Abstract

Electronic dynamics span broad energy scales with ultrafast time constants in the condensed phase. Two-dimensional (2D) electronic spectroscopy permits the study of these dynamics with simultaneous resolution in both frequency and time. In practice, this technique is sensitive to changes in nonlinear dispersion in the laser pulses as time delays are varied during the experiment. We have developed a 2D spectrometer that uses broadband continuum generated in argon as the light source. Using this visible light in phase-sensitive optical experiments presents new challenges in implementation. We demonstrate all-reflective interferometric delays using angled stages. Upon selecting an 180nm window of the available bandwidth at 10fs compression, we probe the nonlinear response of broadly absorbing CdSe quantum dots and electronic transitions of Chlorophyll a.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. Hybl, A. A. Ferro, and D. M. Jonas, “Two-dimensional Fourier transform electronic spectroscopy,” J. Chem. Phys. 115, 6606–6622 (2001).
    [CrossRef]
  2. D. M. Jonas, “Two-dimensional femtosecond spectroscopy,” Annu. Rev. Phys. Chem. 54, 425–463 (2003).
    [CrossRef]
  3. M. L. Cowan, J. P. Ogilvie, and R. J. D. Miller, “Two-dimensional spectroscopy using diffractive optics based phased-locked photon echoes,” Chem. Phys. Lett. 386, 184–189 (2004).
    [CrossRef]
  4. T. Brixner, T. Mancal, I. Stiopkin, and G. Fleming, “Phase-stabilized two-dimensional electronic spectroscopy,” J. Chem. Phys. 121, 4221–4236 (2004).
    [CrossRef]
  5. K. Wells, Z. Zhang, J. Rouxel, and H. Tan, “Measuring the spectral diffusion of chlorophyll a using two-dimensional electronic spectroscopy,” J. Phys. Chem. B 117, 2294–2299 (2013).
    [CrossRef]
  6. J. D. Hybl, A. Yu, D. A. Farrow, and D. M. Jonas, “Polar solvation dynamics in the femtosecond evolution of two-dimensional Fourier transform spectra,” J. Phys. Chem. A 106, 7651–7654 (2002).
    [CrossRef]
  7. T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434, 625–628 (2005).
    [CrossRef]
  8. E. L. Read, G. S. Engel, T. R. Calhoun, T. Mancal, T. K. Ahn, R. E. Blankenship, and G. R. Fleming, “Cross-peak-specific two-dimensional electronic spectroscopy,” Proc. Natl. Acad. Sci. USA 104, 14203–14208 (2007).
    [CrossRef]
  9. E. Read, G. Engel, T. Calhoun, T. Mancal, T. Ahn, R. Blankenship, and G. Fleming, “Cross-peak-specific two-dimensional electronic spectroscopy,” Proc. Natl. Acad. Sci. USA 104, 14203–14208 (2007).
    [CrossRef]
  10. E. Collini, C. Y. Wong, K. E. Wilk, P. M. G. Curmi, P. Brumer, and G. D. Scholes, “Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature,” Nature 463, 644–647 (2010).
    [CrossRef]
  11. G. Schlau-Cohen, A. Ishizaki, and G. Fleming, “Two-dimensional electronic spectroscopy and photosynthesis: fundamentals and applications to photosynthetic light-harvesting,” Chem. Phys. 386, 1–22 (2011).
    [CrossRef]
  12. N. Ginsberg, J. Davis, M. Ballottari, Y. Cheng, R. Bassi, and G. Fleming, “Solving structure in the CP29 light harvesting complex with polarization-phased 2D electronic spectroscopy,” Proc. Natl. Acad. Sci. USA 108, 3848–3853 (2011).
    [CrossRef]
  13. E. Harel and G. S. Engel, “Quantum coherence spectroscopy reveals complex dynamics in bacterial light-harvesting complex 2 (LH2),” Proc. Natl. Acad. Sci. USA 109, 706–711(2012).
  14. E. E. Ostroumov, R. M. Mulvaney, R. J. Cogdell, and G. D. Scholes, “Broadband 2D electronic spectroscopy reveals a carotenoid dark state in purple bacteria,” Science 340, 52–56 (2013).
    [CrossRef]
  15. G. Moody, R. Singh, H. Li, I. A. Akimov, M. Bayer, D. Reuter, A. D. Wieck, A. S. Bracker, D. Gammon, and S. T. Cundiff, “Influence of confinement on biexciton binding in semiconductor quantum dot ensembles measured with two-dimensional spectroscopy,” Phys. Rev. B 87, 041304 (2013).
    [CrossRef]
  16. C. Wong and G. Scholes, “Biexcitonic fine structure of CdSe nanocrystals probed by polarization-dependent two-dimensional photon echo spectroscopy,” J. Phys. Chem. A 115, 3797–3806 (2011).
    [CrossRef]
  17. D. Turner, Y. Hassan, and G. Scholes, “Exciton superposition states in CdSe nanocrystals measured using broadband two-dimensional electronic spectroscopy,” Nano Lett. 12, 880–886 (2012).
    [CrossRef]
  18. G. Griffin, S. Ithurria, D. Dolzhnikov, A. Linkin, D. Talapin, and G. Engel, “Two-dimensional electronic spectroscopy of CdSe nanoparticles at very low pulse power,” J. Chem. Phys. 138, 014705 (2013).
    [CrossRef]
  19. P. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, “Femtosecond phase-coherent two-dimensional spectroscopy,” Science 300, 1553–1555 (2003).
    [CrossRef]
  20. X. Dai, A. Bristow, D. Karaiskaj, and S. Cundiff, “Two-dimensional Fourier-transform spectroscopy of potassium vapor,” Phys. Rev. A 82, 052503 (2010).
    [CrossRef]
  21. P. F. Tekavec, G. A. Lott, and A. H. Marcus, “Fluorescence-detected two-dimensional electronic coherence spectroscopy by acousto-optic phase modulation,” J. Chem. Phys. 127, 214307 (2007).
    [CrossRef]
  22. H. Li, A. D. Bristow, M. E. Siemens, G. Moody, and S. T. Cundiff, “Unraveling quantum pathways using optical 3d Fourier-transform spectroscopy,” Nat. Commun. 4, 1390 (2013).
    [CrossRef]
  23. M. Cho, “Coherent two-dimensional optical spectroscopy,” Chem. Rev. 108, 1331–1418 (2008).
    [CrossRef]
  24. J. Hybl, A. Albrecht, S. Faeder, and D. Jonas, “Two-dimensional electronic spectroscopy,” Chem. Phys. Lett. 297, 307–313 (1998).
    [CrossRef]
  25. M. Cho, Two-dimensional Optical Spectroscopy (CRC Press, 2009).
  26. R. N. Augulis and D. Zigmantas, “Detector and dispersive delay calibration issues in broadband 2D electronic spectroscopy,” J. Opt. Soc. Am. B 30, 1770–1774 (2013).
    [CrossRef]
  27. J. A. Davis, T. R. Calhoun, K. A. Nugent, and H. M. Quiney, “Ultrafast optical multidimensional spectroscopy without interferometry,” J. Chem. Phys. 134, 024504 (2011).
    [CrossRef]
  28. Y. Zhang, K. Meyer, C. Ott, and T. Pfeifer, “Passively phase-stable, monolithic, all-reflective two-dimensional electronic spectroscopy based on a four-quadrant mirror,” Opt. Lett. 38, 356–358 (2013).
    [CrossRef]
  29. U. Selig, C. F. Schleussner, M. Foerster, F. Langhojer, P. Nuernberger, and T. Brixner, “Coherent two-dimensional ultraviolet spectroscopy in fully noncollinear geometry,” Opt. Lett. 35, 4178–4180 (2010).
    [CrossRef]
  30. U. Selig, F. Langhojer, F. Dimler, T. Lohrig, C. Schwarz, B. Gieseking, and T. Brixner, “Inherently phase-stable coherent two-dimensional spectroscopy using only conventional optics,” Opt. Lett. 33, 2851–2853 (2008).
    [CrossRef]
  31. T. Zhang, C. Borca, X. Li, and S. Cundiff, “Optical two-dimensional Fourier transform spectroscopy with active interferometric stabilization,” Opt. Express 13, 7432–7441 (2005).
    [CrossRef]
  32. E. Harel, A. Fidler, and G. Engel, “Real-time mapping of electronic structure with single-shot two-dimensional electronic spectroscopy,” Proc. Natl. Acad. Sci. USA 107, 16444–16447 (2010).
    [CrossRef]
  33. E. Harel, A. Fidler, and G. Engel, “Single-shot gradient-assisted photon echo electronic spectroscopy,” J. Phys. Chem. A 115, 3787–3796 (2011).
    [CrossRef]
  34. D. B. Turner, K. W. Stone, K. Gundogdu, and K. A. Nelson, “Invited article: the coherent optical laser beam recombination technique (colbert) spectrometer: coherent multidimensional spectroscopy made easier,” Rev. Sci. Instrum. 82, 081301 (2011).
    [CrossRef]
  35. S. Yin, O. Leonov, F. Yu, V. Molotok, and V. Kludzin, “Design and fabrication of a 24-channel acousto-optic spatial light modulator,” Appl. Opt. 37, 7482–7489 (1998).
    [CrossRef]
  36. S.-H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, “Automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide,” Proc. Natl. Acad. Sci. USA 104, 14197–14202 (2007).
    [CrossRef]
  37. J. Myers, K. Lewis, P. Tekavec, and J. Ogilvie, “Two-color two-dimensional Fourier transform electronic spectroscopy with a pulse-shaper,” Opt. Express 16, 17420–17428 (2008).
    [CrossRef]
  38. P. Tyagi, J. I. Saari, B. Walsh, A. Kabir, V. Crozatier, N. Forget, and P. Kambhampati, “Two-color two-dimensional electronic spectroscopy using dual acousto-optic pulse shapers for complete amplitude, phase, and polarization control of femtosecond laser pulses,” J. Phys. Chem. A 117, 6264–6269 (2013).
    [CrossRef]
  39. K. Iizuka, Elements of Photonics (Wiley-Interscience, 2002).
  40. B. A. West, B. P. Molesky, P. G. Giokas, and A. M. Moran, “Uncovering molecular relaxation processes with nonlinear spectroscopies in the deep UV,” Chem. Phys. 423, 92–104 (2013).
    [CrossRef]
  41. E. Harel, P. D. Long, and G. S. Engel, “Single-shot ultrabroadband two-dimensional electronic spectroscopy of the light-harvesting complex LH2,” Opt. Lett. 36, 1665–1667 (2011).
    [CrossRef]
  42. D. E. Wilcox, F. D. Fuller, and J. P. Ogilvie, “Fast second-harmonic generation frequency-resolved optical gating using only a pulse shaper,” Opt. Lett. 38, 2980–2983 (2013).
    [CrossRef]
  43. D. Kartashov, S. Aliauskas, A. Puglys, A. Voronin, A. Zheltikov, M. Petrarca, P. Béjot, J. Kasparian, J.-P. Wolf, and A. Baltuka, “White light generation over three octaves by femtosecond filament at 3.9 μm in argon,” Opt. Lett. 37, 3456–3458 (2012).
    [CrossRef]
  44. M. Nisoli, S. DeSilvestri, and O. Svelto, “Generation of high energy 10  fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68, 2793–2795 (1996).
    [CrossRef]
  45. M. Nisoli, G. Sansone, S. Stagira, C. Vozzi, S. De Silvestri, and O. Svelto, “Ultra-broadband continuum generation by hollow-fiber cascading,” Appl. Phys. B 75, 601–604 (2002).
    [CrossRef]
  46. G. Steinmeyer and G. Stibenz, “Generation of sub-4-fs pulses via compression of a white-light continuum using only chirped mirrors,” Appl. Phys. B 82, 175–181 (2006).
    [CrossRef]
  47. H. Wang, Y. Wu, C. Li, H. Mashiko, S. Gilbertson, and Z. Chang, “Generation of 0.5  mJ, few-cycle laser pulses by an adaptive phase modulator,” Opt. Express 16, 14448–14455 (2008).
    [CrossRef]
  48. K. Yamane, Z. Zhang, K. Oka, R. Morita, M. Yamashita, and A. Suguro, “Optical pulse compression to 3.4 fs in the monocycle region by feedback phase compensation,” Opt. Lett. 28, 2258–2260 (2003).
    [CrossRef]
  49. B. Xu, Y. Coello, V. Lozovoy, D. Harris, and M. Dantus, “Pulse shaping of octave spanning femtosecond laser pulses,” Opt. Express 14, 10939–10944 (2006).
    [CrossRef]
  50. B. Xu, J. Gunn, J. Dela Cruz, V. Lozovoy, and M. Dantus, “Quantitative investigation of the multiphoton intrapulse interference phase scan method for simultaneous phase measurement and compensation of femtosecond laser pulses,” J. Opt. Soc. Am. B 23, 750–759 (2006).
    [CrossRef]
  51. R. Trebino, K. DeLong, D. Fittinghoff, J. Sweetser, M. Krumbugel, B. Richman, and D. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277–3295 (1997).
    [CrossRef]
  52. R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Springer, 2002).
  53. J. Sweetser, D. Fittinghoff, and R. Trebino, “Transient-grating frequency-resolved optical gating,” Opt. Lett. 22, 519–521 (1997).
    [CrossRef]
  54. N. Christensson, F. Milota, J. Hauer, J. Sperling, O. Bixner, A. Nemeth, and H. F. Kauffmann, “High frequency vibrational modulations in two-dimensional electronic spectra and their resemblance to electronic coherence signatures,” J. Phys. Chem. B 115, 5383–5391 (2011).
    [CrossRef]
  55. D. B. Turner, K. E. Wilk, P. M. G. Curmi, and G. D. Scholes, “Comparison of electronic and vibrational coherence measured by two-dimensional electronic spectroscopy,” J. Phys. Chem. Lett. 2, 1904–1911 (2011).
    [CrossRef]
  56. M. K. Yetzbacher, N. Belabas, K. A. Kitney, and D. M. Jonas, “Propagation, beam geometry, and detection distortions of peak shapes in two-dimensional Fourier transform spectra,” J. Chem. Phys. 126, 044511 (2007).
    [CrossRef]
  57. C. Dorrer, N. Belabas, J. P. Likforman, and M. Joffre, “Spectral resolution and sampling issues in Fourier-transform spectral interferometry,” J. Opt. Soc. Am. B 17, 1795–1802 (2000).
    [CrossRef]
  58. S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford, 1995).
  59. A. Zewail, “Femtochemistry: atomic-scale dynamics of the chemical bond,” J. Phys. Chem. A 104, 5660–5694 (2000).
    [CrossRef]
  60. M. Drescher, M. Hentschel, R. Kienberger, M. Uiberacker, V. Yakovlev, A. Scrinzi, T. Westerwalbesloh, U. Kleineberg, U. Heinzmann, and F. Krausz, “Time-resolved atomic inner-shell spectroscopy,” Nature 419, 803–807 (2002).
    [CrossRef]
  61. P. Kambhampati, “Hot exciton relaxation dynamics in semiconductor quantum dots: radiationless transitions on the nanoscale,” J. Phys. Chem. C 115, 22089–22109 (2011).
    [CrossRef]
  62. J. Anna, E. Ostroumov, K. Maghlaoui, J. Barber, and G. Scholes, “Two-dimensional electronic spectroscopy reveals ultrafast downhill energy transfer in photosystem I trimers of the Cyanobacterium Thermosynechococcus elongatus,” J. Phys. Chem. Lett. 3, 3677–3684 (2012).
    [CrossRef]
  63. J. Du, K. Nakata, Y. Jiang, E. Tokunaga, and T. Kobayashi, “Spectral modulation observed in Chl-a by ultrafast laser spectroscopy,” Opt. Express 19, 22480–22485 (2011).
    [CrossRef]
  64. V. I. Prokhorenko, A. Halpin, and R. J. D. Miller, “Coherently-controlled two-dimensional photon echo electronic spectroscopy,” Opt. Express 17, 9764–9779 (2009).
    [CrossRef]
  65. G. Panitchayangkoon, D. Hayes, K. Fransted, J. Caram, E. Harel, J. Wen, R. Blankenship, and G. Engel, “Long-lived quantum coherence in photosynthetic complexes at physiological temperature,” Proc. Natl. Acad. Sci. USA 107, 12766–12770 (2010).
    [CrossRef]
  66. P. F. Tekavec, J. A. Myers, K. L. M. Lewis, F. D. Fuller, and J. P. Ogilvie, “Effects of chirp on two-dimensional Fourier transform electronic spectra,” Opt. Express 18, 11015–11024 (2010).
    [CrossRef]
  67. M. Li, J. P. Nibarger, C. Guo, and G. N. Gibson, “Dispersion-free transient-grating frequency-resolved optical gating,” Appl. Opt. 38, 5250–5253 (1999).
    [CrossRef]
  68. A. L. Efros and M. Rosen, “The electronic structure of semiconductor nanocrystals,” Annu. Rev. Mater. Sci. 30, 475–521 (2000).
    [CrossRef]
  69. D. Norris and M. Bawendi, “Measurement and assignment of the size-dependent optical spectrum in CdSe quantum dots,” Phys. Rev. B 53, 16338–16346 (1996).
    [CrossRef]
  70. V. I. Klimov, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, “Electron and hole relaxation pathways in semiconductor quantum dots,” Phys. Rev. B 60, 13740–13749 (1999).
    [CrossRef]
  71. V. I. Klimov, “Optical nonlinearities and ultrafast carrier dynamics in semiconductor nanocrystals,” J. Phys. Chem. B 104, 6112–6123 (2000).
    [CrossRef]
  72. V. I. Klimov, “Spectral and dynamical properties of multiexcitons in semiconductor nanocrystals,” Annu. Rev. Phys. Chem. 58, 635–673 (2007).
    [CrossRef]
  73. S. L. Sewall, A. Franceschetti, R. R. Cooney, A. Zunger, and P. Kambhampati, “Direct observation of the structure of band-edge biexcitons in colloidal semiconductor CdSe quantum dots,” Phys. Rev. B 80, 081310 (2009).
    [CrossRef]
  74. G. D. Scholes, “Selection rules for probing biexcitons and electron spin transitions in isotropic quantum dot ensembles,” J. Chem. Phys. 121, 10104 (2004).
    [CrossRef]
  75. S. L. Sewall, R. R. Cooney, K. E. H. Anderson, E. A. Dias, D. M. Sagar, and P. Kambhampati, “State-resolved studies of biexcitons and surface trapping dynamics in semiconductor quantum dots,” J. Chem. Phys. 129, 084701 (2008).
    [CrossRef]
  76. K. W. Stone, K. Gundogdu, D. B. Turner, X. Li, S. T. Cundiff, and K. A. Nelson, “Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells,” Science 324, 1169–1173 (2009).
    [CrossRef]
  77. P. Kambhampati, “Unraveling the structure and dynamics of excitons in semiconductor quantum dots,” Acc. Chem. Res. 44, 1–13 (2011).
    [CrossRef]
  78. D. B. Turner, Y. Hassan, and G. D. Scholes, “Exciton superposition states in CdSe nanocrystals measured using broadband two-dimensional electronic spectroscopy,” Nano Lett. 12, 880–886 (2012).
    [CrossRef]
  79. C. Y. Wong and G. D. Scholes, “Using two-dimensional photon echo spectroscopy to probe the fine structure of the ground state biexciton of CdSe nanocrystals,” J. Lumin. 131, 366–374 (2011).
    [CrossRef]
  80. P. Kambhampati, “Multiexcitons in semiconductor nanocrystals: a platform for optoelectronics at high carrier concentration,” J. Phys. Chem. Lett. 3, 1182–1190 (2012).
    [CrossRef]
  81. M. Ratsep, J. Linnanto, and A. Freiberg, “Mirror symmetry and vibrational structure in optical spectra of Chlorophyll a,” J. Chem. Phys. 130, 194501 (2009).
    [CrossRef]
  82. R. E. Blankenship, Molecular Mechanisms of Photosynthesis (Blackwell Science, 2002).
  83. J. Du, T. Teramoto, K. Nakata, E. Tokunaga, and T. Kobayashi, “Real-time vibrational dynamics in Chlorophyll a studied with a few-cycle pulse laser,” Biophys. J. 101, 995–1003 (2011).
    [CrossRef]
  84. J. L. Hughes, B. Conlon, T. Wydrzynski, and E. Krausz, “The assignment of Qy(1,0) vibrational structure and Qx for Chlorophyll a,” Phys. Proc. 3, 9 (2010).
  85. I. Renge, K. Mauring, P. Sarv, and R. Avarmaa, “Vibrationally resolved optical-spectra of chlorophyll derivatives in different solid media,” J. Phys. Chem. 90, 6611–6616 (1986).
    [CrossRef]
  86. J. R. Reimers, Z. L. Cai, R. Kobayashi, M. Ratsep, A. Freiberg, and E. Krausz, “Assignment of the Q-bands of the chlorophylls: coherence loss via Qx—Qy mixing,” Sci. Rep. 3, 2761 (2013).
    [CrossRef]
  87. M. Umetsu, Z. Y. Wang, M. Kobayashi, and T. Nozawa, “Interaction of photosynthetic pigments with various organic solvents—magnetic circular dichroism approach and application to chlorosomes,” Biochim. Biophys. Acta 1410, 19–31 (1999).
    [CrossRef]
  88. L. De Boni, D. S. Correa, F. J. Pavinatto, D. S. dos Santos, and C. R. Mendonca, “Excited state absorption spectrum of chlorophyll a obtained with white-light continuum,” J. Chem. Phys. 126, 165102 (2007).
    [CrossRef]

2013 (11)

K. Wells, Z. Zhang, J. Rouxel, and H. Tan, “Measuring the spectral diffusion of chlorophyll a using two-dimensional electronic spectroscopy,” J. Phys. Chem. B 117, 2294–2299 (2013).
[CrossRef]

E. E. Ostroumov, R. M. Mulvaney, R. J. Cogdell, and G. D. Scholes, “Broadband 2D electronic spectroscopy reveals a carotenoid dark state in purple bacteria,” Science 340, 52–56 (2013).
[CrossRef]

G. Moody, R. Singh, H. Li, I. A. Akimov, M. Bayer, D. Reuter, A. D. Wieck, A. S. Bracker, D. Gammon, and S. T. Cundiff, “Influence of confinement on biexciton binding in semiconductor quantum dot ensembles measured with two-dimensional spectroscopy,” Phys. Rev. B 87, 041304 (2013).
[CrossRef]

G. Griffin, S. Ithurria, D. Dolzhnikov, A. Linkin, D. Talapin, and G. Engel, “Two-dimensional electronic spectroscopy of CdSe nanoparticles at very low pulse power,” J. Chem. Phys. 138, 014705 (2013).
[CrossRef]

H. Li, A. D. Bristow, M. E. Siemens, G. Moody, and S. T. Cundiff, “Unraveling quantum pathways using optical 3d Fourier-transform spectroscopy,” Nat. Commun. 4, 1390 (2013).
[CrossRef]

R. N. Augulis and D. Zigmantas, “Detector and dispersive delay calibration issues in broadband 2D electronic spectroscopy,” J. Opt. Soc. Am. B 30, 1770–1774 (2013).
[CrossRef]

Y. Zhang, K. Meyer, C. Ott, and T. Pfeifer, “Passively phase-stable, monolithic, all-reflective two-dimensional electronic spectroscopy based on a four-quadrant mirror,” Opt. Lett. 38, 356–358 (2013).
[CrossRef]

P. Tyagi, J. I. Saari, B. Walsh, A. Kabir, V. Crozatier, N. Forget, and P. Kambhampati, “Two-color two-dimensional electronic spectroscopy using dual acousto-optic pulse shapers for complete amplitude, phase, and polarization control of femtosecond laser pulses,” J. Phys. Chem. A 117, 6264–6269 (2013).
[CrossRef]

B. A. West, B. P. Molesky, P. G. Giokas, and A. M. Moran, “Uncovering molecular relaxation processes with nonlinear spectroscopies in the deep UV,” Chem. Phys. 423, 92–104 (2013).
[CrossRef]

D. E. Wilcox, F. D. Fuller, and J. P. Ogilvie, “Fast second-harmonic generation frequency-resolved optical gating using only a pulse shaper,” Opt. Lett. 38, 2980–2983 (2013).
[CrossRef]

J. R. Reimers, Z. L. Cai, R. Kobayashi, M. Ratsep, A. Freiberg, and E. Krausz, “Assignment of the Q-bands of the chlorophylls: coherence loss via Qx—Qy mixing,” Sci. Rep. 3, 2761 (2013).
[CrossRef]

2012 (6)

D. B. Turner, Y. Hassan, and G. D. Scholes, “Exciton superposition states in CdSe nanocrystals measured using broadband two-dimensional electronic spectroscopy,” Nano Lett. 12, 880–886 (2012).
[CrossRef]

P. Kambhampati, “Multiexcitons in semiconductor nanocrystals: a platform for optoelectronics at high carrier concentration,” J. Phys. Chem. Lett. 3, 1182–1190 (2012).
[CrossRef]

D. Kartashov, S. Aliauskas, A. Puglys, A. Voronin, A. Zheltikov, M. Petrarca, P. Béjot, J. Kasparian, J.-P. Wolf, and A. Baltuka, “White light generation over three octaves by femtosecond filament at 3.9 μm in argon,” Opt. Lett. 37, 3456–3458 (2012).
[CrossRef]

J. Anna, E. Ostroumov, K. Maghlaoui, J. Barber, and G. Scholes, “Two-dimensional electronic spectroscopy reveals ultrafast downhill energy transfer in photosystem I trimers of the Cyanobacterium Thermosynechococcus elongatus,” J. Phys. Chem. Lett. 3, 3677–3684 (2012).
[CrossRef]

E. Harel and G. S. Engel, “Quantum coherence spectroscopy reveals complex dynamics in bacterial light-harvesting complex 2 (LH2),” Proc. Natl. Acad. Sci. USA 109, 706–711(2012).

D. Turner, Y. Hassan, and G. Scholes, “Exciton superposition states in CdSe nanocrystals measured using broadband two-dimensional electronic spectroscopy,” Nano Lett. 12, 880–886 (2012).
[CrossRef]

2011 (14)

C. Wong and G. Scholes, “Biexcitonic fine structure of CdSe nanocrystals probed by polarization-dependent two-dimensional photon echo spectroscopy,” J. Phys. Chem. A 115, 3797–3806 (2011).
[CrossRef]

G. Schlau-Cohen, A. Ishizaki, and G. Fleming, “Two-dimensional electronic spectroscopy and photosynthesis: fundamentals and applications to photosynthetic light-harvesting,” Chem. Phys. 386, 1–22 (2011).
[CrossRef]

N. Ginsberg, J. Davis, M. Ballottari, Y. Cheng, R. Bassi, and G. Fleming, “Solving structure in the CP29 light harvesting complex with polarization-phased 2D electronic spectroscopy,” Proc. Natl. Acad. Sci. USA 108, 3848–3853 (2011).
[CrossRef]

E. Harel, A. Fidler, and G. Engel, “Single-shot gradient-assisted photon echo electronic spectroscopy,” J. Phys. Chem. A 115, 3787–3796 (2011).
[CrossRef]

D. B. Turner, K. W. Stone, K. Gundogdu, and K. A. Nelson, “Invited article: the coherent optical laser beam recombination technique (colbert) spectrometer: coherent multidimensional spectroscopy made easier,” Rev. Sci. Instrum. 82, 081301 (2011).
[CrossRef]

J. A. Davis, T. R. Calhoun, K. A. Nugent, and H. M. Quiney, “Ultrafast optical multidimensional spectroscopy without interferometry,” J. Chem. Phys. 134, 024504 (2011).
[CrossRef]

J. Du, K. Nakata, Y. Jiang, E. Tokunaga, and T. Kobayashi, “Spectral modulation observed in Chl-a by ultrafast laser spectroscopy,” Opt. Express 19, 22480–22485 (2011).
[CrossRef]

P. Kambhampati, “Hot exciton relaxation dynamics in semiconductor quantum dots: radiationless transitions on the nanoscale,” J. Phys. Chem. C 115, 22089–22109 (2011).
[CrossRef]

E. Harel, P. D. Long, and G. S. Engel, “Single-shot ultrabroadband two-dimensional electronic spectroscopy of the light-harvesting complex LH2,” Opt. Lett. 36, 1665–1667 (2011).
[CrossRef]

N. Christensson, F. Milota, J. Hauer, J. Sperling, O. Bixner, A. Nemeth, and H. F. Kauffmann, “High frequency vibrational modulations in two-dimensional electronic spectra and their resemblance to electronic coherence signatures,” J. Phys. Chem. B 115, 5383–5391 (2011).
[CrossRef]

D. B. Turner, K. E. Wilk, P. M. G. Curmi, and G. D. Scholes, “Comparison of electronic and vibrational coherence measured by two-dimensional electronic spectroscopy,” J. Phys. Chem. Lett. 2, 1904–1911 (2011).
[CrossRef]

C. Y. Wong and G. D. Scholes, “Using two-dimensional photon echo spectroscopy to probe the fine structure of the ground state biexciton of CdSe nanocrystals,” J. Lumin. 131, 366–374 (2011).
[CrossRef]

J. Du, T. Teramoto, K. Nakata, E. Tokunaga, and T. Kobayashi, “Real-time vibrational dynamics in Chlorophyll a studied with a few-cycle pulse laser,” Biophys. J. 101, 995–1003 (2011).
[CrossRef]

P. Kambhampati, “Unraveling the structure and dynamics of excitons in semiconductor quantum dots,” Acc. Chem. Res. 44, 1–13 (2011).
[CrossRef]

2010 (7)

J. L. Hughes, B. Conlon, T. Wydrzynski, and E. Krausz, “The assignment of Qy(1,0) vibrational structure and Qx for Chlorophyll a,” Phys. Proc. 3, 9 (2010).

G. Panitchayangkoon, D. Hayes, K. Fransted, J. Caram, E. Harel, J. Wen, R. Blankenship, and G. Engel, “Long-lived quantum coherence in photosynthetic complexes at physiological temperature,” Proc. Natl. Acad. Sci. USA 107, 12766–12770 (2010).
[CrossRef]

P. F. Tekavec, J. A. Myers, K. L. M. Lewis, F. D. Fuller, and J. P. Ogilvie, “Effects of chirp on two-dimensional Fourier transform electronic spectra,” Opt. Express 18, 11015–11024 (2010).
[CrossRef]

X. Dai, A. Bristow, D. Karaiskaj, and S. Cundiff, “Two-dimensional Fourier-transform spectroscopy of potassium vapor,” Phys. Rev. A 82, 052503 (2010).
[CrossRef]

E. Harel, A. Fidler, and G. Engel, “Real-time mapping of electronic structure with single-shot two-dimensional electronic spectroscopy,” Proc. Natl. Acad. Sci. USA 107, 16444–16447 (2010).
[CrossRef]

U. Selig, C. F. Schleussner, M. Foerster, F. Langhojer, P. Nuernberger, and T. Brixner, “Coherent two-dimensional ultraviolet spectroscopy in fully noncollinear geometry,” Opt. Lett. 35, 4178–4180 (2010).
[CrossRef]

E. Collini, C. Y. Wong, K. E. Wilk, P. M. G. Curmi, P. Brumer, and G. D. Scholes, “Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature,” Nature 463, 644–647 (2010).
[CrossRef]

2009 (4)

V. I. Prokhorenko, A. Halpin, and R. J. D. Miller, “Coherently-controlled two-dimensional photon echo electronic spectroscopy,” Opt. Express 17, 9764–9779 (2009).
[CrossRef]

S. L. Sewall, A. Franceschetti, R. R. Cooney, A. Zunger, and P. Kambhampati, “Direct observation of the structure of band-edge biexcitons in colloidal semiconductor CdSe quantum dots,” Phys. Rev. B 80, 081310 (2009).
[CrossRef]

K. W. Stone, K. Gundogdu, D. B. Turner, X. Li, S. T. Cundiff, and K. A. Nelson, “Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells,” Science 324, 1169–1173 (2009).
[CrossRef]

M. Ratsep, J. Linnanto, and A. Freiberg, “Mirror symmetry and vibrational structure in optical spectra of Chlorophyll a,” J. Chem. Phys. 130, 194501 (2009).
[CrossRef]

2008 (5)

2007 (7)

P. F. Tekavec, G. A. Lott, and A. H. Marcus, “Fluorescence-detected two-dimensional electronic coherence spectroscopy by acousto-optic phase modulation,” J. Chem. Phys. 127, 214307 (2007).
[CrossRef]

S.-H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, “Automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide,” Proc. Natl. Acad. Sci. USA 104, 14197–14202 (2007).
[CrossRef]

E. L. Read, G. S. Engel, T. R. Calhoun, T. Mancal, T. K. Ahn, R. E. Blankenship, and G. R. Fleming, “Cross-peak-specific two-dimensional electronic spectroscopy,” Proc. Natl. Acad. Sci. USA 104, 14203–14208 (2007).
[CrossRef]

E. Read, G. Engel, T. Calhoun, T. Mancal, T. Ahn, R. Blankenship, and G. Fleming, “Cross-peak-specific two-dimensional electronic spectroscopy,” Proc. Natl. Acad. Sci. USA 104, 14203–14208 (2007).
[CrossRef]

M. K. Yetzbacher, N. Belabas, K. A. Kitney, and D. M. Jonas, “Propagation, beam geometry, and detection distortions of peak shapes in two-dimensional Fourier transform spectra,” J. Chem. Phys. 126, 044511 (2007).
[CrossRef]

V. I. Klimov, “Spectral and dynamical properties of multiexcitons in semiconductor nanocrystals,” Annu. Rev. Phys. Chem. 58, 635–673 (2007).
[CrossRef]

L. De Boni, D. S. Correa, F. J. Pavinatto, D. S. dos Santos, and C. R. Mendonca, “Excited state absorption spectrum of chlorophyll a obtained with white-light continuum,” J. Chem. Phys. 126, 165102 (2007).
[CrossRef]

2006 (3)

2005 (2)

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434, 625–628 (2005).
[CrossRef]

T. Zhang, C. Borca, X. Li, and S. Cundiff, “Optical two-dimensional Fourier transform spectroscopy with active interferometric stabilization,” Opt. Express 13, 7432–7441 (2005).
[CrossRef]

2004 (3)

M. L. Cowan, J. P. Ogilvie, and R. J. D. Miller, “Two-dimensional spectroscopy using diffractive optics based phased-locked photon echoes,” Chem. Phys. Lett. 386, 184–189 (2004).
[CrossRef]

T. Brixner, T. Mancal, I. Stiopkin, and G. Fleming, “Phase-stabilized two-dimensional electronic spectroscopy,” J. Chem. Phys. 121, 4221–4236 (2004).
[CrossRef]

G. D. Scholes, “Selection rules for probing biexcitons and electron spin transitions in isotropic quantum dot ensembles,” J. Chem. Phys. 121, 10104 (2004).
[CrossRef]

2003 (3)

K. Yamane, Z. Zhang, K. Oka, R. Morita, M. Yamashita, and A. Suguro, “Optical pulse compression to 3.4 fs in the monocycle region by feedback phase compensation,” Opt. Lett. 28, 2258–2260 (2003).
[CrossRef]

D. M. Jonas, “Two-dimensional femtosecond spectroscopy,” Annu. Rev. Phys. Chem. 54, 425–463 (2003).
[CrossRef]

P. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, “Femtosecond phase-coherent two-dimensional spectroscopy,” Science 300, 1553–1555 (2003).
[CrossRef]

2002 (3)

J. D. Hybl, A. Yu, D. A. Farrow, and D. M. Jonas, “Polar solvation dynamics in the femtosecond evolution of two-dimensional Fourier transform spectra,” J. Phys. Chem. A 106, 7651–7654 (2002).
[CrossRef]

M. Nisoli, G. Sansone, S. Stagira, C. Vozzi, S. De Silvestri, and O. Svelto, “Ultra-broadband continuum generation by hollow-fiber cascading,” Appl. Phys. B 75, 601–604 (2002).
[CrossRef]

M. Drescher, M. Hentschel, R. Kienberger, M. Uiberacker, V. Yakovlev, A. Scrinzi, T. Westerwalbesloh, U. Kleineberg, U. Heinzmann, and F. Krausz, “Time-resolved atomic inner-shell spectroscopy,” Nature 419, 803–807 (2002).
[CrossRef]

2001 (1)

J. D. Hybl, A. A. Ferro, and D. M. Jonas, “Two-dimensional Fourier transform electronic spectroscopy,” J. Chem. Phys. 115, 6606–6622 (2001).
[CrossRef]

2000 (4)

A. L. Efros and M. Rosen, “The electronic structure of semiconductor nanocrystals,” Annu. Rev. Mater. Sci. 30, 475–521 (2000).
[CrossRef]

V. I. Klimov, “Optical nonlinearities and ultrafast carrier dynamics in semiconductor nanocrystals,” J. Phys. Chem. B 104, 6112–6123 (2000).
[CrossRef]

C. Dorrer, N. Belabas, J. P. Likforman, and M. Joffre, “Spectral resolution and sampling issues in Fourier-transform spectral interferometry,” J. Opt. Soc. Am. B 17, 1795–1802 (2000).
[CrossRef]

A. Zewail, “Femtochemistry: atomic-scale dynamics of the chemical bond,” J. Phys. Chem. A 104, 5660–5694 (2000).
[CrossRef]

1999 (3)

V. I. Klimov, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, “Electron and hole relaxation pathways in semiconductor quantum dots,” Phys. Rev. B 60, 13740–13749 (1999).
[CrossRef]

M. Li, J. P. Nibarger, C. Guo, and G. N. Gibson, “Dispersion-free transient-grating frequency-resolved optical gating,” Appl. Opt. 38, 5250–5253 (1999).
[CrossRef]

M. Umetsu, Z. Y. Wang, M. Kobayashi, and T. Nozawa, “Interaction of photosynthetic pigments with various organic solvents—magnetic circular dichroism approach and application to chlorosomes,” Biochim. Biophys. Acta 1410, 19–31 (1999).
[CrossRef]

1998 (2)

J. Hybl, A. Albrecht, S. Faeder, and D. Jonas, “Two-dimensional electronic spectroscopy,” Chem. Phys. Lett. 297, 307–313 (1998).
[CrossRef]

S. Yin, O. Leonov, F. Yu, V. Molotok, and V. Kludzin, “Design and fabrication of a 24-channel acousto-optic spatial light modulator,” Appl. Opt. 37, 7482–7489 (1998).
[CrossRef]

1997 (2)

R. Trebino, K. DeLong, D. Fittinghoff, J. Sweetser, M. Krumbugel, B. Richman, and D. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277–3295 (1997).
[CrossRef]

J. Sweetser, D. Fittinghoff, and R. Trebino, “Transient-grating frequency-resolved optical gating,” Opt. Lett. 22, 519–521 (1997).
[CrossRef]

1996 (2)

M. Nisoli, S. DeSilvestri, and O. Svelto, “Generation of high energy 10  fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68, 2793–2795 (1996).
[CrossRef]

D. Norris and M. Bawendi, “Measurement and assignment of the size-dependent optical spectrum in CdSe quantum dots,” Phys. Rev. B 53, 16338–16346 (1996).
[CrossRef]

1986 (1)

I. Renge, K. Mauring, P. Sarv, and R. Avarmaa, “Vibrationally resolved optical-spectra of chlorophyll derivatives in different solid media,” J. Phys. Chem. 90, 6611–6616 (1986).
[CrossRef]

Ahn, T.

E. Read, G. Engel, T. Calhoun, T. Mancal, T. Ahn, R. Blankenship, and G. Fleming, “Cross-peak-specific two-dimensional electronic spectroscopy,” Proc. Natl. Acad. Sci. USA 104, 14203–14208 (2007).
[CrossRef]

Ahn, T. K.

E. L. Read, G. S. Engel, T. R. Calhoun, T. Mancal, T. K. Ahn, R. E. Blankenship, and G. R. Fleming, “Cross-peak-specific two-dimensional electronic spectroscopy,” Proc. Natl. Acad. Sci. USA 104, 14203–14208 (2007).
[CrossRef]

Akimov, I. A.

G. Moody, R. Singh, H. Li, I. A. Akimov, M. Bayer, D. Reuter, A. D. Wieck, A. S. Bracker, D. Gammon, and S. T. Cundiff, “Influence of confinement on biexciton binding in semiconductor quantum dot ensembles measured with two-dimensional spectroscopy,” Phys. Rev. B 87, 041304 (2013).
[CrossRef]

Albrecht, A.

J. Hybl, A. Albrecht, S. Faeder, and D. Jonas, “Two-dimensional electronic spectroscopy,” Chem. Phys. Lett. 297, 307–313 (1998).
[CrossRef]

Aliauskas, S.

Anderson, K. E. H.

S. L. Sewall, R. R. Cooney, K. E. H. Anderson, E. A. Dias, D. M. Sagar, and P. Kambhampati, “State-resolved studies of biexcitons and surface trapping dynamics in semiconductor quantum dots,” J. Chem. Phys. 129, 084701 (2008).
[CrossRef]

Anna, J.

J. Anna, E. Ostroumov, K. Maghlaoui, J. Barber, and G. Scholes, “Two-dimensional electronic spectroscopy reveals ultrafast downhill energy transfer in photosystem I trimers of the Cyanobacterium Thermosynechococcus elongatus,” J. Phys. Chem. Lett. 3, 3677–3684 (2012).
[CrossRef]

Augulis, R. N.

Avarmaa, R.

I. Renge, K. Mauring, P. Sarv, and R. Avarmaa, “Vibrationally resolved optical-spectra of chlorophyll derivatives in different solid media,” J. Phys. Chem. 90, 6611–6616 (1986).
[CrossRef]

Ballottari, M.

N. Ginsberg, J. Davis, M. Ballottari, Y. Cheng, R. Bassi, and G. Fleming, “Solving structure in the CP29 light harvesting complex with polarization-phased 2D electronic spectroscopy,” Proc. Natl. Acad. Sci. USA 108, 3848–3853 (2011).
[CrossRef]

Baltuka, A.

Barber, J.

J. Anna, E. Ostroumov, K. Maghlaoui, J. Barber, and G. Scholes, “Two-dimensional electronic spectroscopy reveals ultrafast downhill energy transfer in photosystem I trimers of the Cyanobacterium Thermosynechococcus elongatus,” J. Phys. Chem. Lett. 3, 3677–3684 (2012).
[CrossRef]

Bassi, R.

N. Ginsberg, J. Davis, M. Ballottari, Y. Cheng, R. Bassi, and G. Fleming, “Solving structure in the CP29 light harvesting complex with polarization-phased 2D electronic spectroscopy,” Proc. Natl. Acad. Sci. USA 108, 3848–3853 (2011).
[CrossRef]

Bawendi, M.

D. Norris and M. Bawendi, “Measurement and assignment of the size-dependent optical spectrum in CdSe quantum dots,” Phys. Rev. B 53, 16338–16346 (1996).
[CrossRef]

Bawendi, M. G.

V. I. Klimov, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, “Electron and hole relaxation pathways in semiconductor quantum dots,” Phys. Rev. B 60, 13740–13749 (1999).
[CrossRef]

Bayer, M.

G. Moody, R. Singh, H. Li, I. A. Akimov, M. Bayer, D. Reuter, A. D. Wieck, A. S. Bracker, D. Gammon, and S. T. Cundiff, “Influence of confinement on biexciton binding in semiconductor quantum dot ensembles measured with two-dimensional spectroscopy,” Phys. Rev. B 87, 041304 (2013).
[CrossRef]

Béjot, P.

Belabas, N.

M. K. Yetzbacher, N. Belabas, K. A. Kitney, and D. M. Jonas, “Propagation, beam geometry, and detection distortions of peak shapes in two-dimensional Fourier transform spectra,” J. Chem. Phys. 126, 044511 (2007).
[CrossRef]

C. Dorrer, N. Belabas, J. P. Likforman, and M. Joffre, “Spectral resolution and sampling issues in Fourier-transform spectral interferometry,” J. Opt. Soc. Am. B 17, 1795–1802 (2000).
[CrossRef]

Bixner, O.

N. Christensson, F. Milota, J. Hauer, J. Sperling, O. Bixner, A. Nemeth, and H. F. Kauffmann, “High frequency vibrational modulations in two-dimensional electronic spectra and their resemblance to electronic coherence signatures,” J. Phys. Chem. B 115, 5383–5391 (2011).
[CrossRef]

Blankenship, R.

G. Panitchayangkoon, D. Hayes, K. Fransted, J. Caram, E. Harel, J. Wen, R. Blankenship, and G. Engel, “Long-lived quantum coherence in photosynthetic complexes at physiological temperature,” Proc. Natl. Acad. Sci. USA 107, 12766–12770 (2010).
[CrossRef]

E. Read, G. Engel, T. Calhoun, T. Mancal, T. Ahn, R. Blankenship, and G. Fleming, “Cross-peak-specific two-dimensional electronic spectroscopy,” Proc. Natl. Acad. Sci. USA 104, 14203–14208 (2007).
[CrossRef]

Blankenship, R. E.

E. L. Read, G. S. Engel, T. R. Calhoun, T. Mancal, T. K. Ahn, R. E. Blankenship, and G. R. Fleming, “Cross-peak-specific two-dimensional electronic spectroscopy,” Proc. Natl. Acad. Sci. USA 104, 14203–14208 (2007).
[CrossRef]

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434, 625–628 (2005).
[CrossRef]

R. E. Blankenship, Molecular Mechanisms of Photosynthesis (Blackwell Science, 2002).

Borca, C.

Bracker, A. S.

G. Moody, R. Singh, H. Li, I. A. Akimov, M. Bayer, D. Reuter, A. D. Wieck, A. S. Bracker, D. Gammon, and S. T. Cundiff, “Influence of confinement on biexciton binding in semiconductor quantum dot ensembles measured with two-dimensional spectroscopy,” Phys. Rev. B 87, 041304 (2013).
[CrossRef]

Bristow, A.

X. Dai, A. Bristow, D. Karaiskaj, and S. Cundiff, “Two-dimensional Fourier-transform spectroscopy of potassium vapor,” Phys. Rev. A 82, 052503 (2010).
[CrossRef]

Bristow, A. D.

H. Li, A. D. Bristow, M. E. Siemens, G. Moody, and S. T. Cundiff, “Unraveling quantum pathways using optical 3d Fourier-transform spectroscopy,” Nat. Commun. 4, 1390 (2013).
[CrossRef]

Brixner, T.

U. Selig, C. F. Schleussner, M. Foerster, F. Langhojer, P. Nuernberger, and T. Brixner, “Coherent two-dimensional ultraviolet spectroscopy in fully noncollinear geometry,” Opt. Lett. 35, 4178–4180 (2010).
[CrossRef]

U. Selig, F. Langhojer, F. Dimler, T. Lohrig, C. Schwarz, B. Gieseking, and T. Brixner, “Inherently phase-stable coherent two-dimensional spectroscopy using only conventional optics,” Opt. Lett. 33, 2851–2853 (2008).
[CrossRef]

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434, 625–628 (2005).
[CrossRef]

T. Brixner, T. Mancal, I. Stiopkin, and G. Fleming, “Phase-stabilized two-dimensional electronic spectroscopy,” J. Chem. Phys. 121, 4221–4236 (2004).
[CrossRef]

Brumer, P.

E. Collini, C. Y. Wong, K. E. Wilk, P. M. G. Curmi, P. Brumer, and G. D. Scholes, “Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature,” Nature 463, 644–647 (2010).
[CrossRef]

Cai, Z. L.

J. R. Reimers, Z. L. Cai, R. Kobayashi, M. Ratsep, A. Freiberg, and E. Krausz, “Assignment of the Q-bands of the chlorophylls: coherence loss via Qx—Qy mixing,” Sci. Rep. 3, 2761 (2013).
[CrossRef]

Calhoun, T.

E. Read, G. Engel, T. Calhoun, T. Mancal, T. Ahn, R. Blankenship, and G. Fleming, “Cross-peak-specific two-dimensional electronic spectroscopy,” Proc. Natl. Acad. Sci. USA 104, 14203–14208 (2007).
[CrossRef]

Calhoun, T. R.

J. A. Davis, T. R. Calhoun, K. A. Nugent, and H. M. Quiney, “Ultrafast optical multidimensional spectroscopy without interferometry,” J. Chem. Phys. 134, 024504 (2011).
[CrossRef]

E. L. Read, G. S. Engel, T. R. Calhoun, T. Mancal, T. K. Ahn, R. E. Blankenship, and G. R. Fleming, “Cross-peak-specific two-dimensional electronic spectroscopy,” Proc. Natl. Acad. Sci. USA 104, 14203–14208 (2007).
[CrossRef]

Caram, J.

G. Panitchayangkoon, D. Hayes, K. Fransted, J. Caram, E. Harel, J. Wen, R. Blankenship, and G. Engel, “Long-lived quantum coherence in photosynthetic complexes at physiological temperature,” Proc. Natl. Acad. Sci. USA 107, 12766–12770 (2010).
[CrossRef]

Chang, Z.

Cheng, Y.

N. Ginsberg, J. Davis, M. Ballottari, Y. Cheng, R. Bassi, and G. Fleming, “Solving structure in the CP29 light harvesting complex with polarization-phased 2D electronic spectroscopy,” Proc. Natl. Acad. Sci. USA 108, 3848–3853 (2011).
[CrossRef]

Cho, M.

M. Cho, “Coherent two-dimensional optical spectroscopy,” Chem. Rev. 108, 1331–1418 (2008).
[CrossRef]

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434, 625–628 (2005).
[CrossRef]

M. Cho, Two-dimensional Optical Spectroscopy (CRC Press, 2009).

Christensson, N.

N. Christensson, F. Milota, J. Hauer, J. Sperling, O. Bixner, A. Nemeth, and H. F. Kauffmann, “High frequency vibrational modulations in two-dimensional electronic spectra and their resemblance to electronic coherence signatures,” J. Phys. Chem. B 115, 5383–5391 (2011).
[CrossRef]

Coello, Y.

Cogdell, R. J.

E. E. Ostroumov, R. M. Mulvaney, R. J. Cogdell, and G. D. Scholes, “Broadband 2D electronic spectroscopy reveals a carotenoid dark state in purple bacteria,” Science 340, 52–56 (2013).
[CrossRef]

Collini, E.

E. Collini, C. Y. Wong, K. E. Wilk, P. M. G. Curmi, P. Brumer, and G. D. Scholes, “Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature,” Nature 463, 644–647 (2010).
[CrossRef]

Conlon, B.

J. L. Hughes, B. Conlon, T. Wydrzynski, and E. Krausz, “The assignment of Qy(1,0) vibrational structure and Qx for Chlorophyll a,” Phys. Proc. 3, 9 (2010).

Cooney, R. R.

S. L. Sewall, A. Franceschetti, R. R. Cooney, A. Zunger, and P. Kambhampati, “Direct observation of the structure of band-edge biexcitons in colloidal semiconductor CdSe quantum dots,” Phys. Rev. B 80, 081310 (2009).
[CrossRef]

S. L. Sewall, R. R. Cooney, K. E. H. Anderson, E. A. Dias, D. M. Sagar, and P. Kambhampati, “State-resolved studies of biexcitons and surface trapping dynamics in semiconductor quantum dots,” J. Chem. Phys. 129, 084701 (2008).
[CrossRef]

Correa, D. S.

L. De Boni, D. S. Correa, F. J. Pavinatto, D. S. dos Santos, and C. R. Mendonca, “Excited state absorption spectrum of chlorophyll a obtained with white-light continuum,” J. Chem. Phys. 126, 165102 (2007).
[CrossRef]

Cowan, M. L.

M. L. Cowan, J. P. Ogilvie, and R. J. D. Miller, “Two-dimensional spectroscopy using diffractive optics based phased-locked photon echoes,” Chem. Phys. Lett. 386, 184–189 (2004).
[CrossRef]

Crozatier, V.

P. Tyagi, J. I. Saari, B. Walsh, A. Kabir, V. Crozatier, N. Forget, and P. Kambhampati, “Two-color two-dimensional electronic spectroscopy using dual acousto-optic pulse shapers for complete amplitude, phase, and polarization control of femtosecond laser pulses,” J. Phys. Chem. A 117, 6264–6269 (2013).
[CrossRef]

Cundiff, S.

X. Dai, A. Bristow, D. Karaiskaj, and S. Cundiff, “Two-dimensional Fourier-transform spectroscopy of potassium vapor,” Phys. Rev. A 82, 052503 (2010).
[CrossRef]

T. Zhang, C. Borca, X. Li, and S. Cundiff, “Optical two-dimensional Fourier transform spectroscopy with active interferometric stabilization,” Opt. Express 13, 7432–7441 (2005).
[CrossRef]

Cundiff, S. T.

H. Li, A. D. Bristow, M. E. Siemens, G. Moody, and S. T. Cundiff, “Unraveling quantum pathways using optical 3d Fourier-transform spectroscopy,” Nat. Commun. 4, 1390 (2013).
[CrossRef]

G. Moody, R. Singh, H. Li, I. A. Akimov, M. Bayer, D. Reuter, A. D. Wieck, A. S. Bracker, D. Gammon, and S. T. Cundiff, “Influence of confinement on biexciton binding in semiconductor quantum dot ensembles measured with two-dimensional spectroscopy,” Phys. Rev. B 87, 041304 (2013).
[CrossRef]

K. W. Stone, K. Gundogdu, D. B. Turner, X. Li, S. T. Cundiff, and K. A. Nelson, “Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells,” Science 324, 1169–1173 (2009).
[CrossRef]

Curmi, P. M. G.

D. B. Turner, K. E. Wilk, P. M. G. Curmi, and G. D. Scholes, “Comparison of electronic and vibrational coherence measured by two-dimensional electronic spectroscopy,” J. Phys. Chem. Lett. 2, 1904–1911 (2011).
[CrossRef]

E. Collini, C. Y. Wong, K. E. Wilk, P. M. G. Curmi, P. Brumer, and G. D. Scholes, “Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature,” Nature 463, 644–647 (2010).
[CrossRef]

Dai, X.

X. Dai, A. Bristow, D. Karaiskaj, and S. Cundiff, “Two-dimensional Fourier-transform spectroscopy of potassium vapor,” Phys. Rev. A 82, 052503 (2010).
[CrossRef]

Dantus, M.

Davis, J.

N. Ginsberg, J. Davis, M. Ballottari, Y. Cheng, R. Bassi, and G. Fleming, “Solving structure in the CP29 light harvesting complex with polarization-phased 2D electronic spectroscopy,” Proc. Natl. Acad. Sci. USA 108, 3848–3853 (2011).
[CrossRef]

Davis, J. A.

J. A. Davis, T. R. Calhoun, K. A. Nugent, and H. M. Quiney, “Ultrafast optical multidimensional spectroscopy without interferometry,” J. Chem. Phys. 134, 024504 (2011).
[CrossRef]

De Boni, L.

L. De Boni, D. S. Correa, F. J. Pavinatto, D. S. dos Santos, and C. R. Mendonca, “Excited state absorption spectrum of chlorophyll a obtained with white-light continuum,” J. Chem. Phys. 126, 165102 (2007).
[CrossRef]

De Silvestri, S.

M. Nisoli, G. Sansone, S. Stagira, C. Vozzi, S. De Silvestri, and O. Svelto, “Ultra-broadband continuum generation by hollow-fiber cascading,” Appl. Phys. B 75, 601–604 (2002).
[CrossRef]

Dela Cruz, J.

DeLong, K.

R. Trebino, K. DeLong, D. Fittinghoff, J. Sweetser, M. Krumbugel, B. Richman, and D. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277–3295 (1997).
[CrossRef]

DeSilvestri, S.

M. Nisoli, S. DeSilvestri, and O. Svelto, “Generation of high energy 10  fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68, 2793–2795 (1996).
[CrossRef]

Dias, E. A.

S. L. Sewall, R. R. Cooney, K. E. H. Anderson, E. A. Dias, D. M. Sagar, and P. Kambhampati, “State-resolved studies of biexcitons and surface trapping dynamics in semiconductor quantum dots,” J. Chem. Phys. 129, 084701 (2008).
[CrossRef]

Dimler, F.

Dolzhnikov, D.

G. Griffin, S. Ithurria, D. Dolzhnikov, A. Linkin, D. Talapin, and G. Engel, “Two-dimensional electronic spectroscopy of CdSe nanoparticles at very low pulse power,” J. Chem. Phys. 138, 014705 (2013).
[CrossRef]

Dorrer, C.

dos Santos, D. S.

L. De Boni, D. S. Correa, F. J. Pavinatto, D. S. dos Santos, and C. R. Mendonca, “Excited state absorption spectrum of chlorophyll a obtained with white-light continuum,” J. Chem. Phys. 126, 165102 (2007).
[CrossRef]

Drescher, M.

M. Drescher, M. Hentschel, R. Kienberger, M. Uiberacker, V. Yakovlev, A. Scrinzi, T. Westerwalbesloh, U. Kleineberg, U. Heinzmann, and F. Krausz, “Time-resolved atomic inner-shell spectroscopy,” Nature 419, 803–807 (2002).
[CrossRef]

Du, J.

J. Du, K. Nakata, Y. Jiang, E. Tokunaga, and T. Kobayashi, “Spectral modulation observed in Chl-a by ultrafast laser spectroscopy,” Opt. Express 19, 22480–22485 (2011).
[CrossRef]

J. Du, T. Teramoto, K. Nakata, E. Tokunaga, and T. Kobayashi, “Real-time vibrational dynamics in Chlorophyll a studied with a few-cycle pulse laser,” Biophys. J. 101, 995–1003 (2011).
[CrossRef]

Efros, A. L.

A. L. Efros and M. Rosen, “The electronic structure of semiconductor nanocrystals,” Annu. Rev. Mater. Sci. 30, 475–521 (2000).
[CrossRef]

Engel, G.

G. Griffin, S. Ithurria, D. Dolzhnikov, A. Linkin, D. Talapin, and G. Engel, “Two-dimensional electronic spectroscopy of CdSe nanoparticles at very low pulse power,” J. Chem. Phys. 138, 014705 (2013).
[CrossRef]

E. Harel, A. Fidler, and G. Engel, “Single-shot gradient-assisted photon echo electronic spectroscopy,” J. Phys. Chem. A 115, 3787–3796 (2011).
[CrossRef]

E. Harel, A. Fidler, and G. Engel, “Real-time mapping of electronic structure with single-shot two-dimensional electronic spectroscopy,” Proc. Natl. Acad. Sci. USA 107, 16444–16447 (2010).
[CrossRef]

G. Panitchayangkoon, D. Hayes, K. Fransted, J. Caram, E. Harel, J. Wen, R. Blankenship, and G. Engel, “Long-lived quantum coherence in photosynthetic complexes at physiological temperature,” Proc. Natl. Acad. Sci. USA 107, 12766–12770 (2010).
[CrossRef]

E. Read, G. Engel, T. Calhoun, T. Mancal, T. Ahn, R. Blankenship, and G. Fleming, “Cross-peak-specific two-dimensional electronic spectroscopy,” Proc. Natl. Acad. Sci. USA 104, 14203–14208 (2007).
[CrossRef]

Engel, G. S.

E. Harel and G. S. Engel, “Quantum coherence spectroscopy reveals complex dynamics in bacterial light-harvesting complex 2 (LH2),” Proc. Natl. Acad. Sci. USA 109, 706–711(2012).

E. Harel, P. D. Long, and G. S. Engel, “Single-shot ultrabroadband two-dimensional electronic spectroscopy of the light-harvesting complex LH2,” Opt. Lett. 36, 1665–1667 (2011).
[CrossRef]

E. L. Read, G. S. Engel, T. R. Calhoun, T. Mancal, T. K. Ahn, R. E. Blankenship, and G. R. Fleming, “Cross-peak-specific two-dimensional electronic spectroscopy,” Proc. Natl. Acad. Sci. USA 104, 14203–14208 (2007).
[CrossRef]

Faeder, S.

J. Hybl, A. Albrecht, S. Faeder, and D. Jonas, “Two-dimensional electronic spectroscopy,” Chem. Phys. Lett. 297, 307–313 (1998).
[CrossRef]

Farrow, D. A.

J. D. Hybl, A. Yu, D. A. Farrow, and D. M. Jonas, “Polar solvation dynamics in the femtosecond evolution of two-dimensional Fourier transform spectra,” J. Phys. Chem. A 106, 7651–7654 (2002).
[CrossRef]

Ferro, A. A.

J. D. Hybl, A. A. Ferro, and D. M. Jonas, “Two-dimensional Fourier transform electronic spectroscopy,” J. Chem. Phys. 115, 6606–6622 (2001).
[CrossRef]

Fidler, A.

E. Harel, A. Fidler, and G. Engel, “Single-shot gradient-assisted photon echo electronic spectroscopy,” J. Phys. Chem. A 115, 3787–3796 (2011).
[CrossRef]

E. Harel, A. Fidler, and G. Engel, “Real-time mapping of electronic structure with single-shot two-dimensional electronic spectroscopy,” Proc. Natl. Acad. Sci. USA 107, 16444–16447 (2010).
[CrossRef]

Fittinghoff, D.

R. Trebino, K. DeLong, D. Fittinghoff, J. Sweetser, M. Krumbugel, B. Richman, and D. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277–3295 (1997).
[CrossRef]

J. Sweetser, D. Fittinghoff, and R. Trebino, “Transient-grating frequency-resolved optical gating,” Opt. Lett. 22, 519–521 (1997).
[CrossRef]

Fleming, G.

N. Ginsberg, J. Davis, M. Ballottari, Y. Cheng, R. Bassi, and G. Fleming, “Solving structure in the CP29 light harvesting complex with polarization-phased 2D electronic spectroscopy,” Proc. Natl. Acad. Sci. USA 108, 3848–3853 (2011).
[CrossRef]

G. Schlau-Cohen, A. Ishizaki, and G. Fleming, “Two-dimensional electronic spectroscopy and photosynthesis: fundamentals and applications to photosynthetic light-harvesting,” Chem. Phys. 386, 1–22 (2011).
[CrossRef]

E. Read, G. Engel, T. Calhoun, T. Mancal, T. Ahn, R. Blankenship, and G. Fleming, “Cross-peak-specific two-dimensional electronic spectroscopy,” Proc. Natl. Acad. Sci. USA 104, 14203–14208 (2007).
[CrossRef]

T. Brixner, T. Mancal, I. Stiopkin, and G. Fleming, “Phase-stabilized two-dimensional electronic spectroscopy,” J. Chem. Phys. 121, 4221–4236 (2004).
[CrossRef]

Fleming, G. R.

E. L. Read, G. S. Engel, T. R. Calhoun, T. Mancal, T. K. Ahn, R. E. Blankenship, and G. R. Fleming, “Cross-peak-specific two-dimensional electronic spectroscopy,” Proc. Natl. Acad. Sci. USA 104, 14203–14208 (2007).
[CrossRef]

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434, 625–628 (2005).
[CrossRef]

Foerster, M.

Forget, N.

P. Tyagi, J. I. Saari, B. Walsh, A. Kabir, V. Crozatier, N. Forget, and P. Kambhampati, “Two-color two-dimensional electronic spectroscopy using dual acousto-optic pulse shapers for complete amplitude, phase, and polarization control of femtosecond laser pulses,” J. Phys. Chem. A 117, 6264–6269 (2013).
[CrossRef]

Franceschetti, A.

S. L. Sewall, A. Franceschetti, R. R. Cooney, A. Zunger, and P. Kambhampati, “Direct observation of the structure of band-edge biexcitons in colloidal semiconductor CdSe quantum dots,” Phys. Rev. B 80, 081310 (2009).
[CrossRef]

Fransted, K.

G. Panitchayangkoon, D. Hayes, K. Fransted, J. Caram, E. Harel, J. Wen, R. Blankenship, and G. Engel, “Long-lived quantum coherence in photosynthetic complexes at physiological temperature,” Proc. Natl. Acad. Sci. USA 107, 12766–12770 (2010).
[CrossRef]

Freiberg, A.

J. R. Reimers, Z. L. Cai, R. Kobayashi, M. Ratsep, A. Freiberg, and E. Krausz, “Assignment of the Q-bands of the chlorophylls: coherence loss via Qx—Qy mixing,” Sci. Rep. 3, 2761 (2013).
[CrossRef]

M. Ratsep, J. Linnanto, and A. Freiberg, “Mirror symmetry and vibrational structure in optical spectra of Chlorophyll a,” J. Chem. Phys. 130, 194501 (2009).
[CrossRef]

Fuller, F. D.

Gammon, D.

G. Moody, R. Singh, H. Li, I. A. Akimov, M. Bayer, D. Reuter, A. D. Wieck, A. S. Bracker, D. Gammon, and S. T. Cundiff, “Influence of confinement on biexciton binding in semiconductor quantum dot ensembles measured with two-dimensional spectroscopy,” Phys. Rev. B 87, 041304 (2013).
[CrossRef]

Gibson, G. N.

Gieseking, B.

Gilbertson, S.

Ginsberg, N.

N. Ginsberg, J. Davis, M. Ballottari, Y. Cheng, R. Bassi, and G. Fleming, “Solving structure in the CP29 light harvesting complex with polarization-phased 2D electronic spectroscopy,” Proc. Natl. Acad. Sci. USA 108, 3848–3853 (2011).
[CrossRef]

Giokas, P. G.

B. A. West, B. P. Molesky, P. G. Giokas, and A. M. Moran, “Uncovering molecular relaxation processes with nonlinear spectroscopies in the deep UV,” Chem. Phys. 423, 92–104 (2013).
[CrossRef]

Griffin, G.

G. Griffin, S. Ithurria, D. Dolzhnikov, A. Linkin, D. Talapin, and G. Engel, “Two-dimensional electronic spectroscopy of CdSe nanoparticles at very low pulse power,” J. Chem. Phys. 138, 014705 (2013).
[CrossRef]

Gundogdu, K.

D. B. Turner, K. W. Stone, K. Gundogdu, and K. A. Nelson, “Invited article: the coherent optical laser beam recombination technique (colbert) spectrometer: coherent multidimensional spectroscopy made easier,” Rev. Sci. Instrum. 82, 081301 (2011).
[CrossRef]

K. W. Stone, K. Gundogdu, D. B. Turner, X. Li, S. T. Cundiff, and K. A. Nelson, “Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells,” Science 324, 1169–1173 (2009).
[CrossRef]

Gunn, J.

Guo, C.

Halpin, A.

Harel, E.

E. Harel and G. S. Engel, “Quantum coherence spectroscopy reveals complex dynamics in bacterial light-harvesting complex 2 (LH2),” Proc. Natl. Acad. Sci. USA 109, 706–711(2012).

E. Harel, A. Fidler, and G. Engel, “Single-shot gradient-assisted photon echo electronic spectroscopy,” J. Phys. Chem. A 115, 3787–3796 (2011).
[CrossRef]

E. Harel, P. D. Long, and G. S. Engel, “Single-shot ultrabroadband two-dimensional electronic spectroscopy of the light-harvesting complex LH2,” Opt. Lett. 36, 1665–1667 (2011).
[CrossRef]

G. Panitchayangkoon, D. Hayes, K. Fransted, J. Caram, E. Harel, J. Wen, R. Blankenship, and G. Engel, “Long-lived quantum coherence in photosynthetic complexes at physiological temperature,” Proc. Natl. Acad. Sci. USA 107, 12766–12770 (2010).
[CrossRef]

E. Harel, A. Fidler, and G. Engel, “Real-time mapping of electronic structure with single-shot two-dimensional electronic spectroscopy,” Proc. Natl. Acad. Sci. USA 107, 16444–16447 (2010).
[CrossRef]

Harris, D.

Hassan, Y.

D. Turner, Y. Hassan, and G. Scholes, “Exciton superposition states in CdSe nanocrystals measured using broadband two-dimensional electronic spectroscopy,” Nano Lett. 12, 880–886 (2012).
[CrossRef]

D. B. Turner, Y. Hassan, and G. D. Scholes, “Exciton superposition states in CdSe nanocrystals measured using broadband two-dimensional electronic spectroscopy,” Nano Lett. 12, 880–886 (2012).
[CrossRef]

Hauer, J.

N. Christensson, F. Milota, J. Hauer, J. Sperling, O. Bixner, A. Nemeth, and H. F. Kauffmann, “High frequency vibrational modulations in two-dimensional electronic spectra and their resemblance to electronic coherence signatures,” J. Phys. Chem. B 115, 5383–5391 (2011).
[CrossRef]

Hayes, D.

G. Panitchayangkoon, D. Hayes, K. Fransted, J. Caram, E. Harel, J. Wen, R. Blankenship, and G. Engel, “Long-lived quantum coherence in photosynthetic complexes at physiological temperature,” Proc. Natl. Acad. Sci. USA 107, 12766–12770 (2010).
[CrossRef]

Heinzmann, U.

M. Drescher, M. Hentschel, R. Kienberger, M. Uiberacker, V. Yakovlev, A. Scrinzi, T. Westerwalbesloh, U. Kleineberg, U. Heinzmann, and F. Krausz, “Time-resolved atomic inner-shell spectroscopy,” Nature 419, 803–807 (2002).
[CrossRef]

Hentschel, M.

M. Drescher, M. Hentschel, R. Kienberger, M. Uiberacker, V. Yakovlev, A. Scrinzi, T. Westerwalbesloh, U. Kleineberg, U. Heinzmann, and F. Krausz, “Time-resolved atomic inner-shell spectroscopy,” Nature 419, 803–807 (2002).
[CrossRef]

Hughes, J. L.

J. L. Hughes, B. Conlon, T. Wydrzynski, and E. Krausz, “The assignment of Qy(1,0) vibrational structure and Qx for Chlorophyll a,” Phys. Proc. 3, 9 (2010).

Hybl, J.

J. Hybl, A. Albrecht, S. Faeder, and D. Jonas, “Two-dimensional electronic spectroscopy,” Chem. Phys. Lett. 297, 307–313 (1998).
[CrossRef]

Hybl, J. D.

J. D. Hybl, A. Yu, D. A. Farrow, and D. M. Jonas, “Polar solvation dynamics in the femtosecond evolution of two-dimensional Fourier transform spectra,” J. Phys. Chem. A 106, 7651–7654 (2002).
[CrossRef]

J. D. Hybl, A. A. Ferro, and D. M. Jonas, “Two-dimensional Fourier transform electronic spectroscopy,” J. Chem. Phys. 115, 6606–6622 (2001).
[CrossRef]

Iizuka, K.

K. Iizuka, Elements of Photonics (Wiley-Interscience, 2002).

Ishizaki, A.

G. Schlau-Cohen, A. Ishizaki, and G. Fleming, “Two-dimensional electronic spectroscopy and photosynthesis: fundamentals and applications to photosynthetic light-harvesting,” Chem. Phys. 386, 1–22 (2011).
[CrossRef]

Ithurria, S.

G. Griffin, S. Ithurria, D. Dolzhnikov, A. Linkin, D. Talapin, and G. Engel, “Two-dimensional electronic spectroscopy of CdSe nanoparticles at very low pulse power,” J. Chem. Phys. 138, 014705 (2013).
[CrossRef]

Jiang, Y.

Joffre, M.

Jonas, D.

J. Hybl, A. Albrecht, S. Faeder, and D. Jonas, “Two-dimensional electronic spectroscopy,” Chem. Phys. Lett. 297, 307–313 (1998).
[CrossRef]

Jonas, D. M.

M. K. Yetzbacher, N. Belabas, K. A. Kitney, and D. M. Jonas, “Propagation, beam geometry, and detection distortions of peak shapes in two-dimensional Fourier transform spectra,” J. Chem. Phys. 126, 044511 (2007).
[CrossRef]

D. M. Jonas, “Two-dimensional femtosecond spectroscopy,” Annu. Rev. Phys. Chem. 54, 425–463 (2003).
[CrossRef]

J. D. Hybl, A. Yu, D. A. Farrow, and D. M. Jonas, “Polar solvation dynamics in the femtosecond evolution of two-dimensional Fourier transform spectra,” J. Phys. Chem. A 106, 7651–7654 (2002).
[CrossRef]

J. D. Hybl, A. A. Ferro, and D. M. Jonas, “Two-dimensional Fourier transform electronic spectroscopy,” J. Chem. Phys. 115, 6606–6622 (2001).
[CrossRef]

Kabir, A.

P. Tyagi, J. I. Saari, B. Walsh, A. Kabir, V. Crozatier, N. Forget, and P. Kambhampati, “Two-color two-dimensional electronic spectroscopy using dual acousto-optic pulse shapers for complete amplitude, phase, and polarization control of femtosecond laser pulses,” J. Phys. Chem. A 117, 6264–6269 (2013).
[CrossRef]

Kambhampati, P.

P. Tyagi, J. I. Saari, B. Walsh, A. Kabir, V. Crozatier, N. Forget, and P. Kambhampati, “Two-color two-dimensional electronic spectroscopy using dual acousto-optic pulse shapers for complete amplitude, phase, and polarization control of femtosecond laser pulses,” J. Phys. Chem. A 117, 6264–6269 (2013).
[CrossRef]

P. Kambhampati, “Multiexcitons in semiconductor nanocrystals: a platform for optoelectronics at high carrier concentration,” J. Phys. Chem. Lett. 3, 1182–1190 (2012).
[CrossRef]

P. Kambhampati, “Unraveling the structure and dynamics of excitons in semiconductor quantum dots,” Acc. Chem. Res. 44, 1–13 (2011).
[CrossRef]

P. Kambhampati, “Hot exciton relaxation dynamics in semiconductor quantum dots: radiationless transitions on the nanoscale,” J. Phys. Chem. C 115, 22089–22109 (2011).
[CrossRef]

S. L. Sewall, A. Franceschetti, R. R. Cooney, A. Zunger, and P. Kambhampati, “Direct observation of the structure of band-edge biexcitons in colloidal semiconductor CdSe quantum dots,” Phys. Rev. B 80, 081310 (2009).
[CrossRef]

S. L. Sewall, R. R. Cooney, K. E. H. Anderson, E. A. Dias, D. M. Sagar, and P. Kambhampati, “State-resolved studies of biexcitons and surface trapping dynamics in semiconductor quantum dots,” J. Chem. Phys. 129, 084701 (2008).
[CrossRef]

Kane, D.

R. Trebino, K. DeLong, D. Fittinghoff, J. Sweetser, M. Krumbugel, B. Richman, and D. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277–3295 (1997).
[CrossRef]

Karaiskaj, D.

X. Dai, A. Bristow, D. Karaiskaj, and S. Cundiff, “Two-dimensional Fourier-transform spectroscopy of potassium vapor,” Phys. Rev. A 82, 052503 (2010).
[CrossRef]

Kartashov, D.

Kasparian, J.

Kauffmann, H. F.

N. Christensson, F. Milota, J. Hauer, J. Sperling, O. Bixner, A. Nemeth, and H. F. Kauffmann, “High frequency vibrational modulations in two-dimensional electronic spectra and their resemblance to electronic coherence signatures,” J. Phys. Chem. B 115, 5383–5391 (2011).
[CrossRef]

Keusters, D.

P. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, “Femtosecond phase-coherent two-dimensional spectroscopy,” Science 300, 1553–1555 (2003).
[CrossRef]

Kienberger, R.

M. Drescher, M. Hentschel, R. Kienberger, M. Uiberacker, V. Yakovlev, A. Scrinzi, T. Westerwalbesloh, U. Kleineberg, U. Heinzmann, and F. Krausz, “Time-resolved atomic inner-shell spectroscopy,” Nature 419, 803–807 (2002).
[CrossRef]

Kitney, K. A.

M. K. Yetzbacher, N. Belabas, K. A. Kitney, and D. M. Jonas, “Propagation, beam geometry, and detection distortions of peak shapes in two-dimensional Fourier transform spectra,” J. Chem. Phys. 126, 044511 (2007).
[CrossRef]

Kleineberg, U.

M. Drescher, M. Hentschel, R. Kienberger, M. Uiberacker, V. Yakovlev, A. Scrinzi, T. Westerwalbesloh, U. Kleineberg, U. Heinzmann, and F. Krausz, “Time-resolved atomic inner-shell spectroscopy,” Nature 419, 803–807 (2002).
[CrossRef]

Klimov, V. I.

V. I. Klimov, “Spectral and dynamical properties of multiexcitons in semiconductor nanocrystals,” Annu. Rev. Phys. Chem. 58, 635–673 (2007).
[CrossRef]

V. I. Klimov, “Optical nonlinearities and ultrafast carrier dynamics in semiconductor nanocrystals,” J. Phys. Chem. B 104, 6112–6123 (2000).
[CrossRef]

V. I. Klimov, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, “Electron and hole relaxation pathways in semiconductor quantum dots,” Phys. Rev. B 60, 13740–13749 (1999).
[CrossRef]

Kludzin, V.

Kobayashi, M.

M. Umetsu, Z. Y. Wang, M. Kobayashi, and T. Nozawa, “Interaction of photosynthetic pigments with various organic solvents—magnetic circular dichroism approach and application to chlorosomes,” Biochim. Biophys. Acta 1410, 19–31 (1999).
[CrossRef]

Kobayashi, R.

J. R. Reimers, Z. L. Cai, R. Kobayashi, M. Ratsep, A. Freiberg, and E. Krausz, “Assignment of the Q-bands of the chlorophylls: coherence loss via Qx—Qy mixing,” Sci. Rep. 3, 2761 (2013).
[CrossRef]

Kobayashi, T.

J. Du, T. Teramoto, K. Nakata, E. Tokunaga, and T. Kobayashi, “Real-time vibrational dynamics in Chlorophyll a studied with a few-cycle pulse laser,” Biophys. J. 101, 995–1003 (2011).
[CrossRef]

J. Du, K. Nakata, Y. Jiang, E. Tokunaga, and T. Kobayashi, “Spectral modulation observed in Chl-a by ultrafast laser spectroscopy,” Opt. Express 19, 22480–22485 (2011).
[CrossRef]

Krausz, E.

J. R. Reimers, Z. L. Cai, R. Kobayashi, M. Ratsep, A. Freiberg, and E. Krausz, “Assignment of the Q-bands of the chlorophylls: coherence loss via Qx—Qy mixing,” Sci. Rep. 3, 2761 (2013).
[CrossRef]

J. L. Hughes, B. Conlon, T. Wydrzynski, and E. Krausz, “The assignment of Qy(1,0) vibrational structure and Qx for Chlorophyll a,” Phys. Proc. 3, 9 (2010).

Krausz, F.

M. Drescher, M. Hentschel, R. Kienberger, M. Uiberacker, V. Yakovlev, A. Scrinzi, T. Westerwalbesloh, U. Kleineberg, U. Heinzmann, and F. Krausz, “Time-resolved atomic inner-shell spectroscopy,” Nature 419, 803–807 (2002).
[CrossRef]

Krumbugel, M.

R. Trebino, K. DeLong, D. Fittinghoff, J. Sweetser, M. Krumbugel, B. Richman, and D. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277–3295 (1997).
[CrossRef]

Langhojer, F.

Leatherdale, C. A.

V. I. Klimov, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, “Electron and hole relaxation pathways in semiconductor quantum dots,” Phys. Rev. B 60, 13740–13749 (1999).
[CrossRef]

Leonov, O.

Lewis, K.

Lewis, K. L. M.

Li, C.

Li, H.

G. Moody, R. Singh, H. Li, I. A. Akimov, M. Bayer, D. Reuter, A. D. Wieck, A. S. Bracker, D. Gammon, and S. T. Cundiff, “Influence of confinement on biexciton binding in semiconductor quantum dot ensembles measured with two-dimensional spectroscopy,” Phys. Rev. B 87, 041304 (2013).
[CrossRef]

H. Li, A. D. Bristow, M. E. Siemens, G. Moody, and S. T. Cundiff, “Unraveling quantum pathways using optical 3d Fourier-transform spectroscopy,” Nat. Commun. 4, 1390 (2013).
[CrossRef]

Li, M.

Li, X.

K. W. Stone, K. Gundogdu, D. B. Turner, X. Li, S. T. Cundiff, and K. A. Nelson, “Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells,” Science 324, 1169–1173 (2009).
[CrossRef]

T. Zhang, C. Borca, X. Li, and S. Cundiff, “Optical two-dimensional Fourier transform spectroscopy with active interferometric stabilization,” Opt. Express 13, 7432–7441 (2005).
[CrossRef]

Likforman, J. P.

Ling, Y. L.

S.-H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, “Automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide,” Proc. Natl. Acad. Sci. USA 104, 14197–14202 (2007).
[CrossRef]

Linkin, A.

G. Griffin, S. Ithurria, D. Dolzhnikov, A. Linkin, D. Talapin, and G. Engel, “Two-dimensional electronic spectroscopy of CdSe nanoparticles at very low pulse power,” J. Chem. Phys. 138, 014705 (2013).
[CrossRef]

Linnanto, J.

M. Ratsep, J. Linnanto, and A. Freiberg, “Mirror symmetry and vibrational structure in optical spectra of Chlorophyll a,” J. Chem. Phys. 130, 194501 (2009).
[CrossRef]

Lohrig, T.

Long, P. D.

Lott, G. A.

P. F. Tekavec, G. A. Lott, and A. H. Marcus, “Fluorescence-detected two-dimensional electronic coherence spectroscopy by acousto-optic phase modulation,” J. Chem. Phys. 127, 214307 (2007).
[CrossRef]

Lozovoy, V.

Maghlaoui, K.

J. Anna, E. Ostroumov, K. Maghlaoui, J. Barber, and G. Scholes, “Two-dimensional electronic spectroscopy reveals ultrafast downhill energy transfer in photosystem I trimers of the Cyanobacterium Thermosynechococcus elongatus,” J. Phys. Chem. Lett. 3, 3677–3684 (2012).
[CrossRef]

Mancal, T.

E. L. Read, G. S. Engel, T. R. Calhoun, T. Mancal, T. K. Ahn, R. E. Blankenship, and G. R. Fleming, “Cross-peak-specific two-dimensional electronic spectroscopy,” Proc. Natl. Acad. Sci. USA 104, 14203–14208 (2007).
[CrossRef]

E. Read, G. Engel, T. Calhoun, T. Mancal, T. Ahn, R. Blankenship, and G. Fleming, “Cross-peak-specific two-dimensional electronic spectroscopy,” Proc. Natl. Acad. Sci. USA 104, 14203–14208 (2007).
[CrossRef]

T. Brixner, T. Mancal, I. Stiopkin, and G. Fleming, “Phase-stabilized two-dimensional electronic spectroscopy,” J. Chem. Phys. 121, 4221–4236 (2004).
[CrossRef]

Marcus, A. H.

P. F. Tekavec, G. A. Lott, and A. H. Marcus, “Fluorescence-detected two-dimensional electronic coherence spectroscopy by acousto-optic phase modulation,” J. Chem. Phys. 127, 214307 (2007).
[CrossRef]

Mashiko, H.

Mauring, K.

I. Renge, K. Mauring, P. Sarv, and R. Avarmaa, “Vibrationally resolved optical-spectra of chlorophyll derivatives in different solid media,” J. Phys. Chem. 90, 6611–6616 (1986).
[CrossRef]

McBranch, D. W.

V. I. Klimov, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, “Electron and hole relaxation pathways in semiconductor quantum dots,” Phys. Rev. B 60, 13740–13749 (1999).
[CrossRef]

Mendonca, C. R.

L. De Boni, D. S. Correa, F. J. Pavinatto, D. S. dos Santos, and C. R. Mendonca, “Excited state absorption spectrum of chlorophyll a obtained with white-light continuum,” J. Chem. Phys. 126, 165102 (2007).
[CrossRef]

Meyer, K.

Miller, R. J. D.

V. I. Prokhorenko, A. Halpin, and R. J. D. Miller, “Coherently-controlled two-dimensional photon echo electronic spectroscopy,” Opt. Express 17, 9764–9779 (2009).
[CrossRef]

M. L. Cowan, J. P. Ogilvie, and R. J. D. Miller, “Two-dimensional spectroscopy using diffractive optics based phased-locked photon echoes,” Chem. Phys. Lett. 386, 184–189 (2004).
[CrossRef]

Milota, F.

N. Christensson, F. Milota, J. Hauer, J. Sperling, O. Bixner, A. Nemeth, and H. F. Kauffmann, “High frequency vibrational modulations in two-dimensional electronic spectra and their resemblance to electronic coherence signatures,” J. Phys. Chem. B 115, 5383–5391 (2011).
[CrossRef]

Molesky, B. P.

B. A. West, B. P. Molesky, P. G. Giokas, and A. M. Moran, “Uncovering molecular relaxation processes with nonlinear spectroscopies in the deep UV,” Chem. Phys. 423, 92–104 (2013).
[CrossRef]

Molotok, V.

Moody, G.

G. Moody, R. Singh, H. Li, I. A. Akimov, M. Bayer, D. Reuter, A. D. Wieck, A. S. Bracker, D. Gammon, and S. T. Cundiff, “Influence of confinement on biexciton binding in semiconductor quantum dot ensembles measured with two-dimensional spectroscopy,” Phys. Rev. B 87, 041304 (2013).
[CrossRef]

H. Li, A. D. Bristow, M. E. Siemens, G. Moody, and S. T. Cundiff, “Unraveling quantum pathways using optical 3d Fourier-transform spectroscopy,” Nat. Commun. 4, 1390 (2013).
[CrossRef]

Moran, A. M.

B. A. West, B. P. Molesky, P. G. Giokas, and A. M. Moran, “Uncovering molecular relaxation processes with nonlinear spectroscopies in the deep UV,” Chem. Phys. 423, 92–104 (2013).
[CrossRef]

Morita, R.

Mukamel, S.

S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford, 1995).

Mulvaney, R. M.

E. E. Ostroumov, R. M. Mulvaney, R. J. Cogdell, and G. D. Scholes, “Broadband 2D electronic spectroscopy reveals a carotenoid dark state in purple bacteria,” Science 340, 52–56 (2013).
[CrossRef]

Myers, J.

Myers, J. A.

Nakata, K.

J. Du, K. Nakata, Y. Jiang, E. Tokunaga, and T. Kobayashi, “Spectral modulation observed in Chl-a by ultrafast laser spectroscopy,” Opt. Express 19, 22480–22485 (2011).
[CrossRef]

J. Du, T. Teramoto, K. Nakata, E. Tokunaga, and T. Kobayashi, “Real-time vibrational dynamics in Chlorophyll a studied with a few-cycle pulse laser,” Biophys. J. 101, 995–1003 (2011).
[CrossRef]

Nelson, K. A.

D. B. Turner, K. W. Stone, K. Gundogdu, and K. A. Nelson, “Invited article: the coherent optical laser beam recombination technique (colbert) spectrometer: coherent multidimensional spectroscopy made easier,” Rev. Sci. Instrum. 82, 081301 (2011).
[CrossRef]

K. W. Stone, K. Gundogdu, D. B. Turner, X. Li, S. T. Cundiff, and K. A. Nelson, “Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells,” Science 324, 1169–1173 (2009).
[CrossRef]

Nemeth, A.

N. Christensson, F. Milota, J. Hauer, J. Sperling, O. Bixner, A. Nemeth, and H. F. Kauffmann, “High frequency vibrational modulations in two-dimensional electronic spectra and their resemblance to electronic coherence signatures,” J. Phys. Chem. B 115, 5383–5391 (2011).
[CrossRef]

Nibarger, J. P.

Nisoli, M.

M. Nisoli, G. Sansone, S. Stagira, C. Vozzi, S. De Silvestri, and O. Svelto, “Ultra-broadband continuum generation by hollow-fiber cascading,” Appl. Phys. B 75, 601–604 (2002).
[CrossRef]

M. Nisoli, S. DeSilvestri, and O. Svelto, “Generation of high energy 10  fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68, 2793–2795 (1996).
[CrossRef]

Norris, D.

D. Norris and M. Bawendi, “Measurement and assignment of the size-dependent optical spectrum in CdSe quantum dots,” Phys. Rev. B 53, 16338–16346 (1996).
[CrossRef]

Nozawa, T.

M. Umetsu, Z. Y. Wang, M. Kobayashi, and T. Nozawa, “Interaction of photosynthetic pigments with various organic solvents—magnetic circular dichroism approach and application to chlorosomes,” Biochim. Biophys. Acta 1410, 19–31 (1999).
[CrossRef]

Nuernberger, P.

Nugent, K. A.

J. A. Davis, T. R. Calhoun, K. A. Nugent, and H. M. Quiney, “Ultrafast optical multidimensional spectroscopy without interferometry,” J. Chem. Phys. 134, 024504 (2011).
[CrossRef]

Ogilvie, J.

Ogilvie, J. P.

Oka, K.

Ostroumov, E.

J. Anna, E. Ostroumov, K. Maghlaoui, J. Barber, and G. Scholes, “Two-dimensional electronic spectroscopy reveals ultrafast downhill energy transfer in photosystem I trimers of the Cyanobacterium Thermosynechococcus elongatus,” J. Phys. Chem. Lett. 3, 3677–3684 (2012).
[CrossRef]

Ostroumov, E. E.

E. E. Ostroumov, R. M. Mulvaney, R. J. Cogdell, and G. D. Scholes, “Broadband 2D electronic spectroscopy reveals a carotenoid dark state in purple bacteria,” Science 340, 52–56 (2013).
[CrossRef]

Ott, C.

Panitchayangkoon, G.

G. Panitchayangkoon, D. Hayes, K. Fransted, J. Caram, E. Harel, J. Wen, R. Blankenship, and G. Engel, “Long-lived quantum coherence in photosynthetic complexes at physiological temperature,” Proc. Natl. Acad. Sci. USA 107, 12766–12770 (2010).
[CrossRef]

Pavinatto, F. J.

L. De Boni, D. S. Correa, F. J. Pavinatto, D. S. dos Santos, and C. R. Mendonca, “Excited state absorption spectrum of chlorophyll a obtained with white-light continuum,” J. Chem. Phys. 126, 165102 (2007).
[CrossRef]

Petrarca, M.

Pfeifer, T.

Prokhorenko, V. I.

Puglys, A.

Quiney, H. M.

J. A. Davis, T. R. Calhoun, K. A. Nugent, and H. M. Quiney, “Ultrafast optical multidimensional spectroscopy without interferometry,” J. Chem. Phys. 134, 024504 (2011).
[CrossRef]

Ratsep, M.

J. R. Reimers, Z. L. Cai, R. Kobayashi, M. Ratsep, A. Freiberg, and E. Krausz, “Assignment of the Q-bands of the chlorophylls: coherence loss via Qx—Qy mixing,” Sci. Rep. 3, 2761 (2013).
[CrossRef]

M. Ratsep, J. Linnanto, and A. Freiberg, “Mirror symmetry and vibrational structure in optical spectra of Chlorophyll a,” J. Chem. Phys. 130, 194501 (2009).
[CrossRef]

Read, E.

E. Read, G. Engel, T. Calhoun, T. Mancal, T. Ahn, R. Blankenship, and G. Fleming, “Cross-peak-specific two-dimensional electronic spectroscopy,” Proc. Natl. Acad. Sci. USA 104, 14203–14208 (2007).
[CrossRef]

Read, E. L.

E. L. Read, G. S. Engel, T. R. Calhoun, T. Mancal, T. K. Ahn, R. E. Blankenship, and G. R. Fleming, “Cross-peak-specific two-dimensional electronic spectroscopy,” Proc. Natl. Acad. Sci. USA 104, 14203–14208 (2007).
[CrossRef]

Reimers, J. R.

J. R. Reimers, Z. L. Cai, R. Kobayashi, M. Ratsep, A. Freiberg, and E. Krausz, “Assignment of the Q-bands of the chlorophylls: coherence loss via Qx—Qy mixing,” Sci. Rep. 3, 2761 (2013).
[CrossRef]

Renge, I.

I. Renge, K. Mauring, P. Sarv, and R. Avarmaa, “Vibrationally resolved optical-spectra of chlorophyll derivatives in different solid media,” J. Phys. Chem. 90, 6611–6616 (1986).
[CrossRef]

Reuter, D.

G. Moody, R. Singh, H. Li, I. A. Akimov, M. Bayer, D. Reuter, A. D. Wieck, A. S. Bracker, D. Gammon, and S. T. Cundiff, “Influence of confinement on biexciton binding in semiconductor quantum dot ensembles measured with two-dimensional spectroscopy,” Phys. Rev. B 87, 041304 (2013).
[CrossRef]

Richman, B.

R. Trebino, K. DeLong, D. Fittinghoff, J. Sweetser, M. Krumbugel, B. Richman, and D. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277–3295 (1997).
[CrossRef]

Rosen, M.

A. L. Efros and M. Rosen, “The electronic structure of semiconductor nanocrystals,” Annu. Rev. Mater. Sci. 30, 475–521 (2000).
[CrossRef]

Rouxel, J.

K. Wells, Z. Zhang, J. Rouxel, and H. Tan, “Measuring the spectral diffusion of chlorophyll a using two-dimensional electronic spectroscopy,” J. Phys. Chem. B 117, 2294–2299 (2013).
[CrossRef]

Saari, J. I.

P. Tyagi, J. I. Saari, B. Walsh, A. Kabir, V. Crozatier, N. Forget, and P. Kambhampati, “Two-color two-dimensional electronic spectroscopy using dual acousto-optic pulse shapers for complete amplitude, phase, and polarization control of femtosecond laser pulses,” J. Phys. Chem. A 117, 6264–6269 (2013).
[CrossRef]

Sagar, D. M.

S. L. Sewall, R. R. Cooney, K. E. H. Anderson, E. A. Dias, D. M. Sagar, and P. Kambhampati, “State-resolved studies of biexcitons and surface trapping dynamics in semiconductor quantum dots,” J. Chem. Phys. 129, 084701 (2008).
[CrossRef]

Sansone, G.

M. Nisoli, G. Sansone, S. Stagira, C. Vozzi, S. De Silvestri, and O. Svelto, “Ultra-broadband continuum generation by hollow-fiber cascading,” Appl. Phys. B 75, 601–604 (2002).
[CrossRef]

Sarv, P.

I. Renge, K. Mauring, P. Sarv, and R. Avarmaa, “Vibrationally resolved optical-spectra of chlorophyll derivatives in different solid media,” J. Phys. Chem. 90, 6611–6616 (1986).
[CrossRef]

Schlau-Cohen, G.

G. Schlau-Cohen, A. Ishizaki, and G. Fleming, “Two-dimensional electronic spectroscopy and photosynthesis: fundamentals and applications to photosynthetic light-harvesting,” Chem. Phys. 386, 1–22 (2011).
[CrossRef]

Schleussner, C. F.

Scholes, G.

D. Turner, Y. Hassan, and G. Scholes, “Exciton superposition states in CdSe nanocrystals measured using broadband two-dimensional electronic spectroscopy,” Nano Lett. 12, 880–886 (2012).
[CrossRef]

J. Anna, E. Ostroumov, K. Maghlaoui, J. Barber, and G. Scholes, “Two-dimensional electronic spectroscopy reveals ultrafast downhill energy transfer in photosystem I trimers of the Cyanobacterium Thermosynechococcus elongatus,” J. Phys. Chem. Lett. 3, 3677–3684 (2012).
[CrossRef]

C. Wong and G. Scholes, “Biexcitonic fine structure of CdSe nanocrystals probed by polarization-dependent two-dimensional photon echo spectroscopy,” J. Phys. Chem. A 115, 3797–3806 (2011).
[CrossRef]

Scholes, G. D.

E. E. Ostroumov, R. M. Mulvaney, R. J. Cogdell, and G. D. Scholes, “Broadband 2D electronic spectroscopy reveals a carotenoid dark state in purple bacteria,” Science 340, 52–56 (2013).
[CrossRef]

D. B. Turner, Y. Hassan, and G. D. Scholes, “Exciton superposition states in CdSe nanocrystals measured using broadband two-dimensional electronic spectroscopy,” Nano Lett. 12, 880–886 (2012).
[CrossRef]

C. Y. Wong and G. D. Scholes, “Using two-dimensional photon echo spectroscopy to probe the fine structure of the ground state biexciton of CdSe nanocrystals,” J. Lumin. 131, 366–374 (2011).
[CrossRef]

D. B. Turner, K. E. Wilk, P. M. G. Curmi, and G. D. Scholes, “Comparison of electronic and vibrational coherence measured by two-dimensional electronic spectroscopy,” J. Phys. Chem. Lett. 2, 1904–1911 (2011).
[CrossRef]

E. Collini, C. Y. Wong, K. E. Wilk, P. M. G. Curmi, P. Brumer, and G. D. Scholes, “Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature,” Nature 463, 644–647 (2010).
[CrossRef]

G. D. Scholes, “Selection rules for probing biexcitons and electron spin transitions in isotropic quantum dot ensembles,” J. Chem. Phys. 121, 10104 (2004).
[CrossRef]

Schwarz, C.

Scrinzi, A.

M. Drescher, M. Hentschel, R. Kienberger, M. Uiberacker, V. Yakovlev, A. Scrinzi, T. Westerwalbesloh, U. Kleineberg, U. Heinzmann, and F. Krausz, “Time-resolved atomic inner-shell spectroscopy,” Nature 419, 803–807 (2002).
[CrossRef]

Selig, U.

Sewall, S. L.

S. L. Sewall, A. Franceschetti, R. R. Cooney, A. Zunger, and P. Kambhampati, “Direct observation of the structure of band-edge biexcitons in colloidal semiconductor CdSe quantum dots,” Phys. Rev. B 80, 081310 (2009).
[CrossRef]

S. L. Sewall, R. R. Cooney, K. E. H. Anderson, E. A. Dias, D. M. Sagar, and P. Kambhampati, “State-resolved studies of biexcitons and surface trapping dynamics in semiconductor quantum dots,” J. Chem. Phys. 129, 084701 (2008).
[CrossRef]

Shim, S.-H.

S.-H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, “Automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide,” Proc. Natl. Acad. Sci. USA 104, 14197–14202 (2007).
[CrossRef]

Siemens, M. E.

H. Li, A. D. Bristow, M. E. Siemens, G. Moody, and S. T. Cundiff, “Unraveling quantum pathways using optical 3d Fourier-transform spectroscopy,” Nat. Commun. 4, 1390 (2013).
[CrossRef]

Singh, R.

G. Moody, R. Singh, H. Li, I. A. Akimov, M. Bayer, D. Reuter, A. D. Wieck, A. S. Bracker, D. Gammon, and S. T. Cundiff, “Influence of confinement on biexciton binding in semiconductor quantum dot ensembles measured with two-dimensional spectroscopy,” Phys. Rev. B 87, 041304 (2013).
[CrossRef]

Sperling, J.

N. Christensson, F. Milota, J. Hauer, J. Sperling, O. Bixner, A. Nemeth, and H. F. Kauffmann, “High frequency vibrational modulations in two-dimensional electronic spectra and their resemblance to electronic coherence signatures,” J. Phys. Chem. B 115, 5383–5391 (2011).
[CrossRef]

Stagira, S.

M. Nisoli, G. Sansone, S. Stagira, C. Vozzi, S. De Silvestri, and O. Svelto, “Ultra-broadband continuum generation by hollow-fiber cascading,” Appl. Phys. B 75, 601–604 (2002).
[CrossRef]

Steinmeyer, G.

G. Steinmeyer and G. Stibenz, “Generation of sub-4-fs pulses via compression of a white-light continuum using only chirped mirrors,” Appl. Phys. B 82, 175–181 (2006).
[CrossRef]

Stenger, J.

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434, 625–628 (2005).
[CrossRef]

Stibenz, G.

G. Steinmeyer and G. Stibenz, “Generation of sub-4-fs pulses via compression of a white-light continuum using only chirped mirrors,” Appl. Phys. B 82, 175–181 (2006).
[CrossRef]

Stiopkin, I.

T. Brixner, T. Mancal, I. Stiopkin, and G. Fleming, “Phase-stabilized two-dimensional electronic spectroscopy,” J. Chem. Phys. 121, 4221–4236 (2004).
[CrossRef]

Stone, K. W.

D. B. Turner, K. W. Stone, K. Gundogdu, and K. A. Nelson, “Invited article: the coherent optical laser beam recombination technique (colbert) spectrometer: coherent multidimensional spectroscopy made easier,” Rev. Sci. Instrum. 82, 081301 (2011).
[CrossRef]

K. W. Stone, K. Gundogdu, D. B. Turner, X. Li, S. T. Cundiff, and K. A. Nelson, “Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells,” Science 324, 1169–1173 (2009).
[CrossRef]

Strasfeld, D. B.

S.-H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, “Automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide,” Proc. Natl. Acad. Sci. USA 104, 14197–14202 (2007).
[CrossRef]

Suguro, A.

Suzaki, Y.

P. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, “Femtosecond phase-coherent two-dimensional spectroscopy,” Science 300, 1553–1555 (2003).
[CrossRef]

Svelto, O.

M. Nisoli, G. Sansone, S. Stagira, C. Vozzi, S. De Silvestri, and O. Svelto, “Ultra-broadband continuum generation by hollow-fiber cascading,” Appl. Phys. B 75, 601–604 (2002).
[CrossRef]

M. Nisoli, S. DeSilvestri, and O. Svelto, “Generation of high energy 10  fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68, 2793–2795 (1996).
[CrossRef]

Sweetser, J.

J. Sweetser, D. Fittinghoff, and R. Trebino, “Transient-grating frequency-resolved optical gating,” Opt. Lett. 22, 519–521 (1997).
[CrossRef]

R. Trebino, K. DeLong, D. Fittinghoff, J. Sweetser, M. Krumbugel, B. Richman, and D. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277–3295 (1997).
[CrossRef]

Talapin, D.

G. Griffin, S. Ithurria, D. Dolzhnikov, A. Linkin, D. Talapin, and G. Engel, “Two-dimensional electronic spectroscopy of CdSe nanoparticles at very low pulse power,” J. Chem. Phys. 138, 014705 (2013).
[CrossRef]

Tan, H.

K. Wells, Z. Zhang, J. Rouxel, and H. Tan, “Measuring the spectral diffusion of chlorophyll a using two-dimensional electronic spectroscopy,” J. Phys. Chem. B 117, 2294–2299 (2013).
[CrossRef]

Tekavec, P.

Tekavec, P. F.

P. F. Tekavec, J. A. Myers, K. L. M. Lewis, F. D. Fuller, and J. P. Ogilvie, “Effects of chirp on two-dimensional Fourier transform electronic spectra,” Opt. Express 18, 11015–11024 (2010).
[CrossRef]

P. F. Tekavec, G. A. Lott, and A. H. Marcus, “Fluorescence-detected two-dimensional electronic coherence spectroscopy by acousto-optic phase modulation,” J. Chem. Phys. 127, 214307 (2007).
[CrossRef]

Teramoto, T.

J. Du, T. Teramoto, K. Nakata, E. Tokunaga, and T. Kobayashi, “Real-time vibrational dynamics in Chlorophyll a studied with a few-cycle pulse laser,” Biophys. J. 101, 995–1003 (2011).
[CrossRef]

Tian, P.

P. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, “Femtosecond phase-coherent two-dimensional spectroscopy,” Science 300, 1553–1555 (2003).
[CrossRef]

Tokunaga, E.

J. Du, K. Nakata, Y. Jiang, E. Tokunaga, and T. Kobayashi, “Spectral modulation observed in Chl-a by ultrafast laser spectroscopy,” Opt. Express 19, 22480–22485 (2011).
[CrossRef]

J. Du, T. Teramoto, K. Nakata, E. Tokunaga, and T. Kobayashi, “Real-time vibrational dynamics in Chlorophyll a studied with a few-cycle pulse laser,” Biophys. J. 101, 995–1003 (2011).
[CrossRef]

Trebino, R.

R. Trebino, K. DeLong, D. Fittinghoff, J. Sweetser, M. Krumbugel, B. Richman, and D. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277–3295 (1997).
[CrossRef]

J. Sweetser, D. Fittinghoff, and R. Trebino, “Transient-grating frequency-resolved optical gating,” Opt. Lett. 22, 519–521 (1997).
[CrossRef]

R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Springer, 2002).

Turner, D.

D. Turner, Y. Hassan, and G. Scholes, “Exciton superposition states in CdSe nanocrystals measured using broadband two-dimensional electronic spectroscopy,” Nano Lett. 12, 880–886 (2012).
[CrossRef]

Turner, D. B.

D. B. Turner, Y. Hassan, and G. D. Scholes, “Exciton superposition states in CdSe nanocrystals measured using broadband two-dimensional electronic spectroscopy,” Nano Lett. 12, 880–886 (2012).
[CrossRef]

D. B. Turner, K. W. Stone, K. Gundogdu, and K. A. Nelson, “Invited article: the coherent optical laser beam recombination technique (colbert) spectrometer: coherent multidimensional spectroscopy made easier,” Rev. Sci. Instrum. 82, 081301 (2011).
[CrossRef]

D. B. Turner, K. E. Wilk, P. M. G. Curmi, and G. D. Scholes, “Comparison of electronic and vibrational coherence measured by two-dimensional electronic spectroscopy,” J. Phys. Chem. Lett. 2, 1904–1911 (2011).
[CrossRef]

K. W. Stone, K. Gundogdu, D. B. Turner, X. Li, S. T. Cundiff, and K. A. Nelson, “Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells,” Science 324, 1169–1173 (2009).
[CrossRef]

Tyagi, P.

P. Tyagi, J. I. Saari, B. Walsh, A. Kabir, V. Crozatier, N. Forget, and P. Kambhampati, “Two-color two-dimensional electronic spectroscopy using dual acousto-optic pulse shapers for complete amplitude, phase, and polarization control of femtosecond laser pulses,” J. Phys. Chem. A 117, 6264–6269 (2013).
[CrossRef]

Uiberacker, M.

M. Drescher, M. Hentschel, R. Kienberger, M. Uiberacker, V. Yakovlev, A. Scrinzi, T. Westerwalbesloh, U. Kleineberg, U. Heinzmann, and F. Krausz, “Time-resolved atomic inner-shell spectroscopy,” Nature 419, 803–807 (2002).
[CrossRef]

Umetsu, M.

M. Umetsu, Z. Y. Wang, M. Kobayashi, and T. Nozawa, “Interaction of photosynthetic pigments with various organic solvents—magnetic circular dichroism approach and application to chlorosomes,” Biochim. Biophys. Acta 1410, 19–31 (1999).
[CrossRef]

Vaswani, H. M.

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434, 625–628 (2005).
[CrossRef]

Voronin, A.

Vozzi, C.

M. Nisoli, G. Sansone, S. Stagira, C. Vozzi, S. De Silvestri, and O. Svelto, “Ultra-broadband continuum generation by hollow-fiber cascading,” Appl. Phys. B 75, 601–604 (2002).
[CrossRef]

Walsh, B.

P. Tyagi, J. I. Saari, B. Walsh, A. Kabir, V. Crozatier, N. Forget, and P. Kambhampati, “Two-color two-dimensional electronic spectroscopy using dual acousto-optic pulse shapers for complete amplitude, phase, and polarization control of femtosecond laser pulses,” J. Phys. Chem. A 117, 6264–6269 (2013).
[CrossRef]

Wang, H.

Wang, Z. Y.

M. Umetsu, Z. Y. Wang, M. Kobayashi, and T. Nozawa, “Interaction of photosynthetic pigments with various organic solvents—magnetic circular dichroism approach and application to chlorosomes,” Biochim. Biophys. Acta 1410, 19–31 (1999).
[CrossRef]

Warren, W. S.

P. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, “Femtosecond phase-coherent two-dimensional spectroscopy,” Science 300, 1553–1555 (2003).
[CrossRef]

Wells, K.

K. Wells, Z. Zhang, J. Rouxel, and H. Tan, “Measuring the spectral diffusion of chlorophyll a using two-dimensional electronic spectroscopy,” J. Phys. Chem. B 117, 2294–2299 (2013).
[CrossRef]

Wen, J.

G. Panitchayangkoon, D. Hayes, K. Fransted, J. Caram, E. Harel, J. Wen, R. Blankenship, and G. Engel, “Long-lived quantum coherence in photosynthetic complexes at physiological temperature,” Proc. Natl. Acad. Sci. USA 107, 12766–12770 (2010).
[CrossRef]

West, B. A.

B. A. West, B. P. Molesky, P. G. Giokas, and A. M. Moran, “Uncovering molecular relaxation processes with nonlinear spectroscopies in the deep UV,” Chem. Phys. 423, 92–104 (2013).
[CrossRef]

Westerwalbesloh, T.

M. Drescher, M. Hentschel, R. Kienberger, M. Uiberacker, V. Yakovlev, A. Scrinzi, T. Westerwalbesloh, U. Kleineberg, U. Heinzmann, and F. Krausz, “Time-resolved atomic inner-shell spectroscopy,” Nature 419, 803–807 (2002).
[CrossRef]

Wieck, A. D.

G. Moody, R. Singh, H. Li, I. A. Akimov, M. Bayer, D. Reuter, A. D. Wieck, A. S. Bracker, D. Gammon, and S. T. Cundiff, “Influence of confinement on biexciton binding in semiconductor quantum dot ensembles measured with two-dimensional spectroscopy,” Phys. Rev. B 87, 041304 (2013).
[CrossRef]

Wilcox, D. E.

Wilk, K. E.

D. B. Turner, K. E. Wilk, P. M. G. Curmi, and G. D. Scholes, “Comparison of electronic and vibrational coherence measured by two-dimensional electronic spectroscopy,” J. Phys. Chem. Lett. 2, 1904–1911 (2011).
[CrossRef]

E. Collini, C. Y. Wong, K. E. Wilk, P. M. G. Curmi, P. Brumer, and G. D. Scholes, “Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature,” Nature 463, 644–647 (2010).
[CrossRef]

Wolf, J.-P.

Wong, C.

C. Wong and G. Scholes, “Biexcitonic fine structure of CdSe nanocrystals probed by polarization-dependent two-dimensional photon echo spectroscopy,” J. Phys. Chem. A 115, 3797–3806 (2011).
[CrossRef]

Wong, C. Y.

C. Y. Wong and G. D. Scholes, “Using two-dimensional photon echo spectroscopy to probe the fine structure of the ground state biexciton of CdSe nanocrystals,” J. Lumin. 131, 366–374 (2011).
[CrossRef]

E. Collini, C. Y. Wong, K. E. Wilk, P. M. G. Curmi, P. Brumer, and G. D. Scholes, “Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature,” Nature 463, 644–647 (2010).
[CrossRef]

Wu, Y.

Wydrzynski, T.

J. L. Hughes, B. Conlon, T. Wydrzynski, and E. Krausz, “The assignment of Qy(1,0) vibrational structure and Qx for Chlorophyll a,” Phys. Proc. 3, 9 (2010).

Xu, B.

Yakovlev, V.

M. Drescher, M. Hentschel, R. Kienberger, M. Uiberacker, V. Yakovlev, A. Scrinzi, T. Westerwalbesloh, U. Kleineberg, U. Heinzmann, and F. Krausz, “Time-resolved atomic inner-shell spectroscopy,” Nature 419, 803–807 (2002).
[CrossRef]

Yamane, K.

Yamashita, M.

Yetzbacher, M. K.

M. K. Yetzbacher, N. Belabas, K. A. Kitney, and D. M. Jonas, “Propagation, beam geometry, and detection distortions of peak shapes in two-dimensional Fourier transform spectra,” J. Chem. Phys. 126, 044511 (2007).
[CrossRef]

Yin, S.

Yu, A.

J. D. Hybl, A. Yu, D. A. Farrow, and D. M. Jonas, “Polar solvation dynamics in the femtosecond evolution of two-dimensional Fourier transform spectra,” J. Phys. Chem. A 106, 7651–7654 (2002).
[CrossRef]

Yu, F.

Zanni, M. T.

S.-H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, “Automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide,” Proc. Natl. Acad. Sci. USA 104, 14197–14202 (2007).
[CrossRef]

Zewail, A.

A. Zewail, “Femtochemistry: atomic-scale dynamics of the chemical bond,” J. Phys. Chem. A 104, 5660–5694 (2000).
[CrossRef]

Zhang, T.

Zhang, Y.

Zhang, Z.

K. Wells, Z. Zhang, J. Rouxel, and H. Tan, “Measuring the spectral diffusion of chlorophyll a using two-dimensional electronic spectroscopy,” J. Phys. Chem. B 117, 2294–2299 (2013).
[CrossRef]

K. Yamane, Z. Zhang, K. Oka, R. Morita, M. Yamashita, and A. Suguro, “Optical pulse compression to 3.4 fs in the monocycle region by feedback phase compensation,” Opt. Lett. 28, 2258–2260 (2003).
[CrossRef]

Zheltikov, A.

Zigmantas, D.

Zunger, A.

S. L. Sewall, A. Franceschetti, R. R. Cooney, A. Zunger, and P. Kambhampati, “Direct observation of the structure of band-edge biexcitons in colloidal semiconductor CdSe quantum dots,” Phys. Rev. B 80, 081310 (2009).
[CrossRef]

Acc. Chem. Res. (1)

P. Kambhampati, “Unraveling the structure and dynamics of excitons in semiconductor quantum dots,” Acc. Chem. Res. 44, 1–13 (2011).
[CrossRef]

Annu. Rev. Mater. Sci. (1)

A. L. Efros and M. Rosen, “The electronic structure of semiconductor nanocrystals,” Annu. Rev. Mater. Sci. 30, 475–521 (2000).
[CrossRef]

Annu. Rev. Phys. Chem. (2)

V. I. Klimov, “Spectral and dynamical properties of multiexcitons in semiconductor nanocrystals,” Annu. Rev. Phys. Chem. 58, 635–673 (2007).
[CrossRef]

D. M. Jonas, “Two-dimensional femtosecond spectroscopy,” Annu. Rev. Phys. Chem. 54, 425–463 (2003).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (2)

M. Nisoli, G. Sansone, S. Stagira, C. Vozzi, S. De Silvestri, and O. Svelto, “Ultra-broadband continuum generation by hollow-fiber cascading,” Appl. Phys. B 75, 601–604 (2002).
[CrossRef]

G. Steinmeyer and G. Stibenz, “Generation of sub-4-fs pulses via compression of a white-light continuum using only chirped mirrors,” Appl. Phys. B 82, 175–181 (2006).
[CrossRef]

Appl. Phys. Lett. (1)

M. Nisoli, S. DeSilvestri, and O. Svelto, “Generation of high energy 10  fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68, 2793–2795 (1996).
[CrossRef]

Biochim. Biophys. Acta (1)

M. Umetsu, Z. Y. Wang, M. Kobayashi, and T. Nozawa, “Interaction of photosynthetic pigments with various organic solvents—magnetic circular dichroism approach and application to chlorosomes,” Biochim. Biophys. Acta 1410, 19–31 (1999).
[CrossRef]

Biophys. J. (1)

J. Du, T. Teramoto, K. Nakata, E. Tokunaga, and T. Kobayashi, “Real-time vibrational dynamics in Chlorophyll a studied with a few-cycle pulse laser,” Biophys. J. 101, 995–1003 (2011).
[CrossRef]

Chem. Phys. (2)

B. A. West, B. P. Molesky, P. G. Giokas, and A. M. Moran, “Uncovering molecular relaxation processes with nonlinear spectroscopies in the deep UV,” Chem. Phys. 423, 92–104 (2013).
[CrossRef]

G. Schlau-Cohen, A. Ishizaki, and G. Fleming, “Two-dimensional electronic spectroscopy and photosynthesis: fundamentals and applications to photosynthetic light-harvesting,” Chem. Phys. 386, 1–22 (2011).
[CrossRef]

Chem. Phys. Lett. (2)

M. L. Cowan, J. P. Ogilvie, and R. J. D. Miller, “Two-dimensional spectroscopy using diffractive optics based phased-locked photon echoes,” Chem. Phys. Lett. 386, 184–189 (2004).
[CrossRef]

J. Hybl, A. Albrecht, S. Faeder, and D. Jonas, “Two-dimensional electronic spectroscopy,” Chem. Phys. Lett. 297, 307–313 (1998).
[CrossRef]

Chem. Rev. (1)

M. Cho, “Coherent two-dimensional optical spectroscopy,” Chem. Rev. 108, 1331–1418 (2008).
[CrossRef]

J. Chem. Phys. (10)

J. A. Davis, T. R. Calhoun, K. A. Nugent, and H. M. Quiney, “Ultrafast optical multidimensional spectroscopy without interferometry,” J. Chem. Phys. 134, 024504 (2011).
[CrossRef]

P. F. Tekavec, G. A. Lott, and A. H. Marcus, “Fluorescence-detected two-dimensional electronic coherence spectroscopy by acousto-optic phase modulation,” J. Chem. Phys. 127, 214307 (2007).
[CrossRef]

G. Griffin, S. Ithurria, D. Dolzhnikov, A. Linkin, D. Talapin, and G. Engel, “Two-dimensional electronic spectroscopy of CdSe nanoparticles at very low pulse power,” J. Chem. Phys. 138, 014705 (2013).
[CrossRef]

T. Brixner, T. Mancal, I. Stiopkin, and G. Fleming, “Phase-stabilized two-dimensional electronic spectroscopy,” J. Chem. Phys. 121, 4221–4236 (2004).
[CrossRef]

J. D. Hybl, A. A. Ferro, and D. M. Jonas, “Two-dimensional Fourier transform electronic spectroscopy,” J. Chem. Phys. 115, 6606–6622 (2001).
[CrossRef]

M. K. Yetzbacher, N. Belabas, K. A. Kitney, and D. M. Jonas, “Propagation, beam geometry, and detection distortions of peak shapes in two-dimensional Fourier transform spectra,” J. Chem. Phys. 126, 044511 (2007).
[CrossRef]

M. Ratsep, J. Linnanto, and A. Freiberg, “Mirror symmetry and vibrational structure in optical spectra of Chlorophyll a,” J. Chem. Phys. 130, 194501 (2009).
[CrossRef]

G. D. Scholes, “Selection rules for probing biexcitons and electron spin transitions in isotropic quantum dot ensembles,” J. Chem. Phys. 121, 10104 (2004).
[CrossRef]

S. L. Sewall, R. R. Cooney, K. E. H. Anderson, E. A. Dias, D. M. Sagar, and P. Kambhampati, “State-resolved studies of biexcitons and surface trapping dynamics in semiconductor quantum dots,” J. Chem. Phys. 129, 084701 (2008).
[CrossRef]

L. De Boni, D. S. Correa, F. J. Pavinatto, D. S. dos Santos, and C. R. Mendonca, “Excited state absorption spectrum of chlorophyll a obtained with white-light continuum,” J. Chem. Phys. 126, 165102 (2007).
[CrossRef]

J. Lumin. (1)

C. Y. Wong and G. D. Scholes, “Using two-dimensional photon echo spectroscopy to probe the fine structure of the ground state biexciton of CdSe nanocrystals,” J. Lumin. 131, 366–374 (2011).
[CrossRef]

J. Opt. Soc. Am. B (3)

J. Phys. Chem. (1)

I. Renge, K. Mauring, P. Sarv, and R. Avarmaa, “Vibrationally resolved optical-spectra of chlorophyll derivatives in different solid media,” J. Phys. Chem. 90, 6611–6616 (1986).
[CrossRef]

J. Phys. Chem. A (5)

C. Wong and G. Scholes, “Biexcitonic fine structure of CdSe nanocrystals probed by polarization-dependent two-dimensional photon echo spectroscopy,” J. Phys. Chem. A 115, 3797–3806 (2011).
[CrossRef]

J. D. Hybl, A. Yu, D. A. Farrow, and D. M. Jonas, “Polar solvation dynamics in the femtosecond evolution of two-dimensional Fourier transform spectra,” J. Phys. Chem. A 106, 7651–7654 (2002).
[CrossRef]

A. Zewail, “Femtochemistry: atomic-scale dynamics of the chemical bond,” J. Phys. Chem. A 104, 5660–5694 (2000).
[CrossRef]

E. Harel, A. Fidler, and G. Engel, “Single-shot gradient-assisted photon echo electronic spectroscopy,” J. Phys. Chem. A 115, 3787–3796 (2011).
[CrossRef]

P. Tyagi, J. I. Saari, B. Walsh, A. Kabir, V. Crozatier, N. Forget, and P. Kambhampati, “Two-color two-dimensional electronic spectroscopy using dual acousto-optic pulse shapers for complete amplitude, phase, and polarization control of femtosecond laser pulses,” J. Phys. Chem. A 117, 6264–6269 (2013).
[CrossRef]

J. Phys. Chem. B (3)

N. Christensson, F. Milota, J. Hauer, J. Sperling, O. Bixner, A. Nemeth, and H. F. Kauffmann, “High frequency vibrational modulations in two-dimensional electronic spectra and their resemblance to electronic coherence signatures,” J. Phys. Chem. B 115, 5383–5391 (2011).
[CrossRef]

K. Wells, Z. Zhang, J. Rouxel, and H. Tan, “Measuring the spectral diffusion of chlorophyll a using two-dimensional electronic spectroscopy,” J. Phys. Chem. B 117, 2294–2299 (2013).
[CrossRef]

V. I. Klimov, “Optical nonlinearities and ultrafast carrier dynamics in semiconductor nanocrystals,” J. Phys. Chem. B 104, 6112–6123 (2000).
[CrossRef]

J. Phys. Chem. C (1)

P. Kambhampati, “Hot exciton relaxation dynamics in semiconductor quantum dots: radiationless transitions on the nanoscale,” J. Phys. Chem. C 115, 22089–22109 (2011).
[CrossRef]

J. Phys. Chem. Lett. (3)

J. Anna, E. Ostroumov, K. Maghlaoui, J. Barber, and G. Scholes, “Two-dimensional electronic spectroscopy reveals ultrafast downhill energy transfer in photosystem I trimers of the Cyanobacterium Thermosynechococcus elongatus,” J. Phys. Chem. Lett. 3, 3677–3684 (2012).
[CrossRef]

D. B. Turner, K. E. Wilk, P. M. G. Curmi, and G. D. Scholes, “Comparison of electronic and vibrational coherence measured by two-dimensional electronic spectroscopy,” J. Phys. Chem. Lett. 2, 1904–1911 (2011).
[CrossRef]

P. Kambhampati, “Multiexcitons in semiconductor nanocrystals: a platform for optoelectronics at high carrier concentration,” J. Phys. Chem. Lett. 3, 1182–1190 (2012).
[CrossRef]

Nano Lett. (2)

D. B. Turner, Y. Hassan, and G. D. Scholes, “Exciton superposition states in CdSe nanocrystals measured using broadband two-dimensional electronic spectroscopy,” Nano Lett. 12, 880–886 (2012).
[CrossRef]

D. Turner, Y. Hassan, and G. Scholes, “Exciton superposition states in CdSe nanocrystals measured using broadband two-dimensional electronic spectroscopy,” Nano Lett. 12, 880–886 (2012).
[CrossRef]

Nat. Commun. (1)

H. Li, A. D. Bristow, M. E. Siemens, G. Moody, and S. T. Cundiff, “Unraveling quantum pathways using optical 3d Fourier-transform spectroscopy,” Nat. Commun. 4, 1390 (2013).
[CrossRef]

Nature (3)

E. Collini, C. Y. Wong, K. E. Wilk, P. M. G. Curmi, P. Brumer, and G. D. Scholes, “Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature,” Nature 463, 644–647 (2010).
[CrossRef]

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434, 625–628 (2005).
[CrossRef]

M. Drescher, M. Hentschel, R. Kienberger, M. Uiberacker, V. Yakovlev, A. Scrinzi, T. Westerwalbesloh, U. Kleineberg, U. Heinzmann, and F. Krausz, “Time-resolved atomic inner-shell spectroscopy,” Nature 419, 803–807 (2002).
[CrossRef]

Opt. Express (7)

Opt. Lett. (8)

Y. Zhang, K. Meyer, C. Ott, and T. Pfeifer, “Passively phase-stable, monolithic, all-reflective two-dimensional electronic spectroscopy based on a four-quadrant mirror,” Opt. Lett. 38, 356–358 (2013).
[CrossRef]

U. Selig, C. F. Schleussner, M. Foerster, F. Langhojer, P. Nuernberger, and T. Brixner, “Coherent two-dimensional ultraviolet spectroscopy in fully noncollinear geometry,” Opt. Lett. 35, 4178–4180 (2010).
[CrossRef]

U. Selig, F. Langhojer, F. Dimler, T. Lohrig, C. Schwarz, B. Gieseking, and T. Brixner, “Inherently phase-stable coherent two-dimensional spectroscopy using only conventional optics,” Opt. Lett. 33, 2851–2853 (2008).
[CrossRef]

K. Yamane, Z. Zhang, K. Oka, R. Morita, M. Yamashita, and A. Suguro, “Optical pulse compression to 3.4 fs in the monocycle region by feedback phase compensation,” Opt. Lett. 28, 2258–2260 (2003).
[CrossRef]

E. Harel, P. D. Long, and G. S. Engel, “Single-shot ultrabroadband two-dimensional electronic spectroscopy of the light-harvesting complex LH2,” Opt. Lett. 36, 1665–1667 (2011).
[CrossRef]

D. E. Wilcox, F. D. Fuller, and J. P. Ogilvie, “Fast second-harmonic generation frequency-resolved optical gating using only a pulse shaper,” Opt. Lett. 38, 2980–2983 (2013).
[CrossRef]

D. Kartashov, S. Aliauskas, A. Puglys, A. Voronin, A. Zheltikov, M. Petrarca, P. Béjot, J. Kasparian, J.-P. Wolf, and A. Baltuka, “White light generation over three octaves by femtosecond filament at 3.9 μm in argon,” Opt. Lett. 37, 3456–3458 (2012).
[CrossRef]

J. Sweetser, D. Fittinghoff, and R. Trebino, “Transient-grating frequency-resolved optical gating,” Opt. Lett. 22, 519–521 (1997).
[CrossRef]

Phys. Proc. (1)

J. L. Hughes, B. Conlon, T. Wydrzynski, and E. Krausz, “The assignment of Qy(1,0) vibrational structure and Qx for Chlorophyll a,” Phys. Proc. 3, 9 (2010).

Phys. Rev. A (1)

X. Dai, A. Bristow, D. Karaiskaj, and S. Cundiff, “Two-dimensional Fourier-transform spectroscopy of potassium vapor,” Phys. Rev. A 82, 052503 (2010).
[CrossRef]

Phys. Rev. B (4)

G. Moody, R. Singh, H. Li, I. A. Akimov, M. Bayer, D. Reuter, A. D. Wieck, A. S. Bracker, D. Gammon, and S. T. Cundiff, “Influence of confinement on biexciton binding in semiconductor quantum dot ensembles measured with two-dimensional spectroscopy,” Phys. Rev. B 87, 041304 (2013).
[CrossRef]

S. L. Sewall, A. Franceschetti, R. R. Cooney, A. Zunger, and P. Kambhampati, “Direct observation of the structure of band-edge biexcitons in colloidal semiconductor CdSe quantum dots,” Phys. Rev. B 80, 081310 (2009).
[CrossRef]

D. Norris and M. Bawendi, “Measurement and assignment of the size-dependent optical spectrum in CdSe quantum dots,” Phys. Rev. B 53, 16338–16346 (1996).
[CrossRef]

V. I. Klimov, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, “Electron and hole relaxation pathways in semiconductor quantum dots,” Phys. Rev. B 60, 13740–13749 (1999).
[CrossRef]

Proc. Natl. Acad. Sci. USA (7)

E. Harel, A. Fidler, and G. Engel, “Real-time mapping of electronic structure with single-shot two-dimensional electronic spectroscopy,” Proc. Natl. Acad. Sci. USA 107, 16444–16447 (2010).
[CrossRef]

E. L. Read, G. S. Engel, T. R. Calhoun, T. Mancal, T. K. Ahn, R. E. Blankenship, and G. R. Fleming, “Cross-peak-specific two-dimensional electronic spectroscopy,” Proc. Natl. Acad. Sci. USA 104, 14203–14208 (2007).
[CrossRef]

E. Read, G. Engel, T. Calhoun, T. Mancal, T. Ahn, R. Blankenship, and G. Fleming, “Cross-peak-specific two-dimensional electronic spectroscopy,” Proc. Natl. Acad. Sci. USA 104, 14203–14208 (2007).
[CrossRef]

N. Ginsberg, J. Davis, M. Ballottari, Y. Cheng, R. Bassi, and G. Fleming, “Solving structure in the CP29 light harvesting complex with polarization-phased 2D electronic spectroscopy,” Proc. Natl. Acad. Sci. USA 108, 3848–3853 (2011).
[CrossRef]

E. Harel and G. S. Engel, “Quantum coherence spectroscopy reveals complex dynamics in bacterial light-harvesting complex 2 (LH2),” Proc. Natl. Acad. Sci. USA 109, 706–711(2012).

G. Panitchayangkoon, D. Hayes, K. Fransted, J. Caram, E. Harel, J. Wen, R. Blankenship, and G. Engel, “Long-lived quantum coherence in photosynthetic complexes at physiological temperature,” Proc. Natl. Acad. Sci. USA 107, 12766–12770 (2010).
[CrossRef]

S.-H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, “Automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide,” Proc. Natl. Acad. Sci. USA 104, 14197–14202 (2007).
[CrossRef]

Rev. Sci. Instrum. (2)

D. B. Turner, K. W. Stone, K. Gundogdu, and K. A. Nelson, “Invited article: the coherent optical laser beam recombination technique (colbert) spectrometer: coherent multidimensional spectroscopy made easier,” Rev. Sci. Instrum. 82, 081301 (2011).
[CrossRef]

R. Trebino, K. DeLong, D. Fittinghoff, J. Sweetser, M. Krumbugel, B. Richman, and D. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277–3295 (1997).
[CrossRef]

Sci. Rep. (1)

J. R. Reimers, Z. L. Cai, R. Kobayashi, M. Ratsep, A. Freiberg, and E. Krausz, “Assignment of the Q-bands of the chlorophylls: coherence loss via Qx—Qy mixing,” Sci. Rep. 3, 2761 (2013).
[CrossRef]

Science (3)

K. W. Stone, K. Gundogdu, D. B. Turner, X. Li, S. T. Cundiff, and K. A. Nelson, “Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells,” Science 324, 1169–1173 (2009).
[CrossRef]

E. E. Ostroumov, R. M. Mulvaney, R. J. Cogdell, and G. D. Scholes, “Broadband 2D electronic spectroscopy reveals a carotenoid dark state in purple bacteria,” Science 340, 52–56 (2013).
[CrossRef]

P. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, “Femtosecond phase-coherent two-dimensional spectroscopy,” Science 300, 1553–1555 (2003).
[CrossRef]

Other (5)

M. Cho, Two-dimensional Optical Spectroscopy (CRC Press, 2009).

R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Springer, 2002).

S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford, 1995).

K. Iizuka, Elements of Photonics (Wiley-Interscience, 2002).

R. E. Blankenship, Molecular Mechanisms of Photosynthesis (Blackwell Science, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Experimental implementation for Continuum Two-Dimensional Electronic Spectroscopy (C-2DES): An ultrafast pulse is split into four pulses using beamsplitters (BS); compensating windows (CW) are introduced in each beam to ensure all beams pass through the same amount of glass. A retro-reflector (RR) mounted on a translation stage (TS) introduces the waiting time delay, T. The all-reflective interferometric delay system (ARID) controls the coherence time τ by translating mirrors nearly perpendicular to the incoming beams. An off-axis parabolic mirror (PM) focuses the four beams on the sample cell (SC). The signal field and LO pass through a beam block (BB) and are imaged on a CCD detector. In the accompanying pump–probe experiment, we introduce an optical chopper (OC) to modulate the pump beam.

Fig. 2.
Fig. 2.

Stability of supercontinuum source: The white light spectrum from the supercontinuum source (before spectral shaping in the Biophotonics MIIPS system) is shown above (blue, solid). To obtain this spectrum, the supercontinuum is filtered by a dichroic mirror that removes light above 700 nm. The wavelength-dependent fluctuations (red, dashed, ±1σ) measured every 5 s over a 24 min period are 0.5% across the entire spectrum.

Fig. 3.
Fig. 3.

(a) Representative transient grating frequency-resolved optical gating (TG-FROG) measurements. (b) The TG signal and the wavelength-dependent standard deviation (1σ) when all three pulses are overlapped indicate approximately 0.5% third-order signal stability. The inset shows flat, wavelength-dependent fluctuations. (c) Shown is the sum the TG trace and the fit to a Gaussian function, from which we derive an autocorrelative width of 12 fs. The inset shows the corresponding MIIPS trace with 8 fs width (FWHM). (d) Two autocorrelation traces taken at different delay configurations show that intensity does not change (less than 1% change) when all stages are translated 100 fs (data not individually normalized).

Fig. 4.
Fig. 4.

Optical phase stability between beams 1 and 4, measured every 45 s over 150 min, using the 800 nm pulse from the regenerative amplifier. This data illustrates the mechanical phase stability of the apparatus.

Fig. 5.
Fig. 5.

Characterization of compensating glass. (a) The interferogram of pulse 3 and LO after spectral filtering through the MIIPS compression system. The red box indicates the moving window function over which the Fourier transform is applied to generate the spectrogram below; (b) To illustrate relative dispersive characteristics between pulses, we move the window function shown in (a), to show the time domain signal across different wavelengths. This measure illustrates the relative spectral coherence of the pulse, indicating propagation through similar amounts of glass.

Fig. 6.
Fig. 6.

(a) Interferogram between pulse 2 and LO when scanning pulse 2. The magnified portion indicates the interferometric detail of a representative smaller region. (b) Plot of the measured time delay between pulse 2 and LO at each step as measured by spectral interferometry from the data shown above (blue line). The red line shows the fit to a linear function. We plot the residual below. The standard deviation is 0.30fs/step, which is approximately the Fourier-limited resolution given the bandwidth of our laser pulse.

Fig. 7.
Fig. 7.

(a) Three-dimensional representation of the apparatus. The coherence time is introduced and changed using reflective optics. (b) Detail of the coherence time control with angled stages. This design shows that for a parallel input, fine control can be achieved by propagating the stage at a very small angle (typically 0.3°).

Fig. 8.
Fig. 8.

Phased two-dimensional spectrum of (a) CdSe QDs at T=600fs and (b) Chla at T=50fs. We plot the pump–probe spectra and the projected 2D spectra on the left. Below each spectrum, we plot the laser pulse and the linear absorption spectrum of each system.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

PP(T,ωt)=Re{AS2D(ωτ,T,ωt)exp(iφ+i(ωtω0)tc+i(ωtω0)2tq2+i(ωτω0)τc)dωτ},

Metrics