Abstract

Optically transparent immersion liquids with refractive index (n1.77) to match the sapphire-based aplanatic numerical aperture increasing lens (aNAIL) are necessary for achieving deep 3D imaging with high spatial resolution. We report that antimony tribromide (SbBr3) salt dissolved in liquid diiodomethane (CH2I2) provides a new high refractive index immersion liquid for optics applications. The refractive index is tunable from n=1.74 (pure) to n=1.873 (saturated), by adjusting either salt concentration or temperature; this allows it to match (or even exceed) the refractive index of sapphire. Importantly, the solution gives excellent light transmittance in the ultraviolet to near-infrared range, an improvement over commercially available immersion liquids. This refractive-index-matched immersion liquid formulation has enabled us to develop a sapphire-based aNAIL objective that has both high numerical aperture (NA=1.17) and long working distance (WD=12  mm). This opens up new possibilities for deep 3D imaging with high spatial resolution.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Evanescent waves in high numerical aperture aplanatic solid immersion microscopy: Effects of forbidden light on subsurface imaging

Abdulkadir Yurt, Aydan Uyar, T. Berkin Cilingiroglu, Bennett B. Goldberg, and M. Selim Ünlü
Opt. Express 22(7) 7422-7433 (2014)

Theories for the design of a hybrid refractive–diffractive superresolution lens with high numerical aperture

Haitao Liu, Yingbai Yan, Deer Yi, and Guofan Jin
J. Opt. Soc. Am. A 20(5) 913-924 (2003)

A study on the realization of high resolution solid immersion lens-based near-field imaging optics by use of an annular aperture

Hyungbae Moon, Yong-Joong Yoon, Wan-Chin Kim, No-Cheol Park, Kyoung-Su Park, and Young-Pil Park
Opt. Express 18(16) 17533-17541 (2010)

References

  • View by:
  • |
  • |
  • |

  1. S. B. Ippolito, B. Goldberg, and M. Ünlü, “High spatial resolution subsurface microscopy,” Appl. Phys. Lett. 78, 4071–4073 (2001).
    [Crossref]
  2. S. Ippolito, B. Goldberg, and M. Ünlü, “Theoretical analysis of numerical aperture increasing lens microscopy,” J. Appl. Phys. 97, 053105 (2005).
    [Crossref]
  3. K. A. Serrels, E. Ramsay, P. A. Dalgarno, B. Gerardot, J. O’Connor, R. H. Hadfield, R. Warburton, and D. Reid, “Solid immersion lens applications for nanophotonic devices,” J. Nanophoton. 2, 021854 (2008).
    [Crossref]
  4. S. M. Mansfield and G. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57, 2615–2616 (1990).
    [Crossref]
  5. Y. Lu, T. Bifano, S. Ünlü, and B. Goldberg, “Aberration compensation in aplanatic solid immersion lens microscopy,” Opt. Express 21, 28189–28197 (2013).
    [Crossref]
  6. K. Agarwal, R. Chen, L. S. Koh, C. J. Sheppard, and X. Chen, “Crossing the resolution limit in near-infrared imaging of silicon chips: targeting 10-nm node technology,” Phys. Rev. X 5, 021014 (2015).
  7. Q. Wu, R. D. Grober, D. Gammon, and D. Katzer, “Imaging spectroscopy of two-dimensional excitons in a narrow GaAs/AlGaAs quantum well,” Phys. Rev. Lett. 83, 2652–2655 (1999).
    [Crossref]
  8. E. S. Lee, S.-W. Lee, J. Hsu, and E. O. Potma, “Vibrationally resonant sum-frequency generation microscopy with a solid immersion lens,” Biomed. Opt. Express 5, 2125–2134 (2014).
    [Crossref]
  9. M. Deetlefs, K. R. Seddon, and M. Shara, “Neoteric optical media for refractive index determination of gems and minerals,” New J. Chem. 30, 317–326 (2006).
    [Crossref]
  10. R. Meyrowitz, “A compilation and classification of immersion media of high index of refraction,” Am. Mineral. 40, 398–409 (1955).
  11. F. Lamelas, “Index of refraction, density, and solubility of ammonium iodide solutions at high pressure,” J. Phys. Chem. B 117, 2789–2795 (2013).
    [Crossref]
  12. S. Nemoto, “Measurement of the refractive index of liquid using laser beam displacement,” Appl. Opt. 31, 6690–6694 (1992).
    [Crossref]
  13. P. B. Chapple, “Beam waist and m2 measurement using a finite slit,” Opt. Eng. 33, 2461–2466 (1994).
    [Crossref]
  14. J. Magnes, D. Odera, J. Hartke, M. Fountain, L. Florence, and V. Davis, “Quantitative and qualitative study of Gaussian beam visualization techniques,” arXiv:physics/0605102 (2006).
  15. P. Schiebener, J. Straub, J. L. Sengers, and J. Gallagher, “Refractive index of water and steam as function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 19, 677–717 (1990).
    [Crossref]
  16. A. Zaidi, Y. Makdisi, K. Bhatia, and I. Abutahun, “Accurate method for the determination of the refractive index of liquids using a laser,” Rev. Sci. Instrum. 60, 803–805 (1989).
    [Crossref]
  17. E. Moreels, C. De Greef, and R. Finsy, “Laser light refractometer,” Appl. Opt. 23, 3010–3013 (1984).
    [Crossref]
  18. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 2008).
  19. D. R. Lide, Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data 2012-2013 (CRC Press, 2012).
  20. H. Ren, D. Fox, P. A. Anderson, B. Wu, and S.-T. Wu, “Tunable-focus liquid lens controlled using a servo motor,” Opt. Express 14, 8031–8036 (2006).
    [Crossref]
  21. L. Li, Q.-H. Wang, and W. Jiang, “Liquid lens with double tunable surfaces for large power tunability and improved optical performance,” J. Opt. 13, 115503 (2011).
    [Crossref]
  22. S. Kuiper and B. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).
    [Crossref]
  23. K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4, 6378 (2014).
    [Crossref]
  24. H. R. Wenk and A. Bulakh, Minerals: Their Constitution and Origin (Cambridge University, 2004).
  25. R. W. Hughes, Ruby & Sapphire (Rwh Pub, 1997).
  26. H. Mao, J. Xu, and P. Bell, “Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions,” J. Geophys. Res. 91, 4673–4676 (1986).
    [Crossref]
  27. W. B. Holzapfel, “Refinement of the ruby luminescence pressure scale,” J. Appl. Phys. 93, 1813–1818 (2003).
    [Crossref]
  28. K. Syassen, “Ruby under pressure,” High Pressure Res. 28, 75–126 (2008).
    [Crossref]
  29. Y. Chen, A. Best, T. Haschke, W. Wiechert, and H.-J. Butt, “Stress and failure at mechanical contacts of microspheres under uniaxial compression,” J. Appl. Phys. 101, 084908 (2007).
  30. Y. Chen, A. Best, H.-J. Butt, R. Boehler, T. Haschke, and W. Wiechert, “Pressure distribution in a mechanical microcontact,” Appl. Phys. Lett. 88, 234101 (2006).
    [Crossref]

2015 (1)

K. Agarwal, R. Chen, L. S. Koh, C. J. Sheppard, and X. Chen, “Crossing the resolution limit in near-infrared imaging of silicon chips: targeting 10-nm node technology,” Phys. Rev. X 5, 021014 (2015).

2014 (2)

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4, 6378 (2014).
[Crossref]

E. S. Lee, S.-W. Lee, J. Hsu, and E. O. Potma, “Vibrationally resonant sum-frequency generation microscopy with a solid immersion lens,” Biomed. Opt. Express 5, 2125–2134 (2014).
[Crossref]

2013 (2)

Y. Lu, T. Bifano, S. Ünlü, and B. Goldberg, “Aberration compensation in aplanatic solid immersion lens microscopy,” Opt. Express 21, 28189–28197 (2013).
[Crossref]

F. Lamelas, “Index of refraction, density, and solubility of ammonium iodide solutions at high pressure,” J. Phys. Chem. B 117, 2789–2795 (2013).
[Crossref]

2011 (1)

L. Li, Q.-H. Wang, and W. Jiang, “Liquid lens with double tunable surfaces for large power tunability and improved optical performance,” J. Opt. 13, 115503 (2011).
[Crossref]

2008 (2)

K. A. Serrels, E. Ramsay, P. A. Dalgarno, B. Gerardot, J. O’Connor, R. H. Hadfield, R. Warburton, and D. Reid, “Solid immersion lens applications for nanophotonic devices,” J. Nanophoton. 2, 021854 (2008).
[Crossref]

K. Syassen, “Ruby under pressure,” High Pressure Res. 28, 75–126 (2008).
[Crossref]

2007 (1)

Y. Chen, A. Best, T. Haschke, W. Wiechert, and H.-J. Butt, “Stress and failure at mechanical contacts of microspheres under uniaxial compression,” J. Appl. Phys. 101, 084908 (2007).

2006 (3)

Y. Chen, A. Best, H.-J. Butt, R. Boehler, T. Haschke, and W. Wiechert, “Pressure distribution in a mechanical microcontact,” Appl. Phys. Lett. 88, 234101 (2006).
[Crossref]

M. Deetlefs, K. R. Seddon, and M. Shara, “Neoteric optical media for refractive index determination of gems and minerals,” New J. Chem. 30, 317–326 (2006).
[Crossref]

H. Ren, D. Fox, P. A. Anderson, B. Wu, and S.-T. Wu, “Tunable-focus liquid lens controlled using a servo motor,” Opt. Express 14, 8031–8036 (2006).
[Crossref]

2005 (1)

S. Ippolito, B. Goldberg, and M. Ünlü, “Theoretical analysis of numerical aperture increasing lens microscopy,” J. Appl. Phys. 97, 053105 (2005).
[Crossref]

2004 (1)

S. Kuiper and B. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).
[Crossref]

2003 (1)

W. B. Holzapfel, “Refinement of the ruby luminescence pressure scale,” J. Appl. Phys. 93, 1813–1818 (2003).
[Crossref]

2001 (1)

S. B. Ippolito, B. Goldberg, and M. Ünlü, “High spatial resolution subsurface microscopy,” Appl. Phys. Lett. 78, 4071–4073 (2001).
[Crossref]

1999 (1)

Q. Wu, R. D. Grober, D. Gammon, and D. Katzer, “Imaging spectroscopy of two-dimensional excitons in a narrow GaAs/AlGaAs quantum well,” Phys. Rev. Lett. 83, 2652–2655 (1999).
[Crossref]

1994 (1)

P. B. Chapple, “Beam waist and m2 measurement using a finite slit,” Opt. Eng. 33, 2461–2466 (1994).
[Crossref]

1992 (1)

1990 (2)

P. Schiebener, J. Straub, J. L. Sengers, and J. Gallagher, “Refractive index of water and steam as function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 19, 677–717 (1990).
[Crossref]

S. M. Mansfield and G. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57, 2615–2616 (1990).
[Crossref]

1989 (1)

A. Zaidi, Y. Makdisi, K. Bhatia, and I. Abutahun, “Accurate method for the determination of the refractive index of liquids using a laser,” Rev. Sci. Instrum. 60, 803–805 (1989).
[Crossref]

1986 (1)

H. Mao, J. Xu, and P. Bell, “Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions,” J. Geophys. Res. 91, 4673–4676 (1986).
[Crossref]

1984 (1)

1955 (1)

R. Meyrowitz, “A compilation and classification of immersion media of high index of refraction,” Am. Mineral. 40, 398–409 (1955).

Abutahun, I.

A. Zaidi, Y. Makdisi, K. Bhatia, and I. Abutahun, “Accurate method for the determination of the refractive index of liquids using a laser,” Rev. Sci. Instrum. 60, 803–805 (1989).
[Crossref]

Agarwal, K.

K. Agarwal, R. Chen, L. S. Koh, C. J. Sheppard, and X. Chen, “Crossing the resolution limit in near-infrared imaging of silicon chips: targeting 10-nm node technology,” Phys. Rev. X 5, 021014 (2015).

Anderson, P. A.

Bell, P.

H. Mao, J. Xu, and P. Bell, “Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions,” J. Geophys. Res. 91, 4673–4676 (1986).
[Crossref]

Best, A.

Y. Chen, A. Best, T. Haschke, W. Wiechert, and H.-J. Butt, “Stress and failure at mechanical contacts of microspheres under uniaxial compression,” J. Appl. Phys. 101, 084908 (2007).

Y. Chen, A. Best, H.-J. Butt, R. Boehler, T. Haschke, and W. Wiechert, “Pressure distribution in a mechanical microcontact,” Appl. Phys. Lett. 88, 234101 (2006).
[Crossref]

Bhatia, K.

A. Zaidi, Y. Makdisi, K. Bhatia, and I. Abutahun, “Accurate method for the determination of the refractive index of liquids using a laser,” Rev. Sci. Instrum. 60, 803–805 (1989).
[Crossref]

Bifano, T.

Boehler, R.

Y. Chen, A. Best, H.-J. Butt, R. Boehler, T. Haschke, and W. Wiechert, “Pressure distribution in a mechanical microcontact,” Appl. Phys. Lett. 88, 234101 (2006).
[Crossref]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 2008).

Bulakh, A.

H. R. Wenk and A. Bulakh, Minerals: Their Constitution and Origin (Cambridge University, 2004).

Butt, H.-J.

Y. Chen, A. Best, T. Haschke, W. Wiechert, and H.-J. Butt, “Stress and failure at mechanical contacts of microspheres under uniaxial compression,” J. Appl. Phys. 101, 084908 (2007).

Y. Chen, A. Best, H.-J. Butt, R. Boehler, T. Haschke, and W. Wiechert, “Pressure distribution in a mechanical microcontact,” Appl. Phys. Lett. 88, 234101 (2006).
[Crossref]

Carreel, B.

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4, 6378 (2014).
[Crossref]

Chapple, P. B.

P. B. Chapple, “Beam waist and m2 measurement using a finite slit,” Opt. Eng. 33, 2461–2466 (1994).
[Crossref]

Chen, R.

K. Agarwal, R. Chen, L. S. Koh, C. J. Sheppard, and X. Chen, “Crossing the resolution limit in near-infrared imaging of silicon chips: targeting 10-nm node technology,” Phys. Rev. X 5, 021014 (2015).

Chen, X.

K. Agarwal, R. Chen, L. S. Koh, C. J. Sheppard, and X. Chen, “Crossing the resolution limit in near-infrared imaging of silicon chips: targeting 10-nm node technology,” Phys. Rev. X 5, 021014 (2015).

Chen, Y.

Y. Chen, A. Best, T. Haschke, W. Wiechert, and H.-J. Butt, “Stress and failure at mechanical contacts of microspheres under uniaxial compression,” J. Appl. Phys. 101, 084908 (2007).

Y. Chen, A. Best, H.-J. Butt, R. Boehler, T. Haschke, and W. Wiechert, “Pressure distribution in a mechanical microcontact,” Appl. Phys. Lett. 88, 234101 (2006).
[Crossref]

Dalgarno, P. A.

K. A. Serrels, E. Ramsay, P. A. Dalgarno, B. Gerardot, J. O’Connor, R. H. Hadfield, R. Warburton, and D. Reid, “Solid immersion lens applications for nanophotonic devices,” J. Nanophoton. 2, 021854 (2008).
[Crossref]

Davis, V.

J. Magnes, D. Odera, J. Hartke, M. Fountain, L. Florence, and V. Davis, “Quantitative and qualitative study of Gaussian beam visualization techniques,” arXiv:physics/0605102 (2006).

De Greef, C.

Deetlefs, M.

M. Deetlefs, K. R. Seddon, and M. Shara, “Neoteric optical media for refractive index determination of gems and minerals,” New J. Chem. 30, 317–326 (2006).
[Crossref]

Finsy, R.

Florence, L.

J. Magnes, D. Odera, J. Hartke, M. Fountain, L. Florence, and V. Davis, “Quantitative and qualitative study of Gaussian beam visualization techniques,” arXiv:physics/0605102 (2006).

Fountain, M.

J. Magnes, D. Odera, J. Hartke, M. Fountain, L. Florence, and V. Davis, “Quantitative and qualitative study of Gaussian beam visualization techniques,” arXiv:physics/0605102 (2006).

Fox, D.

Gallagher, J.

P. Schiebener, J. Straub, J. L. Sengers, and J. Gallagher, “Refractive index of water and steam as function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 19, 677–717 (1990).
[Crossref]

Gammon, D.

Q. Wu, R. D. Grober, D. Gammon, and D. Katzer, “Imaging spectroscopy of two-dimensional excitons in a narrow GaAs/AlGaAs quantum well,” Phys. Rev. Lett. 83, 2652–2655 (1999).
[Crossref]

Gerardot, B.

K. A. Serrels, E. Ramsay, P. A. Dalgarno, B. Gerardot, J. O’Connor, R. H. Hadfield, R. Warburton, and D. Reid, “Solid immersion lens applications for nanophotonic devices,” J. Nanophoton. 2, 021854 (2008).
[Crossref]

Goldberg, B.

Y. Lu, T. Bifano, S. Ünlü, and B. Goldberg, “Aberration compensation in aplanatic solid immersion lens microscopy,” Opt. Express 21, 28189–28197 (2013).
[Crossref]

S. Ippolito, B. Goldberg, and M. Ünlü, “Theoretical analysis of numerical aperture increasing lens microscopy,” J. Appl. Phys. 97, 053105 (2005).
[Crossref]

S. B. Ippolito, B. Goldberg, and M. Ünlü, “High spatial resolution subsurface microscopy,” Appl. Phys. Lett. 78, 4071–4073 (2001).
[Crossref]

Grober, R. D.

Q. Wu, R. D. Grober, D. Gammon, and D. Katzer, “Imaging spectroscopy of two-dimensional excitons in a narrow GaAs/AlGaAs quantum well,” Phys. Rev. Lett. 83, 2652–2655 (1999).
[Crossref]

Hadfield, R. H.

K. A. Serrels, E. Ramsay, P. A. Dalgarno, B. Gerardot, J. O’Connor, R. H. Hadfield, R. Warburton, and D. Reid, “Solid immersion lens applications for nanophotonic devices,” J. Nanophoton. 2, 021854 (2008).
[Crossref]

Hartke, J.

J. Magnes, D. Odera, J. Hartke, M. Fountain, L. Florence, and V. Davis, “Quantitative and qualitative study of Gaussian beam visualization techniques,” arXiv:physics/0605102 (2006).

Haschke, T.

Y. Chen, A. Best, T. Haschke, W. Wiechert, and H.-J. Butt, “Stress and failure at mechanical contacts of microspheres under uniaxial compression,” J. Appl. Phys. 101, 084908 (2007).

Y. Chen, A. Best, H.-J. Butt, R. Boehler, T. Haschke, and W. Wiechert, “Pressure distribution in a mechanical microcontact,” Appl. Phys. Lett. 88, 234101 (2006).
[Crossref]

Hendriks, B.

S. Kuiper and B. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).
[Crossref]

Holzapfel, W. B.

W. B. Holzapfel, “Refinement of the ruby luminescence pressure scale,” J. Appl. Phys. 93, 1813–1818 (2003).
[Crossref]

Hsu, J.

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 2008).

Hughes, R. W.

R. W. Hughes, Ruby & Sapphire (Rwh Pub, 1997).

Ippolito, S.

S. Ippolito, B. Goldberg, and M. Ünlü, “Theoretical analysis of numerical aperture increasing lens microscopy,” J. Appl. Phys. 97, 053105 (2005).
[Crossref]

Ippolito, S. B.

S. B. Ippolito, B. Goldberg, and M. Ünlü, “High spatial resolution subsurface microscopy,” Appl. Phys. Lett. 78, 4071–4073 (2001).
[Crossref]

Jiang, W.

L. Li, Q.-H. Wang, and W. Jiang, “Liquid lens with double tunable surfaces for large power tunability and improved optical performance,” J. Opt. 13, 115503 (2011).
[Crossref]

Katzer, D.

Q. Wu, R. D. Grober, D. Gammon, and D. Katzer, “Imaging spectroscopy of two-dimensional excitons in a narrow GaAs/AlGaAs quantum well,” Phys. Rev. Lett. 83, 2652–2655 (1999).
[Crossref]

Kino, G.

S. M. Mansfield and G. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57, 2615–2616 (1990).
[Crossref]

Koh, L. S.

K. Agarwal, R. Chen, L. S. Koh, C. J. Sheppard, and X. Chen, “Crossing the resolution limit in near-infrared imaging of silicon chips: targeting 10-nm node technology,” Phys. Rev. X 5, 021014 (2015).

Kuiper, S.

S. Kuiper and B. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).
[Crossref]

Lamelas, F.

F. Lamelas, “Index of refraction, density, and solubility of ammonium iodide solutions at high pressure,” J. Phys. Chem. B 117, 2789–2795 (2013).
[Crossref]

Lee, E. S.

Lee, S.-W.

Li, L.

L. Li, Q.-H. Wang, and W. Jiang, “Liquid lens with double tunable surfaces for large power tunability and improved optical performance,” J. Opt. 13, 115503 (2011).
[Crossref]

Lide, D. R.

D. R. Lide, Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data 2012-2013 (CRC Press, 2012).

Lu, Y.

Magnes, J.

J. Magnes, D. Odera, J. Hartke, M. Fountain, L. Florence, and V. Davis, “Quantitative and qualitative study of Gaussian beam visualization techniques,” arXiv:physics/0605102 (2006).

Makdisi, Y.

A. Zaidi, Y. Makdisi, K. Bhatia, and I. Abutahun, “Accurate method for the determination of the refractive index of liquids using a laser,” Rev. Sci. Instrum. 60, 803–805 (1989).
[Crossref]

Mansfield, S. M.

S. M. Mansfield and G. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57, 2615–2616 (1990).
[Crossref]

Manukyan, G.

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4, 6378 (2014).
[Crossref]

Mao, H.

H. Mao, J. Xu, and P. Bell, “Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions,” J. Geophys. Res. 91, 4673–4676 (1986).
[Crossref]

Meyrowitz, R.

R. Meyrowitz, “A compilation and classification of immersion media of high index of refraction,” Am. Mineral. 40, 398–409 (1955).

Mishra, K.

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4, 6378 (2014).
[Crossref]

Moreels, E.

Mugele, F.

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4, 6378 (2014).
[Crossref]

Murade, C.

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4, 6378 (2014).
[Crossref]

Nemoto, S.

O’Connor, J.

K. A. Serrels, E. Ramsay, P. A. Dalgarno, B. Gerardot, J. O’Connor, R. H. Hadfield, R. Warburton, and D. Reid, “Solid immersion lens applications for nanophotonic devices,” J. Nanophoton. 2, 021854 (2008).
[Crossref]

Odera, D.

J. Magnes, D. Odera, J. Hartke, M. Fountain, L. Florence, and V. Davis, “Quantitative and qualitative study of Gaussian beam visualization techniques,” arXiv:physics/0605102 (2006).

Oh, J. M.

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4, 6378 (2014).
[Crossref]

Potma, E. O.

Ramsay, E.

K. A. Serrels, E. Ramsay, P. A. Dalgarno, B. Gerardot, J. O’Connor, R. H. Hadfield, R. Warburton, and D. Reid, “Solid immersion lens applications for nanophotonic devices,” J. Nanophoton. 2, 021854 (2008).
[Crossref]

Reid, D.

K. A. Serrels, E. Ramsay, P. A. Dalgarno, B. Gerardot, J. O’Connor, R. H. Hadfield, R. Warburton, and D. Reid, “Solid immersion lens applications for nanophotonic devices,” J. Nanophoton. 2, 021854 (2008).
[Crossref]

Ren, H.

Roghair, I.

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4, 6378 (2014).
[Crossref]

Schiebener, P.

P. Schiebener, J. Straub, J. L. Sengers, and J. Gallagher, “Refractive index of water and steam as function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 19, 677–717 (1990).
[Crossref]

Seddon, K. R.

M. Deetlefs, K. R. Seddon, and M. Shara, “Neoteric optical media for refractive index determination of gems and minerals,” New J. Chem. 30, 317–326 (2006).
[Crossref]

Sengers, J. L.

P. Schiebener, J. Straub, J. L. Sengers, and J. Gallagher, “Refractive index of water and steam as function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 19, 677–717 (1990).
[Crossref]

Serrels, K. A.

K. A. Serrels, E. Ramsay, P. A. Dalgarno, B. Gerardot, J. O’Connor, R. H. Hadfield, R. Warburton, and D. Reid, “Solid immersion lens applications for nanophotonic devices,” J. Nanophoton. 2, 021854 (2008).
[Crossref]

Shara, M.

M. Deetlefs, K. R. Seddon, and M. Shara, “Neoteric optical media for refractive index determination of gems and minerals,” New J. Chem. 30, 317–326 (2006).
[Crossref]

Sheppard, C. J.

K. Agarwal, R. Chen, L. S. Koh, C. J. Sheppard, and X. Chen, “Crossing the resolution limit in near-infrared imaging of silicon chips: targeting 10-nm node technology,” Phys. Rev. X 5, 021014 (2015).

Straub, J.

P. Schiebener, J. Straub, J. L. Sengers, and J. Gallagher, “Refractive index of water and steam as function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 19, 677–717 (1990).
[Crossref]

Syassen, K.

K. Syassen, “Ruby under pressure,” High Pressure Res. 28, 75–126 (2008).
[Crossref]

Ünlü, M.

S. Ippolito, B. Goldberg, and M. Ünlü, “Theoretical analysis of numerical aperture increasing lens microscopy,” J. Appl. Phys. 97, 053105 (2005).
[Crossref]

S. B. Ippolito, B. Goldberg, and M. Ünlü, “High spatial resolution subsurface microscopy,” Appl. Phys. Lett. 78, 4071–4073 (2001).
[Crossref]

Ünlü, S.

van den Ende, D.

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4, 6378 (2014).
[Crossref]

Wang, Q.-H.

L. Li, Q.-H. Wang, and W. Jiang, “Liquid lens with double tunable surfaces for large power tunability and improved optical performance,” J. Opt. 13, 115503 (2011).
[Crossref]

Warburton, R.

K. A. Serrels, E. Ramsay, P. A. Dalgarno, B. Gerardot, J. O’Connor, R. H. Hadfield, R. Warburton, and D. Reid, “Solid immersion lens applications for nanophotonic devices,” J. Nanophoton. 2, 021854 (2008).
[Crossref]

Wenk, H. R.

H. R. Wenk and A. Bulakh, Minerals: Their Constitution and Origin (Cambridge University, 2004).

Wiechert, W.

Y. Chen, A. Best, T. Haschke, W. Wiechert, and H.-J. Butt, “Stress and failure at mechanical contacts of microspheres under uniaxial compression,” J. Appl. Phys. 101, 084908 (2007).

Y. Chen, A. Best, H.-J. Butt, R. Boehler, T. Haschke, and W. Wiechert, “Pressure distribution in a mechanical microcontact,” Appl. Phys. Lett. 88, 234101 (2006).
[Crossref]

Wu, B.

Wu, Q.

Q. Wu, R. D. Grober, D. Gammon, and D. Katzer, “Imaging spectroscopy of two-dimensional excitons in a narrow GaAs/AlGaAs quantum well,” Phys. Rev. Lett. 83, 2652–2655 (1999).
[Crossref]

Wu, S.-T.

Xu, J.

H. Mao, J. Xu, and P. Bell, “Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions,” J. Geophys. Res. 91, 4673–4676 (1986).
[Crossref]

Zaidi, A.

A. Zaidi, Y. Makdisi, K. Bhatia, and I. Abutahun, “Accurate method for the determination of the refractive index of liquids using a laser,” Rev. Sci. Instrum. 60, 803–805 (1989).
[Crossref]

Am. Mineral. (1)

R. Meyrowitz, “A compilation and classification of immersion media of high index of refraction,” Am. Mineral. 40, 398–409 (1955).

Appl. Opt. (2)

Appl. Phys. Lett. (4)

Y. Chen, A. Best, H.-J. Butt, R. Boehler, T. Haschke, and W. Wiechert, “Pressure distribution in a mechanical microcontact,” Appl. Phys. Lett. 88, 234101 (2006).
[Crossref]

S. B. Ippolito, B. Goldberg, and M. Ünlü, “High spatial resolution subsurface microscopy,” Appl. Phys. Lett. 78, 4071–4073 (2001).
[Crossref]

S. M. Mansfield and G. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57, 2615–2616 (1990).
[Crossref]

S. Kuiper and B. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).
[Crossref]

Biomed. Opt. Express (1)

High Pressure Res. (1)

K. Syassen, “Ruby under pressure,” High Pressure Res. 28, 75–126 (2008).
[Crossref]

J. Appl. Phys. (3)

Y. Chen, A. Best, T. Haschke, W. Wiechert, and H.-J. Butt, “Stress and failure at mechanical contacts of microspheres under uniaxial compression,” J. Appl. Phys. 101, 084908 (2007).

W. B. Holzapfel, “Refinement of the ruby luminescence pressure scale,” J. Appl. Phys. 93, 1813–1818 (2003).
[Crossref]

S. Ippolito, B. Goldberg, and M. Ünlü, “Theoretical analysis of numerical aperture increasing lens microscopy,” J. Appl. Phys. 97, 053105 (2005).
[Crossref]

J. Geophys. Res. (1)

H. Mao, J. Xu, and P. Bell, “Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions,” J. Geophys. Res. 91, 4673–4676 (1986).
[Crossref]

J. Nanophoton. (1)

K. A. Serrels, E. Ramsay, P. A. Dalgarno, B. Gerardot, J. O’Connor, R. H. Hadfield, R. Warburton, and D. Reid, “Solid immersion lens applications for nanophotonic devices,” J. Nanophoton. 2, 021854 (2008).
[Crossref]

J. Opt. (1)

L. Li, Q.-H. Wang, and W. Jiang, “Liquid lens with double tunable surfaces for large power tunability and improved optical performance,” J. Opt. 13, 115503 (2011).
[Crossref]

J. Phys. Chem. B (1)

F. Lamelas, “Index of refraction, density, and solubility of ammonium iodide solutions at high pressure,” J. Phys. Chem. B 117, 2789–2795 (2013).
[Crossref]

J. Phys. Chem. Ref. Data (1)

P. Schiebener, J. Straub, J. L. Sengers, and J. Gallagher, “Refractive index of water and steam as function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 19, 677–717 (1990).
[Crossref]

New J. Chem. (1)

M. Deetlefs, K. R. Seddon, and M. Shara, “Neoteric optical media for refractive index determination of gems and minerals,” New J. Chem. 30, 317–326 (2006).
[Crossref]

Opt. Eng. (1)

P. B. Chapple, “Beam waist and m2 measurement using a finite slit,” Opt. Eng. 33, 2461–2466 (1994).
[Crossref]

Opt. Express (2)

Phys. Rev. Lett. (1)

Q. Wu, R. D. Grober, D. Gammon, and D. Katzer, “Imaging spectroscopy of two-dimensional excitons in a narrow GaAs/AlGaAs quantum well,” Phys. Rev. Lett. 83, 2652–2655 (1999).
[Crossref]

Phys. Rev. X (1)

K. Agarwal, R. Chen, L. S. Koh, C. J. Sheppard, and X. Chen, “Crossing the resolution limit in near-infrared imaging of silicon chips: targeting 10-nm node technology,” Phys. Rev. X 5, 021014 (2015).

Rev. Sci. Instrum. (1)

A. Zaidi, Y. Makdisi, K. Bhatia, and I. Abutahun, “Accurate method for the determination of the refractive index of liquids using a laser,” Rev. Sci. Instrum. 60, 803–805 (1989).
[Crossref]

Sci. Rep. (1)

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4, 6378 (2014).
[Crossref]

Other (5)

H. R. Wenk and A. Bulakh, Minerals: Their Constitution and Origin (Cambridge University, 2004).

R. W. Hughes, Ruby & Sapphire (Rwh Pub, 1997).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 2008).

D. R. Lide, Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data 2012-2013 (CRC Press, 2012).

J. Magnes, D. Odera, J. Hartke, M. Fountain, L. Florence, and V. Davis, “Quantitative and qualitative study of Gaussian beam visualization techniques,” arXiv:physics/0605102 (2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic of the liquid refractometer setup, based on the design of Nemoto [12]. The cuvette cross section is 20    mm × 10    mm , with optical measurements performed across the width d = 10    mm .

Fig. 2.
Fig. 2.

Measurement of laser beam displacement δ by knife-edge scanning. The inset shows the measured power versus the knife position. The main plot shows fits to two Gaussian beam profiles (i.e., derivatives of the inset) for the angles θ = 0 ° and 20°. The difference between the two maxima is the displacement δ ( 20 ° ) .

Fig. 3.
Fig. 3.

Refractive indices of both pure diiodomethane (black lines) and with dissolved antimony tribromide (colored lines). Each panel compares the results for a single wavelength, as a function of concentration and temperature. The refractive index for ordinary rays through sapphire is shown by dotted line for comparison.

Fig. 4.
Fig. 4.

Transmittance as a function of wavelength for a cuvette of width d = 10    mm .

Fig. 5.
Fig. 5.

(a) Schematic of the design for simultaneous increase of NA and WD, using a sapphire-based aNAIL lens system immersed in the refractive index matching liquid (solution of SbBr 3 in CH 2 I 2 ). (b) Picture of an aNAIL and backing objective lens system, designed to have NA = 1.17 and WD = 12    mm .

Tables (2)

Tables Icon

Table 1. Proportional Increase (%) in the Beam Width, Referenced Against an Empty Cuvette

Tables Icon

Table 2. Physical Properties of the Liquid Solutions of Different Concentrations a

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

n = n 0 sin θ 1 + [ cos θ sin θ Δ / d ] 2 ,

Metrics