Abstract

We present a spatial-frequency domain (SFD) fluorescence tomography (FT) for acquiring three-dimensional fluorophore distribution in turbid media. The approach uses a composited epi-illumination of multi-frequency sinusoidal patterns on a sample of semi-infinite geometry and demodulates the measured data with a generalized phase shifting scheme to calculate the modulation transfer function (MTF) at each frequency. This method results in a significantly reduced number of the optical field measurements, as compared to those with separate illumination of single-frequency sinusoidal patterns, and, thereby, achieves a fast data acquisition that is desired for a dynamic imaging application. Fluorescence yield images are recovered with the normalized Born formulated inversion of the diffusion model by simultaneously using the multi-frequency MTFs. Simulative and experimental reconstructions are performed in comparison with the single-frequency scheme to validate the proposed algorithm. The results suggest that adoption of the multi-frequency strategy to the SFD-FT can substantially improve the reconstruction quality, as well as its imaging resolution and quantitative accuracy.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Simultaneous fluorescence yield and lifetime tomography from time-resolved transmittances of small-animal-sized phantom

Feng Gao, Jiao Li, Limin Zhang, Patrick Poulet, Huijuan Zhao, and Yukio Yamada
Appl. Opt. 49(16) 3163-3172 (2010)

Single snapshot imaging of optical properties

Jean Vervandier and Sylvain Gioux
Biomed. Opt. Express 4(12) 2938-2944 (2013)

Subsurface fluorescence molecular tomography with prior information

Wei He, Huangsheng Pu, Guanglei Zhang, Xu Cao, Bin Zhang, Fei Liu, Jianwen Luo, and Jing Bai
Appl. Opt. 53(3) 402-409 (2014)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (11)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription