Abstract

Orbital angular momentum (OAM) beams allow for increased channel capacity in free-space optical communication. Conventionally, these OAM beams are multiplexed together at a transmitter and then propagated through the atmosphere to a receiver where, due to their orthogonality properties, they are demultiplexed. We propose a technique to demultiplex these OAM-carrying beams by capturing an image of the unique multiplexing intensity pattern and training a convolutional neural network (CNN) as a classifier. This CNN-based demultiplexing method allows for simplicity of operation as alignment is unnecessary, orthogonality constraints are loosened, and costly optical hardware is not required. We test our CNN-based technique against a traditional demultiplexing method, conjugate mode sorting, with various OAM mode sets and levels of simulated atmospheric turbulence in a laboratory setting. Furthermore, we examine our CNN-based technique with respect to added sensor noise, number of photon detections, number of pixels, unknown levels of turbulence, and training set size. Results show that the CNN-based demultiplexing method is able to demultiplex combinatorially multiplexed OAM modes from a fixed set with >99% accuracy for high levels of turbulence—well exceeding the conjugate mode demultiplexing method. We also show that this new method is robust to added sensor noise, number of photon detections, number of pixels, unknown levels of turbulence, and training set size.

Full Article  |  PDF Article
OSA Recommended Articles
Turbulence-induced channel crosstalk in an orbital angular momentum-multiplexed free-space optical link

Jaime A. Anguita, Mark A. Neifeld, and Bane V. Vasic
Appl. Opt. 47(13) 2414-2429 (2008)

Low-dose CT via convolutional neural network

Hu Chen, Yi Zhang, Weihua Zhang, Peixi Liao, Ke Li, Jiliu Zhou, and Ge Wang
Biomed. Opt. Express 8(2) 679-694 (2017)

Laguerre–Gauss and Bessel–Gauss beams propagation through turbulence: analysis of channel efficiency

Timothy Doster and Abbie T. Watnik
Appl. Opt. 55(36) 10239-10246 (2016)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (11)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (18)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription