, G. H. Dai, and P. Karande, “Design and fabrication of human skin by three-dimensional bioprinting,” Tissue Eng. C 20, 473–484 (2014).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Experimental OV-DHM setup. BS, beamsplitter; CCD, charge-coupled device; L 1 and L 2 , tube lenses; MO 1 and MO 2 , microscope objectives; PBS, polarization-maintaining beamsplitter; M 1 and M 2 , mirrors; O 1 and O 2 , object waves linearly polarized along the horizontal (0°) and vertical (90°) directions, respectively; P, polarizer; R, reference wave linearly polarized at 45°.
Fig. 2.
Fig. 2. Exemplary hologram and spectrum of OV-DHM. (a) Overview and close-up of OV-DHM hologram; (b) spectrum of the hologram in (a). κ x and κ y are the carrier-frequencies of the off-axis hologram in the x and y directions, respectively. The dashed rectangle in (b) indicates the spectral region selected for hologram reconstruction.
Fig. 3.
Fig. 3. OV-DHM imaging on HeLa cells suspended in an agarose-water gel (3%, weight/weight). Reconstructed amplitude (a) and phase (b) images of the opposite-view object waves O r 1 (left) and O r 2 (right) reconstructed with Δ z 1 = 210    μm ( Δ z 2 = 210    μm ). (c) Phase images of O r 1 (left) and O r 2 (right) reconstructed with Δ z 1 = 45    μm ( Δ z 2 = 45    μm ). Scale bar in (c), 40 μm. (d) Comparison of out-of-focus background in O r 1 , O r 2 , and ( O r 1 + O r 2 ) / 2 for the same region [indicated by the red rectangle in (b)]. Standard deviations of the three images, O r 1 , O r 2 , and ( O r 1 + O r 2 ) / 2 in (d) are 0.49, 0.4, and 0.21, respectively. (e) and (f) Focus criterion curves of selected (e) region 1 [white rectangle in (b)] and (f) region 2 [green rectangle in (c)]. In the figure, the abbreviations “Amp.” and “Pha.” refer to amplitude and phase; “Obj.1,” “Obj.2,” and “Aver.” indicate the two opposite-view object waves along the clockwise and anti-clockwise directions and the average of the two (in phase).
Fig. 4.
Fig. 4. 3D elliptical model of suspended HeLa cells. (a) Perpendicular views of the HeLa cells. (b) 3D view of cells in volume rendering based on a maximum intensity projection. The inset in (b) shows schematically the 3D elliptical model of a suspended cell. (c) Intensities along the blue and red lines in panel (a). (d) Ratios c / r 0 and a / b of 50 suspended cells. The range 25–75% of all data points is included in the boxes; the lines in the boxes show the median. The means are indicated by small squares; vertical lines represent the maximum spread of the data.
Fig. 5.
Fig. 5. Refractive index measurement on suspended HeLa cells. (a) Wrapped phase image of HeLa cells reconstructed from O r 1 in OV-DHM. (b) Phase distributions of O r 1 (black), O r 2 (red), and ( O r 1 + O r 2 ) / 2 (green) along the line across the cell center, indicated by the red dashed line in (a). The violet solid curve is the fit of the green curve using Eq. (4).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δ φ = 2 π λ Δ n d ,
O r 1 = FT 1 { FT { I 1 R D } · W filter · exp [ i k Δ d 1 ( λ ) 2 ( λ ) 2 ] } , O r 2 = FT 1 { FT { I 2 R D } · W filter · exp [ i k Δ d 1 ( λ ) 2 ( λ ) 2 ] } .
Cri ( Δ d ) = [ 1 X Y 1 X 1 Y ( I Diff I ¯ Diff ) 2 ] 1 / 2 ,
Δ φ ( x , y ) = 2 π λ Δ n [ 2 S r 0 2 x 2 y 2 ] .

Metrics