Abstract

Two multi-pass optical schemes of a disk laser amplifier have been proposed. Different variants of both the schemes with the smallest amount of optical elements and a lens in the active element taken into account have been calculated. For 64 passes of radiation through the active element, the average power of 50  W with 10% optical-to-optical efficiency in a pulse-periodic regime with a repetition rate of 10 kHz and a pulse duration of 2 ns was obtained at the amplifier output. The small signal gain amounted to 200.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Thin-disk laser pump schemes for large number of passes and moderate pump source quality

Karsten Schuhmann, Theodor W. Hänsch, Klaus Kirch, Andreas Knecht, Franz Kottmann, Francois Nez, Randolf Pohl, David Taqqu, and Aldo Antognini
Appl. Opt. 54(32) 9400-9408 (2015)

A multi-pass pumping scheme for thin disk lasers with good anti-disturbance ability

Yan Huang, Xiao Zhu, Guangzhi Zhu, Jianli Shang, Hailin Wang, Lijun Qi, Changhong Zhu, and Fei Guo
Opt. Express 23(4) 4605-4613 (2015)

High-energy, ceramic-disk Yb:LuAG laser amplifier

M. Siebold, M. Loeser, F. Roeser, M. Seltmann, G. Harzendorf, I. Tsybin, S. Linke, S. Banerjee, P. D. Mason, P. J. Phillips, K. Ertel, J. C. Collier, and U. Schramm
Opt. Express 20(20) 21992-22000 (2012)

References

  • View by:
  • |
  • |
  • |

  1. A. V. Mezenov, L. N. Soms, and A. I. Stepanov, Thermooptics of Solid-state Lasers (Mashinebuilding, 1986).
  2. M. Bass, L. Weichman, S. Vigil, and B. K. Brickeen, “The temperature dependence of Nd3+ doped solid-state lasers,” IEEE J. Quantum Electron. 39, 741–748 (2003).
    [Crossref]
  3. J. Dong, M. Bass, Y. Mao, P. Deng, and F. Gan, “Dependence of the Yb3+ emission cross section and lifetime on temperature and concentration in yttrium aluminum garnet,” J. Opt. Soc. Am. B 20, 1975–1979 (2003).
    [Crossref]
  4. A. Rapaport, Z. Zhao, G. Xiao, A. Howard, and M. Bass, “Temperature dependence of the 1.06-mm stimulated emission cross section of neodymium in YAG and in GSGG,” Appl. Opt. 41, 7052–7057 (2002).
    [Crossref]
  5. A. Giesen, H. Hugel, A. Voss, K. Witting, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).
    [Crossref]
  6. S. S. Schad, V. Kuhn, T. Gottwald, V. Negoita, A. Killi, and K. Wallmeroth, “Near fundamental mode high-power thin-disk laser,” Proc. SPIE 8959, 89590U (2014).
    [Crossref]
  7. C. Baumgarten, M. Pedicone, H. Bravo, H. Wang, L. Yin, C. S. Menoni, J. J. Rocca, and B. A. Reagan, “1  J, 0.5  kHz repetition rate picosecond laser,” Opt. Lett. 41, 3339–3342 (2016).
    [Crossref]
  8. L. E. Zapata, H. Lin, A.-L. Calendron, H. Cankaya, M. Hemmer, F. Reichert, W. R. Huang, E. Granados, K.-H. Hong, and F. X. Kärtner, “Cryogenic Yb:YAG composite-thin-disk for high energy and average power amplifiers,” Opt. Lett. 40, 2610–2613 (2015).
    [Crossref]
  9. H. Plaessmann, W. M. Grossman, and T. E. Olson, “Multi-pass light amplifier,” U.S. patent5546222 (13August1996).
  10. J.-P. Negel, A. Loescher, A. Voss, D. Bauer, D. Sutter, A. Killi, M. A. Ahmed, and T. Graf, “Ultrafast thin-disk multipass laser amplifier delivering 1.4  kW (4.7  mJ, 1030  nm) average power converted to 820  W at 515  nm and 234  W at 343  nm,” Opt. Express 23, 21064–21077 (2015).
    [Crossref]
  11. A. Giesen, M. Larionov, and K. Schuhmann, “Laser amplifier system,” WO patent2012150257 A1 (8November2012).
  12. J. Neuhaus, J. Kleinbauer, A. Killi, S. Weiler, D. Sutter, and T. Dekorsy, “Passively mode-locked Yb:YAG thin-disk laser with pulse energies exceeding 13  μJ by use of an active multipass geometry,” Opt. Lett. 33, 726–728 (2008).
    [Crossref]
  13. J. Körner, J. Hein, H. Liebetrau, M. Kahle, F. Seifert, D. Kloepfel, and M. Kaluza, “Cryogenically cooled laser amplifiers,” in 7th HEC-DPSSL Workshop, Tahoe City, California, USA, 2012.
  14. E. A. Perevezentsev, I. B. Mukhin, I. I. Kuznetsov, O. L. Vadimova, and O. V. Palashov, “Nanosecond cryogenic Yb:YAG disk laser,” Quantum Electron. 44, 448–451 (2014).
    [Crossref]
  15. J. Körner, H. Liebetrau, R. Seifert, D. Klöpfel, M. Kahle, M. Loeser, M. Siebold, U. Schramm, and M. C. Kaluza, “Efficient burst mode amplifier for ultra-short pulses based on cryogenically cooled Yb3+:CaF2,” Opt. Express 21, 29006–29012 (2013).
    [Crossref]
  16. G. Andriukaitis, E. Kaksis, G. Polonyi, J. Fülöp, A. Baltuska, and A. Pugzlys, “220-fs 110-mJ Yb:CaF2 cryogenic multipass amplifier,” in CLEO: Science and Innovations, San Jose, California USA, 2015.
  17. E. I. Gacheva, V. V. Zelenogorskii, A. V. Andrianov, M. Krasilnikov, M. A. Martyanov, S. Y. Mironov, A. K. Potemkin, E. M. Syresin, F. Stephan, and E. A. Khazanov, “Disk Yb:KGW amplifier of profiled pulses of laser driver for electron photoinjector,” Opt. Express 23, 9627–9639 (2015).
    [Crossref]
  18. P. Mason, A. Lintern, S. Tomlinson, K. Ertel, S. Banerjee, J. Phillips, J. Greenhalgh, and J. Collier, “Design of a multi-pass extraction architecture for the DiPOLE prototype amplifier,” in 7th HEC-DPSSL Workshop, Lake Tahoe, California, USA, 12–14th September2012.
  19. I. I. Kuznetsov, I. B. Mukhin, E. A. Perevezentsev, M. R. Volkov, O. L. Vadimova, and O. V. Palashov, “High average and high peak power MOPA laser based on Yb:YAG elements of different geometries,” in Advanced Solid State Lasers Conference and Exhibition (ASSL), Boston, Massachusetts, USA, 2016.
  20. I. I. Kuznetsov, I. B. Mukhin, O. L. Vadimova, O. V. Palashov, and K.-I. Ueda, “Thin-tapered-rod Yb:YAG single-crystal laser amplifier,” in ASSL-2015, Berlin, Germany, 2015.
  21. K. Creath, “Phase-measurement interferometry techniques,” Prog. Opt. 26, 349–393 (1989).
    [Crossref]

2016 (1)

2015 (3)

2014 (2)

E. A. Perevezentsev, I. B. Mukhin, I. I. Kuznetsov, O. L. Vadimova, and O. V. Palashov, “Nanosecond cryogenic Yb:YAG disk laser,” Quantum Electron. 44, 448–451 (2014).
[Crossref]

S. S. Schad, V. Kuhn, T. Gottwald, V. Negoita, A. Killi, and K. Wallmeroth, “Near fundamental mode high-power thin-disk laser,” Proc. SPIE 8959, 89590U (2014).
[Crossref]

2013 (1)

2008 (1)

2003 (2)

M. Bass, L. Weichman, S. Vigil, and B. K. Brickeen, “The temperature dependence of Nd3+ doped solid-state lasers,” IEEE J. Quantum Electron. 39, 741–748 (2003).
[Crossref]

J. Dong, M. Bass, Y. Mao, P. Deng, and F. Gan, “Dependence of the Yb3+ emission cross section and lifetime on temperature and concentration in yttrium aluminum garnet,” J. Opt. Soc. Am. B 20, 1975–1979 (2003).
[Crossref]

2002 (1)

1994 (1)

A. Giesen, H. Hugel, A. Voss, K. Witting, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).
[Crossref]

1989 (1)

K. Creath, “Phase-measurement interferometry techniques,” Prog. Opt. 26, 349–393 (1989).
[Crossref]

Ahmed, M. A.

Andrianov, A. V.

Andriukaitis, G.

G. Andriukaitis, E. Kaksis, G. Polonyi, J. Fülöp, A. Baltuska, and A. Pugzlys, “220-fs 110-mJ Yb:CaF2 cryogenic multipass amplifier,” in CLEO: Science and Innovations, San Jose, California USA, 2015.

Baltuska, A.

G. Andriukaitis, E. Kaksis, G. Polonyi, J. Fülöp, A. Baltuska, and A. Pugzlys, “220-fs 110-mJ Yb:CaF2 cryogenic multipass amplifier,” in CLEO: Science and Innovations, San Jose, California USA, 2015.

Banerjee, S.

P. Mason, A. Lintern, S. Tomlinson, K. Ertel, S. Banerjee, J. Phillips, J. Greenhalgh, and J. Collier, “Design of a multi-pass extraction architecture for the DiPOLE prototype amplifier,” in 7th HEC-DPSSL Workshop, Lake Tahoe, California, USA, 12–14th September2012.

Bass, M.

Bauer, D.

Baumgarten, C.

Brauch, U.

A. Giesen, H. Hugel, A. Voss, K. Witting, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).
[Crossref]

Bravo, H.

Brickeen, B. K.

M. Bass, L. Weichman, S. Vigil, and B. K. Brickeen, “The temperature dependence of Nd3+ doped solid-state lasers,” IEEE J. Quantum Electron. 39, 741–748 (2003).
[Crossref]

Calendron, A.-L.

Cankaya, H.

Collier, J.

P. Mason, A. Lintern, S. Tomlinson, K. Ertel, S. Banerjee, J. Phillips, J. Greenhalgh, and J. Collier, “Design of a multi-pass extraction architecture for the DiPOLE prototype amplifier,” in 7th HEC-DPSSL Workshop, Lake Tahoe, California, USA, 12–14th September2012.

Creath, K.

K. Creath, “Phase-measurement interferometry techniques,” Prog. Opt. 26, 349–393 (1989).
[Crossref]

Dekorsy, T.

Deng, P.

Dong, J.

Ertel, K.

P. Mason, A. Lintern, S. Tomlinson, K. Ertel, S. Banerjee, J. Phillips, J. Greenhalgh, and J. Collier, “Design of a multi-pass extraction architecture for the DiPOLE prototype amplifier,” in 7th HEC-DPSSL Workshop, Lake Tahoe, California, USA, 12–14th September2012.

Fülöp, J.

G. Andriukaitis, E. Kaksis, G. Polonyi, J. Fülöp, A. Baltuska, and A. Pugzlys, “220-fs 110-mJ Yb:CaF2 cryogenic multipass amplifier,” in CLEO: Science and Innovations, San Jose, California USA, 2015.

Gacheva, E. I.

Gan, F.

Giesen, A.

A. Giesen, H. Hugel, A. Voss, K. Witting, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).
[Crossref]

A. Giesen, M. Larionov, and K. Schuhmann, “Laser amplifier system,” WO patent2012150257 A1 (8November2012).

Gottwald, T.

S. S. Schad, V. Kuhn, T. Gottwald, V. Negoita, A. Killi, and K. Wallmeroth, “Near fundamental mode high-power thin-disk laser,” Proc. SPIE 8959, 89590U (2014).
[Crossref]

Graf, T.

Granados, E.

Greenhalgh, J.

P. Mason, A. Lintern, S. Tomlinson, K. Ertel, S. Banerjee, J. Phillips, J. Greenhalgh, and J. Collier, “Design of a multi-pass extraction architecture for the DiPOLE prototype amplifier,” in 7th HEC-DPSSL Workshop, Lake Tahoe, California, USA, 12–14th September2012.

Grossman, W. M.

H. Plaessmann, W. M. Grossman, and T. E. Olson, “Multi-pass light amplifier,” U.S. patent5546222 (13August1996).

Hein, J.

J. Körner, J. Hein, H. Liebetrau, M. Kahle, F. Seifert, D. Kloepfel, and M. Kaluza, “Cryogenically cooled laser amplifiers,” in 7th HEC-DPSSL Workshop, Tahoe City, California, USA, 2012.

Hemmer, M.

Hong, K.-H.

Howard, A.

Huang, W. R.

Hugel, H.

A. Giesen, H. Hugel, A. Voss, K. Witting, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).
[Crossref]

Kahle, M.

J. Körner, H. Liebetrau, R. Seifert, D. Klöpfel, M. Kahle, M. Loeser, M. Siebold, U. Schramm, and M. C. Kaluza, “Efficient burst mode amplifier for ultra-short pulses based on cryogenically cooled Yb3+:CaF2,” Opt. Express 21, 29006–29012 (2013).
[Crossref]

J. Körner, J. Hein, H. Liebetrau, M. Kahle, F. Seifert, D. Kloepfel, and M. Kaluza, “Cryogenically cooled laser amplifiers,” in 7th HEC-DPSSL Workshop, Tahoe City, California, USA, 2012.

Kaksis, E.

G. Andriukaitis, E. Kaksis, G. Polonyi, J. Fülöp, A. Baltuska, and A. Pugzlys, “220-fs 110-mJ Yb:CaF2 cryogenic multipass amplifier,” in CLEO: Science and Innovations, San Jose, California USA, 2015.

Kaluza, M.

J. Körner, J. Hein, H. Liebetrau, M. Kahle, F. Seifert, D. Kloepfel, and M. Kaluza, “Cryogenically cooled laser amplifiers,” in 7th HEC-DPSSL Workshop, Tahoe City, California, USA, 2012.

Kaluza, M. C.

Kärtner, F. X.

Khazanov, E. A.

Killi, A.

Kleinbauer, J.

Kloepfel, D.

J. Körner, J. Hein, H. Liebetrau, M. Kahle, F. Seifert, D. Kloepfel, and M. Kaluza, “Cryogenically cooled laser amplifiers,” in 7th HEC-DPSSL Workshop, Tahoe City, California, USA, 2012.

Klöpfel, D.

Körner, J.

J. Körner, H. Liebetrau, R. Seifert, D. Klöpfel, M. Kahle, M. Loeser, M. Siebold, U. Schramm, and M. C. Kaluza, “Efficient burst mode amplifier for ultra-short pulses based on cryogenically cooled Yb3+:CaF2,” Opt. Express 21, 29006–29012 (2013).
[Crossref]

J. Körner, J. Hein, H. Liebetrau, M. Kahle, F. Seifert, D. Kloepfel, and M. Kaluza, “Cryogenically cooled laser amplifiers,” in 7th HEC-DPSSL Workshop, Tahoe City, California, USA, 2012.

Krasilnikov, M.

Kuhn, V.

S. S. Schad, V. Kuhn, T. Gottwald, V. Negoita, A. Killi, and K. Wallmeroth, “Near fundamental mode high-power thin-disk laser,” Proc. SPIE 8959, 89590U (2014).
[Crossref]

Kuznetsov, I. I.

E. A. Perevezentsev, I. B. Mukhin, I. I. Kuznetsov, O. L. Vadimova, and O. V. Palashov, “Nanosecond cryogenic Yb:YAG disk laser,” Quantum Electron. 44, 448–451 (2014).
[Crossref]

I. I. Kuznetsov, I. B. Mukhin, E. A. Perevezentsev, M. R. Volkov, O. L. Vadimova, and O. V. Palashov, “High average and high peak power MOPA laser based on Yb:YAG elements of different geometries,” in Advanced Solid State Lasers Conference and Exhibition (ASSL), Boston, Massachusetts, USA, 2016.

I. I. Kuznetsov, I. B. Mukhin, O. L. Vadimova, O. V. Palashov, and K.-I. Ueda, “Thin-tapered-rod Yb:YAG single-crystal laser amplifier,” in ASSL-2015, Berlin, Germany, 2015.

Larionov, M.

A. Giesen, M. Larionov, and K. Schuhmann, “Laser amplifier system,” WO patent2012150257 A1 (8November2012).

Liebetrau, H.

J. Körner, H. Liebetrau, R. Seifert, D. Klöpfel, M. Kahle, M. Loeser, M. Siebold, U. Schramm, and M. C. Kaluza, “Efficient burst mode amplifier for ultra-short pulses based on cryogenically cooled Yb3+:CaF2,” Opt. Express 21, 29006–29012 (2013).
[Crossref]

J. Körner, J. Hein, H. Liebetrau, M. Kahle, F. Seifert, D. Kloepfel, and M. Kaluza, “Cryogenically cooled laser amplifiers,” in 7th HEC-DPSSL Workshop, Tahoe City, California, USA, 2012.

Lin, H.

Lintern, A.

P. Mason, A. Lintern, S. Tomlinson, K. Ertel, S. Banerjee, J. Phillips, J. Greenhalgh, and J. Collier, “Design of a multi-pass extraction architecture for the DiPOLE prototype amplifier,” in 7th HEC-DPSSL Workshop, Lake Tahoe, California, USA, 12–14th September2012.

Loescher, A.

Loeser, M.

Mao, Y.

Martyanov, M. A.

Mason, P.

P. Mason, A. Lintern, S. Tomlinson, K. Ertel, S. Banerjee, J. Phillips, J. Greenhalgh, and J. Collier, “Design of a multi-pass extraction architecture for the DiPOLE prototype amplifier,” in 7th HEC-DPSSL Workshop, Lake Tahoe, California, USA, 12–14th September2012.

Menoni, C. S.

Mezenov, A. V.

A. V. Mezenov, L. N. Soms, and A. I. Stepanov, Thermooptics of Solid-state Lasers (Mashinebuilding, 1986).

Mironov, S. Y.

Mukhin, I. B.

E. A. Perevezentsev, I. B. Mukhin, I. I. Kuznetsov, O. L. Vadimova, and O. V. Palashov, “Nanosecond cryogenic Yb:YAG disk laser,” Quantum Electron. 44, 448–451 (2014).
[Crossref]

I. I. Kuznetsov, I. B. Mukhin, E. A. Perevezentsev, M. R. Volkov, O. L. Vadimova, and O. V. Palashov, “High average and high peak power MOPA laser based on Yb:YAG elements of different geometries,” in Advanced Solid State Lasers Conference and Exhibition (ASSL), Boston, Massachusetts, USA, 2016.

I. I. Kuznetsov, I. B. Mukhin, O. L. Vadimova, O. V. Palashov, and K.-I. Ueda, “Thin-tapered-rod Yb:YAG single-crystal laser amplifier,” in ASSL-2015, Berlin, Germany, 2015.

Negel, J.-P.

Negoita, V.

S. S. Schad, V. Kuhn, T. Gottwald, V. Negoita, A. Killi, and K. Wallmeroth, “Near fundamental mode high-power thin-disk laser,” Proc. SPIE 8959, 89590U (2014).
[Crossref]

Neuhaus, J.

Olson, T. E.

H. Plaessmann, W. M. Grossman, and T. E. Olson, “Multi-pass light amplifier,” U.S. patent5546222 (13August1996).

Opower, H.

A. Giesen, H. Hugel, A. Voss, K. Witting, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).
[Crossref]

Palashov, O. V.

E. A. Perevezentsev, I. B. Mukhin, I. I. Kuznetsov, O. L. Vadimova, and O. V. Palashov, “Nanosecond cryogenic Yb:YAG disk laser,” Quantum Electron. 44, 448–451 (2014).
[Crossref]

I. I. Kuznetsov, I. B. Mukhin, O. L. Vadimova, O. V. Palashov, and K.-I. Ueda, “Thin-tapered-rod Yb:YAG single-crystal laser amplifier,” in ASSL-2015, Berlin, Germany, 2015.

I. I. Kuznetsov, I. B. Mukhin, E. A. Perevezentsev, M. R. Volkov, O. L. Vadimova, and O. V. Palashov, “High average and high peak power MOPA laser based on Yb:YAG elements of different geometries,” in Advanced Solid State Lasers Conference and Exhibition (ASSL), Boston, Massachusetts, USA, 2016.

Pedicone, M.

Perevezentsev, E. A.

E. A. Perevezentsev, I. B. Mukhin, I. I. Kuznetsov, O. L. Vadimova, and O. V. Palashov, “Nanosecond cryogenic Yb:YAG disk laser,” Quantum Electron. 44, 448–451 (2014).
[Crossref]

I. I. Kuznetsov, I. B. Mukhin, E. A. Perevezentsev, M. R. Volkov, O. L. Vadimova, and O. V. Palashov, “High average and high peak power MOPA laser based on Yb:YAG elements of different geometries,” in Advanced Solid State Lasers Conference and Exhibition (ASSL), Boston, Massachusetts, USA, 2016.

Phillips, J.

P. Mason, A. Lintern, S. Tomlinson, K. Ertel, S. Banerjee, J. Phillips, J. Greenhalgh, and J. Collier, “Design of a multi-pass extraction architecture for the DiPOLE prototype amplifier,” in 7th HEC-DPSSL Workshop, Lake Tahoe, California, USA, 12–14th September2012.

Plaessmann, H.

H. Plaessmann, W. M. Grossman, and T. E. Olson, “Multi-pass light amplifier,” U.S. patent5546222 (13August1996).

Polonyi, G.

G. Andriukaitis, E. Kaksis, G. Polonyi, J. Fülöp, A. Baltuska, and A. Pugzlys, “220-fs 110-mJ Yb:CaF2 cryogenic multipass amplifier,” in CLEO: Science and Innovations, San Jose, California USA, 2015.

Potemkin, A. K.

Pugzlys, A.

G. Andriukaitis, E. Kaksis, G. Polonyi, J. Fülöp, A. Baltuska, and A. Pugzlys, “220-fs 110-mJ Yb:CaF2 cryogenic multipass amplifier,” in CLEO: Science and Innovations, San Jose, California USA, 2015.

Rapaport, A.

Reagan, B. A.

Reichert, F.

Rocca, J. J.

Schad, S. S.

S. S. Schad, V. Kuhn, T. Gottwald, V. Negoita, A. Killi, and K. Wallmeroth, “Near fundamental mode high-power thin-disk laser,” Proc. SPIE 8959, 89590U (2014).
[Crossref]

Schramm, U.

Schuhmann, K.

A. Giesen, M. Larionov, and K. Schuhmann, “Laser amplifier system,” WO patent2012150257 A1 (8November2012).

Seifert, F.

J. Körner, J. Hein, H. Liebetrau, M. Kahle, F. Seifert, D. Kloepfel, and M. Kaluza, “Cryogenically cooled laser amplifiers,” in 7th HEC-DPSSL Workshop, Tahoe City, California, USA, 2012.

Seifert, R.

Siebold, M.

Soms, L. N.

A. V. Mezenov, L. N. Soms, and A. I. Stepanov, Thermooptics of Solid-state Lasers (Mashinebuilding, 1986).

Stepanov, A. I.

A. V. Mezenov, L. N. Soms, and A. I. Stepanov, Thermooptics of Solid-state Lasers (Mashinebuilding, 1986).

Stephan, F.

Sutter, D.

Syresin, E. M.

Tomlinson, S.

P. Mason, A. Lintern, S. Tomlinson, K. Ertel, S. Banerjee, J. Phillips, J. Greenhalgh, and J. Collier, “Design of a multi-pass extraction architecture for the DiPOLE prototype amplifier,” in 7th HEC-DPSSL Workshop, Lake Tahoe, California, USA, 12–14th September2012.

Ueda, K.-I.

I. I. Kuznetsov, I. B. Mukhin, O. L. Vadimova, O. V. Palashov, and K.-I. Ueda, “Thin-tapered-rod Yb:YAG single-crystal laser amplifier,” in ASSL-2015, Berlin, Germany, 2015.

Vadimova, O. L.

E. A. Perevezentsev, I. B. Mukhin, I. I. Kuznetsov, O. L. Vadimova, and O. V. Palashov, “Nanosecond cryogenic Yb:YAG disk laser,” Quantum Electron. 44, 448–451 (2014).
[Crossref]

I. I. Kuznetsov, I. B. Mukhin, O. L. Vadimova, O. V. Palashov, and K.-I. Ueda, “Thin-tapered-rod Yb:YAG single-crystal laser amplifier,” in ASSL-2015, Berlin, Germany, 2015.

I. I. Kuznetsov, I. B. Mukhin, E. A. Perevezentsev, M. R. Volkov, O. L. Vadimova, and O. V. Palashov, “High average and high peak power MOPA laser based on Yb:YAG elements of different geometries,” in Advanced Solid State Lasers Conference and Exhibition (ASSL), Boston, Massachusetts, USA, 2016.

Vigil, S.

M. Bass, L. Weichman, S. Vigil, and B. K. Brickeen, “The temperature dependence of Nd3+ doped solid-state lasers,” IEEE J. Quantum Electron. 39, 741–748 (2003).
[Crossref]

Volkov, M. R.

I. I. Kuznetsov, I. B. Mukhin, E. A. Perevezentsev, M. R. Volkov, O. L. Vadimova, and O. V. Palashov, “High average and high peak power MOPA laser based on Yb:YAG elements of different geometries,” in Advanced Solid State Lasers Conference and Exhibition (ASSL), Boston, Massachusetts, USA, 2016.

Voss, A.

Wallmeroth, K.

S. S. Schad, V. Kuhn, T. Gottwald, V. Negoita, A. Killi, and K. Wallmeroth, “Near fundamental mode high-power thin-disk laser,” Proc. SPIE 8959, 89590U (2014).
[Crossref]

Wang, H.

Weichman, L.

M. Bass, L. Weichman, S. Vigil, and B. K. Brickeen, “The temperature dependence of Nd3+ doped solid-state lasers,” IEEE J. Quantum Electron. 39, 741–748 (2003).
[Crossref]

Weiler, S.

Witting, K.

A. Giesen, H. Hugel, A. Voss, K. Witting, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).
[Crossref]

Xiao, G.

Yin, L.

Zapata, L. E.

Zelenogorskii, V. V.

Zhao, Z.

Appl. Opt. (1)

Appl. Phys. B (1)

A. Giesen, H. Hugel, A. Voss, K. Witting, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).
[Crossref]

IEEE J. Quantum Electron. (1)

M. Bass, L. Weichman, S. Vigil, and B. K. Brickeen, “The temperature dependence of Nd3+ doped solid-state lasers,” IEEE J. Quantum Electron. 39, 741–748 (2003).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Express (3)

Opt. Lett. (3)

Proc. SPIE (1)

S. S. Schad, V. Kuhn, T. Gottwald, V. Negoita, A. Killi, and K. Wallmeroth, “Near fundamental mode high-power thin-disk laser,” Proc. SPIE 8959, 89590U (2014).
[Crossref]

Prog. Opt. (1)

K. Creath, “Phase-measurement interferometry techniques,” Prog. Opt. 26, 349–393 (1989).
[Crossref]

Quantum Electron. (1)

E. A. Perevezentsev, I. B. Mukhin, I. I. Kuznetsov, O. L. Vadimova, and O. V. Palashov, “Nanosecond cryogenic Yb:YAG disk laser,” Quantum Electron. 44, 448–451 (2014).
[Crossref]

Other (8)

P. Mason, A. Lintern, S. Tomlinson, K. Ertel, S. Banerjee, J. Phillips, J. Greenhalgh, and J. Collier, “Design of a multi-pass extraction architecture for the DiPOLE prototype amplifier,” in 7th HEC-DPSSL Workshop, Lake Tahoe, California, USA, 12–14th September2012.

I. I. Kuznetsov, I. B. Mukhin, E. A. Perevezentsev, M. R. Volkov, O. L. Vadimova, and O. V. Palashov, “High average and high peak power MOPA laser based on Yb:YAG elements of different geometries,” in Advanced Solid State Lasers Conference and Exhibition (ASSL), Boston, Massachusetts, USA, 2016.

I. I. Kuznetsov, I. B. Mukhin, O. L. Vadimova, O. V. Palashov, and K.-I. Ueda, “Thin-tapered-rod Yb:YAG single-crystal laser amplifier,” in ASSL-2015, Berlin, Germany, 2015.

H. Plaessmann, W. M. Grossman, and T. E. Olson, “Multi-pass light amplifier,” U.S. patent5546222 (13August1996).

A. Giesen, M. Larionov, and K. Schuhmann, “Laser amplifier system,” WO patent2012150257 A1 (8November2012).

J. Körner, J. Hein, H. Liebetrau, M. Kahle, F. Seifert, D. Kloepfel, and M. Kaluza, “Cryogenically cooled laser amplifiers,” in 7th HEC-DPSSL Workshop, Tahoe City, California, USA, 2012.

G. Andriukaitis, E. Kaksis, G. Polonyi, J. Fülöp, A. Baltuska, and A. Pugzlys, “220-fs 110-mJ Yb:CaF2 cryogenic multipass amplifier,” in CLEO: Science and Innovations, San Jose, California USA, 2015.

A. V. Mezenov, L. N. Soms, and A. I. Stepanov, Thermooptics of Solid-state Lasers (Mashinebuilding, 1986).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Beam path (plan view) and (b) order of radiation passage through the amplifier in Type I matrix multi-pass scheme. 1—active element, 2 and 3—spherical mirrors with curvature radius R1, 5 and 6—spherical mirrors with curvature radius R2, 4 and 7—flat mirrors.

Fig. 2.
Fig. 2.

(a) Beam path (plan view) and (b) order of radiation passage through the amplifier in Type II matrix multi-pass scheme. 1—active element, 2 and 3—spherical mirrors with curvature radius R1, 5 and 6—spherical mirrors with curvature radius R2, 4 and 7—flat mirrors.

Fig. 3.
Fig. 3.

Changes in the beam size on one amplifier passage (a) in the absence of lens in the AE, (b) with lens, and (c) in the case of lens compensation.

Fig. 4.
Fig. 4.

Block diagram of the front end and scheme of 32 V-pass amplifier (plan view) and photograph with traces of radiation reflection from large spherical mirrors for the case of 20 radiation reflections from the AE.

Fig. 5.
Fig. 5.

(a) Small signal gain and (b) amplifier output power for 32V-passes versus absorbed pump power.

Fig. 6.
Fig. 6.

Profile of phase distortions for one pass, measured in the active element at 380 W pump power. Profile diameter is 10 mm: equal to the dimension of the active element.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

fb1=bfL(faa)faa+fL=afLafLfL(faa)faa+fL.
b1=a2(a1fd)fda1(a1fd)(a2fL)fL,
fb2=fd(faa1)(b1fL)(a1fafd)[a2fL+b1(fLa2)]fd(faa1)+(a1fafd)(a2fL),

Metrics