Abstract

This paper presents a novel nanosource of continuous terahertz (THz) wave radiation based on difference frequency generation (DFG). Both the optical and THz waves are confined in a nanoscale plasmonic waveguide. The results of theoretical investigations indicate that the appropriate geometry of the plasmonic waveguide has a relatively long optical and THz propagation distance (on the order of several tens of wavelengths). Phase matching is obtained using the dispersive properties of the waveguide for generating 0.8 THz at the central optical wavelength of 1.52 μm. Our numerical calculation shows that the conversion efficiency in this waveguide structure can be achieved up to 5 times as large as the micron scale dielectric waveguides and almost 10 times as large as the metallic micron scale waveguides.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Dragoman and M. Dragoman, “Terahertz fields and applications,” Prog. Quantum Electron. 28, 1–66, 2004.
    [CrossRef]
  2. K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y. S. Lee, W. C. Hurlbut, V. Kozlov, D. Bliss, and C. Lynch, “THz wave generation in quasi phase matched GaAs,” Appl. Phys. Lett. 89, 141119 (2006).
    [CrossRef]
  3. H. Cao, R. Linke, and A. Nahata, “Broadband generation of THz radiation in a waveguide,” Opt. Lett. 29, 1751–1753 (2004).
    [CrossRef]
  4. M. Herrmann, M. Tanic, and K. Sakai, “Generation and detection of terahertz pulsed radiation with photoconductive antennas and its application to imaging,” Meas. Sci. Technol. 13, 1739–1745 (2002).
    [CrossRef]
  5. J. Hebling, A. G. Stepanov, G. Almási, B. Bartal, and J. Kuhl, “Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts,” Appl. Phys. B 78, 593–599 (2004).
    [CrossRef]
  6. G. Imeshev, M. E. Fermann, K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, D. Bliss, and C. Lynch, “Highpower source of THz radiation based on orientation-patterned GaAs pumped by a fiber laser,” Opt. Express 14, 4439–4444 (2006).
    [CrossRef]
  7. C. Staus, T. Kuech, and L. McCaughan, “Continuously phase-matched terahertz difference frequency generation in an embedded waveguide structure supporting only fundamental modes,” Opt. Express 16, 13296–13303 (2008).
    [CrossRef]
  8. H. R. Zangeneh and M. A. F. Jahromi, “Low loss metallic suspended waveguide for terahertz generation,” Opt. Eng. 51, 099002 (2012).
    [CrossRef]
  9. A. Flore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, “Phase matching using an isotropic nonlinear optical material,” Nature 391, 463–466 (1998).
    [CrossRef]
  10. V. Loyo-Maldonado, H. K. Lee, C. R. Stanely, S. V. Rao, K. Moutzouris, M. Ebrahimzadeh, and J. S. Aitchison, “Generation of ultrashort electrical pulses in semiconductor waveguides,” IEEE Photon. Technol. Lett. 15, 428–430 (2003).
    [CrossRef]
  11. A. Marandi and T. E. Darcie, “Design a continuous-wave tunable terahertz source using waveguide-phase-matched GaAs,” Opt. Express 16, 10427–10433 (2008).
    [CrossRef]
  12. Z. Ruan, G. Veronis, K. L. Vodopyanov, M. M. Fejer, and S. Fan, “Enhancement of optics-to-THz conversion efficiency by metallic slot waveguides,” Opt. Express 17, 13502–13515 (2009).
    [CrossRef]
  13. T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
    [CrossRef]
  14. V. R. Almeida, Q. Xu, C. A. Barrios, M. Lipson, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29, 1209–1211 (2004).
    [CrossRef]
  15. L. Thylén, M. Qiu, and S. Anand, “Photonic crystals—a step towards integrated circuits for photonics,” Chem. Phys. Chem. 5, 1268–1283 (2004).
    [CrossRef]
  16. D. Dai and Sa. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express 17, 16646–16653 (2009).
    [CrossRef]
  17. V. R. Almeida, Q. Xu, R. R. Panepucci, C. A. Barrios, and M. Lipson, “Light guiding in low index materials using high-index-contrast waveguides,” in Proceedings of Materials Research Society (MRS) Symposium (2004), Vol. 797.
  18. D. Dai and Sa. He, “Low-loss hybrid plasmonic waveguide with double low-index nano-slots,” Opt. Express 18, 17958–17966 (2010).
    [CrossRef]
  19. L. Chen, J. Shakya, and M. Lipson, “Subwavelength confinement in an integrated metal slot waveguide on silicon,” Opt. Lett. 31, 2133–2135 (2006).
    [CrossRef]

2012 (1)

H. R. Zangeneh and M. A. F. Jahromi, “Low loss metallic suspended waveguide for terahertz generation,” Opt. Eng. 51, 099002 (2012).
[CrossRef]

2010 (1)

2009 (2)

2008 (2)

2006 (3)

2005 (1)

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
[CrossRef]

2004 (5)

L. Thylén, M. Qiu, and S. Anand, “Photonic crystals—a step towards integrated circuits for photonics,” Chem. Phys. Chem. 5, 1268–1283 (2004).
[CrossRef]

V. R. Almeida, Q. Xu, C. A. Barrios, M. Lipson, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29, 1209–1211 (2004).
[CrossRef]

H. Cao, R. Linke, and A. Nahata, “Broadband generation of THz radiation in a waveguide,” Opt. Lett. 29, 1751–1753 (2004).
[CrossRef]

J. Hebling, A. G. Stepanov, G. Almási, B. Bartal, and J. Kuhl, “Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts,” Appl. Phys. B 78, 593–599 (2004).
[CrossRef]

D. Dragoman and M. Dragoman, “Terahertz fields and applications,” Prog. Quantum Electron. 28, 1–66, 2004.
[CrossRef]

2003 (1)

V. Loyo-Maldonado, H. K. Lee, C. R. Stanely, S. V. Rao, K. Moutzouris, M. Ebrahimzadeh, and J. S. Aitchison, “Generation of ultrashort electrical pulses in semiconductor waveguides,” IEEE Photon. Technol. Lett. 15, 428–430 (2003).
[CrossRef]

2002 (1)

M. Herrmann, M. Tanic, and K. Sakai, “Generation and detection of terahertz pulsed radiation with photoconductive antennas and its application to imaging,” Meas. Sci. Technol. 13, 1739–1745 (2002).
[CrossRef]

1998 (1)

A. Flore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, “Phase matching using an isotropic nonlinear optical material,” Nature 391, 463–466 (1998).
[CrossRef]

Aitchison, J. S.

V. Loyo-Maldonado, H. K. Lee, C. R. Stanely, S. V. Rao, K. Moutzouris, M. Ebrahimzadeh, and J. S. Aitchison, “Generation of ultrashort electrical pulses in semiconductor waveguides,” IEEE Photon. Technol. Lett. 15, 428–430 (2003).
[CrossRef]

Almási, G.

J. Hebling, A. G. Stepanov, G. Almási, B. Bartal, and J. Kuhl, “Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts,” Appl. Phys. B 78, 593–599 (2004).
[CrossRef]

Almeida, V. R.

V. R. Almeida, Q. Xu, C. A. Barrios, M. Lipson, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29, 1209–1211 (2004).
[CrossRef]

V. R. Almeida, Q. Xu, R. R. Panepucci, C. A. Barrios, and M. Lipson, “Light guiding in low index materials using high-index-contrast waveguides,” in Proceedings of Materials Research Society (MRS) Symposium (2004), Vol. 797.

Anand, S.

L. Thylén, M. Qiu, and S. Anand, “Photonic crystals—a step towards integrated circuits for photonics,” Chem. Phys. Chem. 5, 1268–1283 (2004).
[CrossRef]

Barrios, C. A.

V. R. Almeida, Q. Xu, C. A. Barrios, M. Lipson, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29, 1209–1211 (2004).
[CrossRef]

V. R. Almeida, Q. Xu, R. R. Panepucci, C. A. Barrios, and M. Lipson, “Light guiding in low index materials using high-index-contrast waveguides,” in Proceedings of Materials Research Society (MRS) Symposium (2004), Vol. 797.

Bartal, B.

J. Hebling, A. G. Stepanov, G. Almási, B. Bartal, and J. Kuhl, “Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts,” Appl. Phys. B 78, 593–599 (2004).
[CrossRef]

Berger, V.

A. Flore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, “Phase matching using an isotropic nonlinear optical material,” Nature 391, 463–466 (1998).
[CrossRef]

Bliss, D.

K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y. S. Lee, W. C. Hurlbut, V. Kozlov, D. Bliss, and C. Lynch, “THz wave generation in quasi phase matched GaAs,” Appl. Phys. Lett. 89, 141119 (2006).
[CrossRef]

G. Imeshev, M. E. Fermann, K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, D. Bliss, and C. Lynch, “Highpower source of THz radiation based on orientation-patterned GaAs pumped by a fiber laser,” Opt. Express 14, 4439–4444 (2006).
[CrossRef]

Bravetti, P.

A. Flore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, “Phase matching using an isotropic nonlinear optical material,” Nature 391, 463–466 (1998).
[CrossRef]

Cao, H.

Chen, L.

Dai, D.

Darcie, T. E.

Dragoman, D.

D. Dragoman and M. Dragoman, “Terahertz fields and applications,” Prog. Quantum Electron. 28, 1–66, 2004.
[CrossRef]

Dragoman, M.

D. Dragoman and M. Dragoman, “Terahertz fields and applications,” Prog. Quantum Electron. 28, 1–66, 2004.
[CrossRef]

Ebrahimzadeh, M.

V. Loyo-Maldonado, H. K. Lee, C. R. Stanely, S. V. Rao, K. Moutzouris, M. Ebrahimzadeh, and J. S. Aitchison, “Generation of ultrashort electrical pulses in semiconductor waveguides,” IEEE Photon. Technol. Lett. 15, 428–430 (2003).
[CrossRef]

Fan, S.

Fejer, M. M.

Fermann, M. E.

Flore, A.

A. Flore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, “Phase matching using an isotropic nonlinear optical material,” Nature 391, 463–466 (1998).
[CrossRef]

Fukuda, H.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
[CrossRef]

Harris, J. S.

K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y. S. Lee, W. C. Hurlbut, V. Kozlov, D. Bliss, and C. Lynch, “THz wave generation in quasi phase matched GaAs,” Appl. Phys. Lett. 89, 141119 (2006).
[CrossRef]

G. Imeshev, M. E. Fermann, K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, D. Bliss, and C. Lynch, “Highpower source of THz radiation based on orientation-patterned GaAs pumped by a fiber laser,” Opt. Express 14, 4439–4444 (2006).
[CrossRef]

He, Sa.

Hebling, J.

J. Hebling, A. G. Stepanov, G. Almási, B. Bartal, and J. Kuhl, “Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts,” Appl. Phys. B 78, 593–599 (2004).
[CrossRef]

Herrmann, M.

M. Herrmann, M. Tanic, and K. Sakai, “Generation and detection of terahertz pulsed radiation with photoconductive antennas and its application to imaging,” Meas. Sci. Technol. 13, 1739–1745 (2002).
[CrossRef]

Hurlbut, W. C.

K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y. S. Lee, W. C. Hurlbut, V. Kozlov, D. Bliss, and C. Lynch, “THz wave generation in quasi phase matched GaAs,” Appl. Phys. Lett. 89, 141119 (2006).
[CrossRef]

Imeshev, G.

Itabashi, S.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
[CrossRef]

Jahromi, M. A. F.

H. R. Zangeneh and M. A. F. Jahromi, “Low loss metallic suspended waveguide for terahertz generation,” Opt. Eng. 51, 099002 (2012).
[CrossRef]

Kozlov, V.

K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y. S. Lee, W. C. Hurlbut, V. Kozlov, D. Bliss, and C. Lynch, “THz wave generation in quasi phase matched GaAs,” Appl. Phys. Lett. 89, 141119 (2006).
[CrossRef]

Kuech, T.

Kuhl, J.

J. Hebling, A. G. Stepanov, G. Almási, B. Bartal, and J. Kuhl, “Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts,” Appl. Phys. B 78, 593–599 (2004).
[CrossRef]

Lee, H. K.

V. Loyo-Maldonado, H. K. Lee, C. R. Stanely, S. V. Rao, K. Moutzouris, M. Ebrahimzadeh, and J. S. Aitchison, “Generation of ultrashort electrical pulses in semiconductor waveguides,” IEEE Photon. Technol. Lett. 15, 428–430 (2003).
[CrossRef]

Lee, Y. S.

K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y. S. Lee, W. C. Hurlbut, V. Kozlov, D. Bliss, and C. Lynch, “THz wave generation in quasi phase matched GaAs,” Appl. Phys. Lett. 89, 141119 (2006).
[CrossRef]

Linke, R.

Lipson, M.

Loyo-Maldonado, V.

V. Loyo-Maldonado, H. K. Lee, C. R. Stanely, S. V. Rao, K. Moutzouris, M. Ebrahimzadeh, and J. S. Aitchison, “Generation of ultrashort electrical pulses in semiconductor waveguides,” IEEE Photon. Technol. Lett. 15, 428–430 (2003).
[CrossRef]

Lynch, C.

G. Imeshev, M. E. Fermann, K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, D. Bliss, and C. Lynch, “Highpower source of THz radiation based on orientation-patterned GaAs pumped by a fiber laser,” Opt. Express 14, 4439–4444 (2006).
[CrossRef]

K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y. S. Lee, W. C. Hurlbut, V. Kozlov, D. Bliss, and C. Lynch, “THz wave generation in quasi phase matched GaAs,” Appl. Phys. Lett. 89, 141119 (2006).
[CrossRef]

Marandi, A.

McCaughan, L.

Morita, H.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
[CrossRef]

Moutzouris, K.

V. Loyo-Maldonado, H. K. Lee, C. R. Stanely, S. V. Rao, K. Moutzouris, M. Ebrahimzadeh, and J. S. Aitchison, “Generation of ultrashort electrical pulses in semiconductor waveguides,” IEEE Photon. Technol. Lett. 15, 428–430 (2003).
[CrossRef]

Nagle, J.

A. Flore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, “Phase matching using an isotropic nonlinear optical material,” Nature 391, 463–466 (1998).
[CrossRef]

Nahata, A.

Panepucci, R. R.

V. R. Almeida, Q. Xu, R. R. Panepucci, C. A. Barrios, and M. Lipson, “Light guiding in low index materials using high-index-contrast waveguides,” in Proceedings of Materials Research Society (MRS) Symposium (2004), Vol. 797.

Qiu, M.

L. Thylén, M. Qiu, and S. Anand, “Photonic crystals—a step towards integrated circuits for photonics,” Chem. Phys. Chem. 5, 1268–1283 (2004).
[CrossRef]

Rao, S. V.

V. Loyo-Maldonado, H. K. Lee, C. R. Stanely, S. V. Rao, K. Moutzouris, M. Ebrahimzadeh, and J. S. Aitchison, “Generation of ultrashort electrical pulses in semiconductor waveguides,” IEEE Photon. Technol. Lett. 15, 428–430 (2003).
[CrossRef]

Rosencher, E.

A. Flore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, “Phase matching using an isotropic nonlinear optical material,” Nature 391, 463–466 (1998).
[CrossRef]

Ruan, Z.

Sakai, K.

M. Herrmann, M. Tanic, and K. Sakai, “Generation and detection of terahertz pulsed radiation with photoconductive antennas and its application to imaging,” Meas. Sci. Technol. 13, 1739–1745 (2002).
[CrossRef]

Shakya, J.

Shoji, T.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
[CrossRef]

Stanely, C. R.

V. Loyo-Maldonado, H. K. Lee, C. R. Stanely, S. V. Rao, K. Moutzouris, M. Ebrahimzadeh, and J. S. Aitchison, “Generation of ultrashort electrical pulses in semiconductor waveguides,” IEEE Photon. Technol. Lett. 15, 428–430 (2003).
[CrossRef]

Staus, C.

Stepanov, A. G.

J. Hebling, A. G. Stepanov, G. Almási, B. Bartal, and J. Kuhl, “Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts,” Appl. Phys. B 78, 593–599 (2004).
[CrossRef]

Takahashi, J.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
[CrossRef]

Takahashi, M.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
[CrossRef]

Tamechika, E.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
[CrossRef]

Tanic, M.

M. Herrmann, M. Tanic, and K. Sakai, “Generation and detection of terahertz pulsed radiation with photoconductive antennas and its application to imaging,” Meas. Sci. Technol. 13, 1739–1745 (2002).
[CrossRef]

Thylén, L.

L. Thylén, M. Qiu, and S. Anand, “Photonic crystals—a step towards integrated circuits for photonics,” Chem. Phys. Chem. 5, 1268–1283 (2004).
[CrossRef]

Tsuchizawa, T.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
[CrossRef]

Veronis, G.

Vodopyanov, K. L.

Watanabe, T.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
[CrossRef]

Xu, Q.

V. R. Almeida, Q. Xu, C. A. Barrios, M. Lipson, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29, 1209–1211 (2004).
[CrossRef]

V. R. Almeida, Q. Xu, R. R. Panepucci, C. A. Barrios, and M. Lipson, “Light guiding in low index materials using high-index-contrast waveguides,” in Proceedings of Materials Research Society (MRS) Symposium (2004), Vol. 797.

Yamada, K.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
[CrossRef]

Yu, X.

K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y. S. Lee, W. C. Hurlbut, V. Kozlov, D. Bliss, and C. Lynch, “THz wave generation in quasi phase matched GaAs,” Appl. Phys. Lett. 89, 141119 (2006).
[CrossRef]

G. Imeshev, M. E. Fermann, K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, D. Bliss, and C. Lynch, “Highpower source of THz radiation based on orientation-patterned GaAs pumped by a fiber laser,” Opt. Express 14, 4439–4444 (2006).
[CrossRef]

Zangeneh, H. R.

H. R. Zangeneh and M. A. F. Jahromi, “Low loss metallic suspended waveguide for terahertz generation,” Opt. Eng. 51, 099002 (2012).
[CrossRef]

Appl. Phys. B (1)

J. Hebling, A. G. Stepanov, G. Almási, B. Bartal, and J. Kuhl, “Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts,” Appl. Phys. B 78, 593–599 (2004).
[CrossRef]

Appl. Phys. Lett. (1)

K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y. S. Lee, W. C. Hurlbut, V. Kozlov, D. Bliss, and C. Lynch, “THz wave generation in quasi phase matched GaAs,” Appl. Phys. Lett. 89, 141119 (2006).
[CrossRef]

Chem. Phys. Chem. (1)

L. Thylén, M. Qiu, and S. Anand, “Photonic crystals—a step towards integrated circuits for photonics,” Chem. Phys. Chem. 5, 1268–1283 (2004).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

V. Loyo-Maldonado, H. K. Lee, C. R. Stanely, S. V. Rao, K. Moutzouris, M. Ebrahimzadeh, and J. S. Aitchison, “Generation of ultrashort electrical pulses in semiconductor waveguides,” IEEE Photon. Technol. Lett. 15, 428–430 (2003).
[CrossRef]

Meas. Sci. Technol. (1)

M. Herrmann, M. Tanic, and K. Sakai, “Generation and detection of terahertz pulsed radiation with photoconductive antennas and its application to imaging,” Meas. Sci. Technol. 13, 1739–1745 (2002).
[CrossRef]

Nature (1)

A. Flore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, “Phase matching using an isotropic nonlinear optical material,” Nature 391, 463–466 (1998).
[CrossRef]

Opt. Eng. (1)

H. R. Zangeneh and M. A. F. Jahromi, “Low loss metallic suspended waveguide for terahertz generation,” Opt. Eng. 51, 099002 (2012).
[CrossRef]

Opt. Express (6)

Opt. Lett. (3)

Prog. Quantum Electron. (1)

D. Dragoman and M. Dragoman, “Terahertz fields and applications,” Prog. Quantum Electron. 28, 1–66, 2004.
[CrossRef]

Other (1)

V. R. Almeida, Q. Xu, R. R. Panepucci, C. A. Barrios, and M. Lipson, “Light guiding in low index materials using high-index-contrast waveguides,” in Proceedings of Materials Research Society (MRS) Symposium (2004), Vol. 797.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Cross-section of the proposed plasmonic waveguide, where hSi=100nm, hGaAs=50nm and w=100nm.

Fig. 2.
Fig. 2.

(a) Intensity distribution of a waveguide with λ=1550nm when hAg=60nm; (b) intensity distribution of a waveguide for a generated THz wave of frequency 0.8 THz when hAg=60nm.

Fig. 3.
Fig. 3.

Optical (a) and THz (b) propagation distance of the waveguide for the cases of hAg=30nm, 40 nm, 60 nm, and 100 nm.

Fig. 4.
Fig. 4.

Optical group index (a) and THz effective index (b) of the waveguide for different metal layers.

Fig. 5.
Fig. 5.

Dispersion relation for optical wave (a) and THz wave (b) of the waveguide for different metal layers.

Fig. 6.
Fig. 6.

Phase mismatch, Δβ, for the waveguide structure at a central wavelength of 1.52 μm for generating THz waves from 0.7 to 0.86 THz.

Fig. 7.
Fig. 7.

Calculated THz output power, p3, of the waveguide at a central wavelength of 1.52 μm for generating THz waves from 0.7 to 0.86 THz when p1=p2=500mW.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

p3(L)=c3c2c1ω32|k3|216|exp(α3α1α22L+iΔβL)1exp(α3α1α22+iΔβ)|2p1p2exp(α3L),

Metrics