Abstract

Volume holographic gratings are widely used as couplers in eyewear waveguide display systems, but they show a relative lower TM polarized energy compared to transverse-electric (TE) incidence. In this paper, we propose a novel holographic waveguide display system with a combined-grating as the in-coupler. When used as an in-coupler for a holographic waveguide display system, a subwavelength metal grating is designed onto the volume holographic grating to increase the total diffraction efficiency of the coupling gratings. Theoretical calculations show that this design increases the diffraction efficiency by 16.4% for TM polarization, 4.3% for TE mode, and 10.0% for unpolarized light, compared to a single volume holographic grating. Calculations also show that the use of this design as an in-coupler for a holographic waveguide system increases the luminance efficiency for these three modes by 26.8%, 9.0%, and 15.6%, respectively.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Design of a uniform-illumination binocular waveguide display with diffraction gratings and freeform optics

Zeyang Liu, Yajun Pang, Cheng Pan, and Zhanhua Huang
Opt. Express 25(24) 30720-30731 (2017)

Preferential-order waveguide grating couplers: a comparative rigorous analysis using the finite-difference time-domain method

Aristeides D. Papadopoulos and Elias N. Glytsis
Appl. Opt. 49(30) 5787-5798 (2010)

Preferential input-waveguide grating couplers: rigorous analysis using the pseudospectral time-domain method

Aristeides D. Papadopoulos and Elias N. Glytsis
Appl. Opt. 51(35) 8460-8469 (2012)

References

  • View by:
  • |
  • |
  • |

  1. J. Rolland and O. Cakmakci, “Head-worn displays: the future through new eyes,” Opt. Photon. News 20(4), 20–27 (2009).
    [Crossref]
  2. L. Eisen, M. Meyklyar, M. Golub, A. A. Friesem, I. Gurwich, and V. Weiss, “Planar configuration for image projection,” Appl. Opt. 45, 4005–4011 (2006).
    [Crossref]
  3. T. Levola, “7.1: Invited paper: novel diffractive optical components for near to eye displays,” in SID Symposium Digest of Technical Papers (Wiley, 2006), pp. 64–67.
  4. H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17, 185–193 (2009).
    [Crossref]
  5. T. Oku, K. Akutsu, M. Kuwahara, T. Yoshida, E. Kato, K. Aiki, I. Matsumura, S. Nakano, A. Machida, and H. Mukawa, “15.2: High-luminance see-through eyewear display with novel volume hologram waveguide technology,” in SID Symposium Digest of Technical Papers (Wiley, 2015), pp. 192–195.
  6. M. Piao and N. Kim, “Achieving high levels of color uniformity and optical efficiency for a wedge-shaped waveguide head-mounted display using a photopolymer,” Appl. Opt. 53, 2180–2186 (2014).
    [Crossref]
  7. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
    [Crossref]
  8. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71, 811–818 (1981).
    [Crossref]
  9. T. Grosges, A. Vial, and D. Barchiesi, “Models of near-field spectroscopic studies: comparison between finite-element and finite-difference methods,” Opt. Express 13, 8483–8497 (2005).
    [Crossref]
  10. J. Guo, Y. Tu, L. Yang, L. Wang, and B. Wang, “Design of a multiplexing grating for color holographic waveguide,” Opt. Eng. 54, 125105 (2015).
    [Crossref]
  11. A. H. Mahamat, F. A. Narducci, and J. Schwiegerling, “Design and optimization of a volume-phase holographic grating for simultaneous use with red, green, and blue light using unpolarized light,” Appl. Opt. 55, 1618–1624 (2016).
    [Crossref]

2016 (1)

2015 (1)

J. Guo, Y. Tu, L. Yang, L. Wang, and B. Wang, “Design of a multiplexing grating for color holographic waveguide,” Opt. Eng. 54, 125105 (2015).
[Crossref]

2014 (1)

2009 (2)

J. Rolland and O. Cakmakci, “Head-worn displays: the future through new eyes,” Opt. Photon. News 20(4), 20–27 (2009).
[Crossref]

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17, 185–193 (2009).
[Crossref]

2006 (1)

2005 (1)

1981 (1)

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[Crossref]

Aiki, K.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17, 185–193 (2009).
[Crossref]

T. Oku, K. Akutsu, M. Kuwahara, T. Yoshida, E. Kato, K. Aiki, I. Matsumura, S. Nakano, A. Machida, and H. Mukawa, “15.2: High-luminance see-through eyewear display with novel volume hologram waveguide technology,” in SID Symposium Digest of Technical Papers (Wiley, 2015), pp. 192–195.

Akutsu, K.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17, 185–193 (2009).
[Crossref]

T. Oku, K. Akutsu, M. Kuwahara, T. Yoshida, E. Kato, K. Aiki, I. Matsumura, S. Nakano, A. Machida, and H. Mukawa, “15.2: High-luminance see-through eyewear display with novel volume hologram waveguide technology,” in SID Symposium Digest of Technical Papers (Wiley, 2015), pp. 192–195.

Barchiesi, D.

Cakmakci, O.

J. Rolland and O. Cakmakci, “Head-worn displays: the future through new eyes,” Opt. Photon. News 20(4), 20–27 (2009).
[Crossref]

Eisen, L.

Friesem, A. A.

Gaylord, T. K.

Golub, M.

Grosges, T.

Guo, J.

J. Guo, Y. Tu, L. Yang, L. Wang, and B. Wang, “Design of a multiplexing grating for color holographic waveguide,” Opt. Eng. 54, 125105 (2015).
[Crossref]

Gurwich, I.

Kato, E.

T. Oku, K. Akutsu, M. Kuwahara, T. Yoshida, E. Kato, K. Aiki, I. Matsumura, S. Nakano, A. Machida, and H. Mukawa, “15.2: High-luminance see-through eyewear display with novel volume hologram waveguide technology,” in SID Symposium Digest of Technical Papers (Wiley, 2015), pp. 192–195.

Kim, N.

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[Crossref]

Kuwahara, M.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17, 185–193 (2009).
[Crossref]

T. Oku, K. Akutsu, M. Kuwahara, T. Yoshida, E. Kato, K. Aiki, I. Matsumura, S. Nakano, A. Machida, and H. Mukawa, “15.2: High-luminance see-through eyewear display with novel volume hologram waveguide technology,” in SID Symposium Digest of Technical Papers (Wiley, 2015), pp. 192–195.

Levola, T.

T. Levola, “7.1: Invited paper: novel diffractive optical components for near to eye displays,” in SID Symposium Digest of Technical Papers (Wiley, 2006), pp. 64–67.

Machida, A.

T. Oku, K. Akutsu, M. Kuwahara, T. Yoshida, E. Kato, K. Aiki, I. Matsumura, S. Nakano, A. Machida, and H. Mukawa, “15.2: High-luminance see-through eyewear display with novel volume hologram waveguide technology,” in SID Symposium Digest of Technical Papers (Wiley, 2015), pp. 192–195.

Mahamat, A. H.

Matsumura, I.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17, 185–193 (2009).
[Crossref]

T. Oku, K. Akutsu, M. Kuwahara, T. Yoshida, E. Kato, K. Aiki, I. Matsumura, S. Nakano, A. Machida, and H. Mukawa, “15.2: High-luminance see-through eyewear display with novel volume hologram waveguide technology,” in SID Symposium Digest of Technical Papers (Wiley, 2015), pp. 192–195.

Meyklyar, M.

Moharam, M. G.

Mukawa, H.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17, 185–193 (2009).
[Crossref]

T. Oku, K. Akutsu, M. Kuwahara, T. Yoshida, E. Kato, K. Aiki, I. Matsumura, S. Nakano, A. Machida, and H. Mukawa, “15.2: High-luminance see-through eyewear display with novel volume hologram waveguide technology,” in SID Symposium Digest of Technical Papers (Wiley, 2015), pp. 192–195.

Nakano, S.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17, 185–193 (2009).
[Crossref]

T. Oku, K. Akutsu, M. Kuwahara, T. Yoshida, E. Kato, K. Aiki, I. Matsumura, S. Nakano, A. Machida, and H. Mukawa, “15.2: High-luminance see-through eyewear display with novel volume hologram waveguide technology,” in SID Symposium Digest of Technical Papers (Wiley, 2015), pp. 192–195.

Narducci, F. A.

Oku, T.

T. Oku, K. Akutsu, M. Kuwahara, T. Yoshida, E. Kato, K. Aiki, I. Matsumura, S. Nakano, A. Machida, and H. Mukawa, “15.2: High-luminance see-through eyewear display with novel volume hologram waveguide technology,” in SID Symposium Digest of Technical Papers (Wiley, 2015), pp. 192–195.

Piao, M.

Rolland, J.

J. Rolland and O. Cakmakci, “Head-worn displays: the future through new eyes,” Opt. Photon. News 20(4), 20–27 (2009).
[Crossref]

Schwiegerling, J.

Tu, Y.

J. Guo, Y. Tu, L. Yang, L. Wang, and B. Wang, “Design of a multiplexing grating for color holographic waveguide,” Opt. Eng. 54, 125105 (2015).
[Crossref]

Vial, A.

Wang, B.

J. Guo, Y. Tu, L. Yang, L. Wang, and B. Wang, “Design of a multiplexing grating for color holographic waveguide,” Opt. Eng. 54, 125105 (2015).
[Crossref]

Wang, L.

J. Guo, Y. Tu, L. Yang, L. Wang, and B. Wang, “Design of a multiplexing grating for color holographic waveguide,” Opt. Eng. 54, 125105 (2015).
[Crossref]

Weiss, V.

Yang, L.

J. Guo, Y. Tu, L. Yang, L. Wang, and B. Wang, “Design of a multiplexing grating for color holographic waveguide,” Opt. Eng. 54, 125105 (2015).
[Crossref]

Yoshida, T.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17, 185–193 (2009).
[Crossref]

T. Oku, K. Akutsu, M. Kuwahara, T. Yoshida, E. Kato, K. Aiki, I. Matsumura, S. Nakano, A. Machida, and H. Mukawa, “15.2: High-luminance see-through eyewear display with novel volume hologram waveguide technology,” in SID Symposium Digest of Technical Papers (Wiley, 2015), pp. 192–195.

Appl. Opt. (3)

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[Crossref]

J. Opt. Soc. Am. (1)

J. Soc. Inf. Disp. (1)

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17, 185–193 (2009).
[Crossref]

Opt. Eng. (1)

J. Guo, Y. Tu, L. Yang, L. Wang, and B. Wang, “Design of a multiplexing grating for color holographic waveguide,” Opt. Eng. 54, 125105 (2015).
[Crossref]

Opt. Express (1)

Opt. Photon. News (1)

J. Rolland and O. Cakmakci, “Head-worn displays: the future through new eyes,” Opt. Photon. News 20(4), 20–27 (2009).
[Crossref]

Other (2)

T. Levola, “7.1: Invited paper: novel diffractive optical components for near to eye displays,” in SID Symposium Digest of Technical Papers (Wiley, 2006), pp. 64–67.

T. Oku, K. Akutsu, M. Kuwahara, T. Yoshida, E. Kato, K. Aiki, I. Matsumura, S. Nakano, A. Machida, and H. Mukawa, “15.2: High-luminance see-through eyewear display with novel volume hologram waveguide technology,” in SID Symposium Digest of Technical Papers (Wiley, 2015), pp. 192–195.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1. Scheme of the holographic waveguide display using a combined-grating. The metal grating is etched on the upper surface of the VHG in nanoscale and is used to enhance the diffraction efficiency of the TM polarized light.
Fig. 2.
Fig. 2. Structure of the VHG and the metal grating.
Fig. 3.
Fig. 3. Combined-grating simulation model.
Fig. 4.
Fig. 4. Simplified holographic waveguide simulation model.
Fig. 5.
Fig. 5. Meshing near the metal grating.
Fig. 6.
Fig. 6. In-coupling diffraction efficiency versus: (a) the metal grating period with the depth of 80 nm; (b) the grating depth with the period of 495 nm. The wavelength is 525 nm.
Fig. 7.
Fig. 7. Magnetic field norm (unit: A/m) at TM incidence with the metal grating period of: (a) 495 nm; (b) 450 nm. The wavelength is 525 nm.
Fig. 8.
Fig. 8. Electric field norm (unit: V/m) at TE incidence with the metal grating period of: (a) 495 nm; (b) 450 nm. The wavelength is 525 nm.
Fig. 9.
Fig. 9. In-coupling wavelength selectivity.
Fig. 10.
Fig. 10. Normalized luminance curve of a green LED.
Fig. 11.
Fig. 11. Angular selectivity.
Fig. 12.
Fig. 12. Out-coupling spectra response.

Tables (4)

Tables Icon

Table 1. Diffraction Efficiency Increment of the Combined-Grating Structurea

Tables Icon

Table 2. In-Coupling Efficiency Increment of the Combined-Gratinga

Tables Icon

Table 3. Diffraction Efficiency of the Holographic Waveguide Systema

Tables Icon

Table 4. Luminance Efficiency of the Holographic Waveguide Systema

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Λ v = λ / ( 2 n sin θ B ) ,
Λ m = λ / ( n sin θ s + sin θ 0 ) ,
DE in = P R P in × 100 % .
DE out = P out P in × 100 % .
DE Un = 1 2 ( DE TE + DE TM ) .
η c = L ( λ ) · DE in ( λ ) d λ L ( λ ) d λ ,
η L = L ( λ ) · V ( λ ) · DE out ( λ ) d λ L ( λ ) d λ ,

Metrics