Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Terahertz bistability and multistability in graphene/dielectric Fibonacci multilayer

Not Accessible

Your library or personal account may give you access

Abstract

Here, we benefit from the strong nonlinear response of graphene and the rich variety of resonances provided by a graphene/dielectric Fibonacci multilayer to realize bistability and multistability in the terahertz (THz) frequency range. Toward this pursuit, we employ the nonlinear transfer matrix method. We examine the suitability of resonances in the Fibonacci multilayer for the bi/multistability purposes and determine the proper working point. We report various switching up/down manners via single or stepwise jumps between states of the same or different contrasts upon increasing followed by decreasing the intensity of the incident wave. We show that graphene samples of high quality are preferred for bi/multistable switching in terms of reducing the switch-up/-down thresholds and widening the multistable region. We also explore the possibility of tuning the bi/multistable behavior via the frequency and angle of the incident wave as well as the graphene Fermi level. We envision precious applications in THz switching, realizing logic gates, and so on for this system.

© 2017 Optical Society of America

Full Article  |  PDF Article
More Like This
Terahertz optical bistability of graphene in thin layers of dielectrics

Kwang Jun Ahn and Fabian Rotermund
Opt. Express 25(8) 8484-8490 (2017)

Long-range surface plasmon-induced tunable ultralow threshold optical bistability using graphene sheets at terahertz frequency

Aparupa Kar, Nabamita Goswami, and Ardhendu Saha
Appl. Opt. 56(8) 2321-2329 (2017)

Multilayer graphene based optical bistability

Mehdi Sadeghi and Vahid Ahmadi
J. Opt. Soc. Am. B 35(3) 528-532 (2018)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (12)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.