Abstract

In this paper, we propose and theoretically investigate a silicon-based hybrid nonlinear photonic device with a silicon nitride (Si3N4) film sandwiched between a graphene sheet and a silicon photonic crystal waveguide (PCW). With properly designed structural parameters of the silicon PCW and the presence of Si3N4 buffer layer, enhanced interaction between the optical field and graphene can be achieved to improve four-wave mixing (FWM) process in the device. The influences of the silicon PCW and the Si3N4 buffer layer thicknesses on FWM conversion efficiency are also analyzed. Numerical simulation results show that up to 19.66 dB improvement of the FWM conversion efficiency can be obtained in the proposed device.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Larger enhancement in four-wave mixing from graphene embedded in one-dimensional photonic crystals

Lei Wang, Tiecheng Wang, Shihao Zhang, Ping Xie, and Xiangdong Zhang
J. Opt. Soc. Am. B 34(9) 2000-2010 (2017)

A proposal for enhancing four-wave mixing in slow light engineered photonic crystal waveguides and its application to optical regeneration

M. Ebnali-Heidari, C. Monat, C. Grillet, and M. K Moravvej-Farshi
Opt. Express 17(20) 18340-18353 (2009)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription