Abstract

We report terahertz (THz) wave generation by satisfying Cherenkov phase-matching condition in both s and p polarizations. A dual-wavelength optical parametric oscillator is constructed from two potassium titanium oxide phosphate crystals pumped by a frequency-doubled Nd:YAG laser. By rotating the orientation of both a lithium niobate crystal (LiNbO3) and the polarization of the pump waves, the polarization of the THz wave changes. Due to the difference in the refractive index and absorption, the output power for p polarization is one tenth that for s polarization. A tuning range from 0.2 to 6.5 THz is obtained for s polarization, and from 0.2 to 4.2 and 5.4 to 6.9 THz for p polarization. The extraction efficiency is improved by changing the angle of prism for p polarization, and a large phase change occurs at total internal reflection. Consequently, p-polarized THz waves are optimal for spectroscopic applications.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
    [CrossRef]
  2. T. Kiwa, J. Kondo, S. Oka, I. Kawayama, H. Yamada, M. Tonouchi, and K. Tsukada, “Chemical sensing plate with a laser-terahertz monitoring system,” Appl. Opt. 47, 3324–3327 (2008).
    [CrossRef]
  3. D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, “T-ray imaging,” IEEE J. Sel. Top. Quantum Electron. 2, 679–692 (1996).
    [CrossRef]
  4. D. M. Mittleman, S. Hunsche, L. Boivin, and M. C. Nuss, “T-ray tomography,” Opt. Lett. 22, 904–906 (1997).
    [CrossRef]
  5. G. D. Boyd, T. J. Bridges, C. K. N. Patel, and E. Buehler, “Phase-matched submillimeter wave generation by difference-frequency mixing in ZnGeP2,” Appl. Phys. Lett. 21, 553–555 (1972).
    [CrossRef]
  6. W. Shi, Y. J. Ding, N. Fernelius, and K. Vodopyanov, “Efficient, tunable, and coherent 0.18–5.27-THz source based on GaSe crystal,” Opt. Lett. 27, 1454–1456 (2002).
    [CrossRef]
  7. A. Rice, Y. Jin, X. F. Ma, X. C. Zhang, D. Bliss, J. Larkin, and M. Alexander, “Terahertz optical rectification from 〈110〉 zinc-blende crystals,” Appl. Phys. Lett. 64, 1324–1326 (1994).
    [CrossRef]
  8. T. Tanabe, K. Suto, J. Nishizawa, K. Saito, and T. Kimura, “Tunable terahertz wave generation in the 3- to 7-THz region from GaP,” Appl. Phys. Lett. 83, 237–239 (2003).
    [CrossRef]
  9. M. I. Bakunov, A. V. Maslov, and S. B. Bodrov, “Cherenkov radiation of terahertz surface plasmon polaritons from a superluminal optical spot,” Phys. Rev. B 72, 195336 (2005).
    [CrossRef]
  10. K. Suizu, T. Shibuya, T. Akiba, T. Tsutsui, C. Otani, and K. Kawase, “Čherenkov phase-matched monochromatic THz-wave generation using difference frequency generation with a lithium niobate crystal,” Opt. Express 16, 7493–7498 (2008).
    [CrossRef]
  11. K. Suizu, K. Koketsu, T. Shibuya, T. Tsutsui, T. Akiba, and K. Kawase, “Extremely frequency-widened terahertz wave generation using Cherenkov-type radiation,” Opt. Express 17, 6676–6681 (2009).
    [CrossRef]
  12. T. Shibuya, T. Tsutsui, K. Suizu, T. Akiba, and K. Kawase, “Efficient Cherenkov-type phase-matched widely tunable terahertz-wave generation via an optimized pump beam shape,” Appl. Phys. Express 2, 032302 (2009).
    [CrossRef]
  13. K. Suizu, T. Tsutsui, T. Shibuya, T. Akiba, and K. Kawase, “Cherenkov phase matched THz-wave generation with surfing configuration for bulk Lithium Nobate crystal,” Opt. Express 17, 7102–7109 (2009).
    [CrossRef]
  14. K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4, 2021 (2013).
    [CrossRef]
  15. M. Schall, H. Helm, and S. R. Keiding, “Far infrared properties of electro-optic crystals measured by THz time-domain spectroscopy,” Int. J. Infrared Millim. Waves 20, 595–604 (1999).
    [CrossRef]
  16. P. Liu, D. Xu, C. Liu, D. Lv, Y. Lv, P. Wang, and J. Yao, “P-polarized Cherenkov THz wave radiation generated by optical rectification for a Brewster-cut LiNbO3 crystal,” J. Opt. 13, 085202 (2011).
    [CrossRef]
  17. H. Hirori, K. Yamashita, M. Nagai, and K. Tanaka, “Attenuated total reflection spectroscopy in time domain using terahertz coherent pulses,” Jpn. J. Appl. Phys. 43, L1287–L1289 (2004).
    [CrossRef]
  18. M. Nagai, H. Yada, T. Arikawa, and K. Tanaka, “Terahertz time-domain attenuated total reflection spectroscopy in water and biological solution,” Int. J. Infrared Millim. Waves 27, 505–515 (2006).
    [CrossRef]
  19. T. Akiba, N. Kaneko, K. Suizu, K. Miyamoto, and T. Omatsu, “THz-wave sensing via pump and signal wave detection interacted with evanescent THz waves,” Opt. Lett. 38, 3687–3689 (2013).
    [CrossRef]
  20. D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate,” Opt. Lett. 22, 1553–1555 (1997).
    [CrossRef]
  21. D. Li, G. Ma, J. Ge, and N. Dai, “Terahertz pulse shaping via birefringence in lithium niobate crystal,” Appl. Phys. B 94, 623–628 (2009).
    [CrossRef]
  22. E. S. Belonogaya, A. V. Tyukhtin, and S. N. Galyamin, “Approximate method for calculating the radiation from a moving charge in the presence of a complex object,” Phys. Rev. B 87, 043201 (2013).
    [CrossRef]

2013 (3)

K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4, 2021 (2013).
[CrossRef]

E. S. Belonogaya, A. V. Tyukhtin, and S. N. Galyamin, “Approximate method for calculating the radiation from a moving charge in the presence of a complex object,” Phys. Rev. B 87, 043201 (2013).
[CrossRef]

T. Akiba, N. Kaneko, K. Suizu, K. Miyamoto, and T. Omatsu, “THz-wave sensing via pump and signal wave detection interacted with evanescent THz waves,” Opt. Lett. 38, 3687–3689 (2013).
[CrossRef]

2011 (1)

P. Liu, D. Xu, C. Liu, D. Lv, Y. Lv, P. Wang, and J. Yao, “P-polarized Cherenkov THz wave radiation generated by optical rectification for a Brewster-cut LiNbO3 crystal,” J. Opt. 13, 085202 (2011).
[CrossRef]

2009 (4)

D. Li, G. Ma, J. Ge, and N. Dai, “Terahertz pulse shaping via birefringence in lithium niobate crystal,” Appl. Phys. B 94, 623–628 (2009).
[CrossRef]

T. Shibuya, T. Tsutsui, K. Suizu, T. Akiba, and K. Kawase, “Efficient Cherenkov-type phase-matched widely tunable terahertz-wave generation via an optimized pump beam shape,” Appl. Phys. Express 2, 032302 (2009).
[CrossRef]

K. Suizu, K. Koketsu, T. Shibuya, T. Tsutsui, T. Akiba, and K. Kawase, “Extremely frequency-widened terahertz wave generation using Cherenkov-type radiation,” Opt. Express 17, 6676–6681 (2009).
[CrossRef]

K. Suizu, T. Tsutsui, T. Shibuya, T. Akiba, and K. Kawase, “Cherenkov phase matched THz-wave generation with surfing configuration for bulk Lithium Nobate crystal,” Opt. Express 17, 7102–7109 (2009).
[CrossRef]

2008 (2)

2007 (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[CrossRef]

2006 (1)

M. Nagai, H. Yada, T. Arikawa, and K. Tanaka, “Terahertz time-domain attenuated total reflection spectroscopy in water and biological solution,” Int. J. Infrared Millim. Waves 27, 505–515 (2006).
[CrossRef]

2005 (1)

M. I. Bakunov, A. V. Maslov, and S. B. Bodrov, “Cherenkov radiation of terahertz surface plasmon polaritons from a superluminal optical spot,” Phys. Rev. B 72, 195336 (2005).
[CrossRef]

2004 (1)

H. Hirori, K. Yamashita, M. Nagai, and K. Tanaka, “Attenuated total reflection spectroscopy in time domain using terahertz coherent pulses,” Jpn. J. Appl. Phys. 43, L1287–L1289 (2004).
[CrossRef]

2003 (1)

T. Tanabe, K. Suto, J. Nishizawa, K. Saito, and T. Kimura, “Tunable terahertz wave generation in the 3- to 7-THz region from GaP,” Appl. Phys. Lett. 83, 237–239 (2003).
[CrossRef]

2002 (1)

1999 (1)

M. Schall, H. Helm, and S. R. Keiding, “Far infrared properties of electro-optic crystals measured by THz time-domain spectroscopy,” Int. J. Infrared Millim. Waves 20, 595–604 (1999).
[CrossRef]

1997 (2)

1996 (1)

D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, “T-ray imaging,” IEEE J. Sel. Top. Quantum Electron. 2, 679–692 (1996).
[CrossRef]

1994 (1)

A. Rice, Y. Jin, X. F. Ma, X. C. Zhang, D. Bliss, J. Larkin, and M. Alexander, “Terahertz optical rectification from 〈110〉 zinc-blende crystals,” Appl. Phys. Lett. 64, 1324–1326 (1994).
[CrossRef]

1972 (1)

G. D. Boyd, T. J. Bridges, C. K. N. Patel, and E. Buehler, “Phase-matched submillimeter wave generation by difference-frequency mixing in ZnGeP2,” Appl. Phys. Lett. 21, 553–555 (1972).
[CrossRef]

Akiba, T.

Alexander, M.

A. Rice, Y. Jin, X. F. Ma, X. C. Zhang, D. Bliss, J. Larkin, and M. Alexander, “Terahertz optical rectification from 〈110〉 zinc-blende crystals,” Appl. Phys. Lett. 64, 1324–1326 (1994).
[CrossRef]

Amann, M. C.

K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4, 2021 (2013).
[CrossRef]

Arikawa, T.

M. Nagai, H. Yada, T. Arikawa, and K. Tanaka, “Terahertz time-domain attenuated total reflection spectroscopy in water and biological solution,” Int. J. Infrared Millim. Waves 27, 505–515 (2006).
[CrossRef]

Bakunov, M. I.

M. I. Bakunov, A. V. Maslov, and S. B. Bodrov, “Cherenkov radiation of terahertz surface plasmon polaritons from a superluminal optical spot,” Phys. Rev. B 72, 195336 (2005).
[CrossRef]

Belkin, M. A.

K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4, 2021 (2013).
[CrossRef]

Belonogaya, E. S.

E. S. Belonogaya, A. V. Tyukhtin, and S. N. Galyamin, “Approximate method for calculating the radiation from a moving charge in the presence of a complex object,” Phys. Rev. B 87, 043201 (2013).
[CrossRef]

Bliss, D.

A. Rice, Y. Jin, X. F. Ma, X. C. Zhang, D. Bliss, J. Larkin, and M. Alexander, “Terahertz optical rectification from 〈110〉 zinc-blende crystals,” Appl. Phys. Lett. 64, 1324–1326 (1994).
[CrossRef]

Bodrov, S. B.

M. I. Bakunov, A. V. Maslov, and S. B. Bodrov, “Cherenkov radiation of terahertz surface plasmon polaritons from a superluminal optical spot,” Phys. Rev. B 72, 195336 (2005).
[CrossRef]

Boehm, G.

K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4, 2021 (2013).
[CrossRef]

Boivin, L.

Boyd, G. D.

G. D. Boyd, T. J. Bridges, C. K. N. Patel, and E. Buehler, “Phase-matched submillimeter wave generation by difference-frequency mixing in ZnGeP2,” Appl. Phys. Lett. 21, 553–555 (1972).
[CrossRef]

Bridges, T. J.

G. D. Boyd, T. J. Bridges, C. K. N. Patel, and E. Buehler, “Phase-matched submillimeter wave generation by difference-frequency mixing in ZnGeP2,” Appl. Phys. Lett. 21, 553–555 (1972).
[CrossRef]

Buehler, E.

G. D. Boyd, T. J. Bridges, C. K. N. Patel, and E. Buehler, “Phase-matched submillimeter wave generation by difference-frequency mixing in ZnGeP2,” Appl. Phys. Lett. 21, 553–555 (1972).
[CrossRef]

Choutagunta, K.

K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4, 2021 (2013).
[CrossRef]

Dai, N.

D. Li, G. Ma, J. Ge, and N. Dai, “Terahertz pulse shaping via birefringence in lithium niobate crystal,” Appl. Phys. B 94, 623–628 (2009).
[CrossRef]

Demmerle, F.

K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4, 2021 (2013).
[CrossRef]

Ding, Y. J.

Fernelius, N.

Galyamin, S. N.

E. S. Belonogaya, A. V. Tyukhtin, and S. N. Galyamin, “Approximate method for calculating the radiation from a moving charge in the presence of a complex object,” Phys. Rev. B 87, 043201 (2013).
[CrossRef]

Ge, J.

D. Li, G. Ma, J. Ge, and N. Dai, “Terahertz pulse shaping via birefringence in lithium niobate crystal,” Appl. Phys. B 94, 623–628 (2009).
[CrossRef]

Helm, H.

M. Schall, H. Helm, and S. R. Keiding, “Far infrared properties of electro-optic crystals measured by THz time-domain spectroscopy,” Int. J. Infrared Millim. Waves 20, 595–604 (1999).
[CrossRef]

Hirori, H.

H. Hirori, K. Yamashita, M. Nagai, and K. Tanaka, “Attenuated total reflection spectroscopy in time domain using terahertz coherent pulses,” Jpn. J. Appl. Phys. 43, L1287–L1289 (2004).
[CrossRef]

Hunsche, S.

Jacobsen, R. H.

D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, “T-ray imaging,” IEEE J. Sel. Top. Quantum Electron. 2, 679–692 (1996).
[CrossRef]

Jang, M.

K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4, 2021 (2013).
[CrossRef]

Jiang, A.

K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4, 2021 (2013).
[CrossRef]

Jiang, Y.

K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4, 2021 (2013).
[CrossRef]

Jin, Y.

A. Rice, Y. Jin, X. F. Ma, X. C. Zhang, D. Bliss, J. Larkin, and M. Alexander, “Terahertz optical rectification from 〈110〉 zinc-blende crystals,” Appl. Phys. Lett. 64, 1324–1326 (1994).
[CrossRef]

Jundt, D. H.

Kaneko, N.

Kawase, K.

Kawayama, I.

Keiding, S. R.

M. Schall, H. Helm, and S. R. Keiding, “Far infrared properties of electro-optic crystals measured by THz time-domain spectroscopy,” Int. J. Infrared Millim. Waves 20, 595–604 (1999).
[CrossRef]

Kimura, T.

T. Tanabe, K. Suto, J. Nishizawa, K. Saito, and T. Kimura, “Tunable terahertz wave generation in the 3- to 7-THz region from GaP,” Appl. Phys. Lett. 83, 237–239 (2003).
[CrossRef]

Kiwa, T.

Koketsu, K.

Kondo, J.

Larkin, J.

A. Rice, Y. Jin, X. F. Ma, X. C. Zhang, D. Bliss, J. Larkin, and M. Alexander, “Terahertz optical rectification from 〈110〉 zinc-blende crystals,” Appl. Phys. Lett. 64, 1324–1326 (1994).
[CrossRef]

Li, D.

D. Li, G. Ma, J. Ge, and N. Dai, “Terahertz pulse shaping via birefringence in lithium niobate crystal,” Appl. Phys. B 94, 623–628 (2009).
[CrossRef]

Liu, C.

P. Liu, D. Xu, C. Liu, D. Lv, Y. Lv, P. Wang, and J. Yao, “P-polarized Cherenkov THz wave radiation generated by optical rectification for a Brewster-cut LiNbO3 crystal,” J. Opt. 13, 085202 (2011).
[CrossRef]

Liu, P.

P. Liu, D. Xu, C. Liu, D. Lv, Y. Lv, P. Wang, and J. Yao, “P-polarized Cherenkov THz wave radiation generated by optical rectification for a Brewster-cut LiNbO3 crystal,” J. Opt. 13, 085202 (2011).
[CrossRef]

Lv, D.

P. Liu, D. Xu, C. Liu, D. Lv, Y. Lv, P. Wang, and J. Yao, “P-polarized Cherenkov THz wave radiation generated by optical rectification for a Brewster-cut LiNbO3 crystal,” J. Opt. 13, 085202 (2011).
[CrossRef]

Lv, Y.

P. Liu, D. Xu, C. Liu, D. Lv, Y. Lv, P. Wang, and J. Yao, “P-polarized Cherenkov THz wave radiation generated by optical rectification for a Brewster-cut LiNbO3 crystal,” J. Opt. 13, 085202 (2011).
[CrossRef]

Ma, G.

D. Li, G. Ma, J. Ge, and N. Dai, “Terahertz pulse shaping via birefringence in lithium niobate crystal,” Appl. Phys. B 94, 623–628 (2009).
[CrossRef]

Ma, X. F.

A. Rice, Y. Jin, X. F. Ma, X. C. Zhang, D. Bliss, J. Larkin, and M. Alexander, “Terahertz optical rectification from 〈110〉 zinc-blende crystals,” Appl. Phys. Lett. 64, 1324–1326 (1994).
[CrossRef]

Maslov, A. V.

M. I. Bakunov, A. V. Maslov, and S. B. Bodrov, “Cherenkov radiation of terahertz surface plasmon polaritons from a superluminal optical spot,” Phys. Rev. B 72, 195336 (2005).
[CrossRef]

Mittleman, D. M.

D. M. Mittleman, S. Hunsche, L. Boivin, and M. C. Nuss, “T-ray tomography,” Opt. Lett. 22, 904–906 (1997).
[CrossRef]

D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, “T-ray imaging,” IEEE J. Sel. Top. Quantum Electron. 2, 679–692 (1996).
[CrossRef]

Miyamoto, K.

Nagai, M.

M. Nagai, H. Yada, T. Arikawa, and K. Tanaka, “Terahertz time-domain attenuated total reflection spectroscopy in water and biological solution,” Int. J. Infrared Millim. Waves 27, 505–515 (2006).
[CrossRef]

H. Hirori, K. Yamashita, M. Nagai, and K. Tanaka, “Attenuated total reflection spectroscopy in time domain using terahertz coherent pulses,” Jpn. J. Appl. Phys. 43, L1287–L1289 (2004).
[CrossRef]

Nishizawa, J.

T. Tanabe, K. Suto, J. Nishizawa, K. Saito, and T. Kimura, “Tunable terahertz wave generation in the 3- to 7-THz region from GaP,” Appl. Phys. Lett. 83, 237–239 (2003).
[CrossRef]

Nuss, M. C.

D. M. Mittleman, S. Hunsche, L. Boivin, and M. C. Nuss, “T-ray tomography,” Opt. Lett. 22, 904–906 (1997).
[CrossRef]

D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, “T-ray imaging,” IEEE J. Sel. Top. Quantum Electron. 2, 679–692 (1996).
[CrossRef]

Oka, S.

Omatsu, T.

Otani, C.

Patel, C. K. N.

G. D. Boyd, T. J. Bridges, C. K. N. Patel, and E. Buehler, “Phase-matched submillimeter wave generation by difference-frequency mixing in ZnGeP2,” Appl. Phys. Lett. 21, 553–555 (1972).
[CrossRef]

Rice, A.

A. Rice, Y. Jin, X. F. Ma, X. C. Zhang, D. Bliss, J. Larkin, and M. Alexander, “Terahertz optical rectification from 〈110〉 zinc-blende crystals,” Appl. Phys. Lett. 64, 1324–1326 (1994).
[CrossRef]

Saito, K.

T. Tanabe, K. Suto, J. Nishizawa, K. Saito, and T. Kimura, “Tunable terahertz wave generation in the 3- to 7-THz region from GaP,” Appl. Phys. Lett. 83, 237–239 (2003).
[CrossRef]

Schall, M.

M. Schall, H. Helm, and S. R. Keiding, “Far infrared properties of electro-optic crystals measured by THz time-domain spectroscopy,” Int. J. Infrared Millim. Waves 20, 595–604 (1999).
[CrossRef]

Shi, W.

Shibuya, T.

Suizu, K.

Suto, K.

T. Tanabe, K. Suto, J. Nishizawa, K. Saito, and T. Kimura, “Tunable terahertz wave generation in the 3- to 7-THz region from GaP,” Appl. Phys. Lett. 83, 237–239 (2003).
[CrossRef]

Tanabe, T.

T. Tanabe, K. Suto, J. Nishizawa, K. Saito, and T. Kimura, “Tunable terahertz wave generation in the 3- to 7-THz region from GaP,” Appl. Phys. Lett. 83, 237–239 (2003).
[CrossRef]

Tanaka, K.

M. Nagai, H. Yada, T. Arikawa, and K. Tanaka, “Terahertz time-domain attenuated total reflection spectroscopy in water and biological solution,” Int. J. Infrared Millim. Waves 27, 505–515 (2006).
[CrossRef]

H. Hirori, K. Yamashita, M. Nagai, and K. Tanaka, “Attenuated total reflection spectroscopy in time domain using terahertz coherent pulses,” Jpn. J. Appl. Phys. 43, L1287–L1289 (2004).
[CrossRef]

Tonouchi, M.

Tsukada, K.

Tsutsui, T.

Tyukhtin, A. V.

E. S. Belonogaya, A. V. Tyukhtin, and S. N. Galyamin, “Approximate method for calculating the radiation from a moving charge in the presence of a complex object,” Phys. Rev. B 87, 043201 (2013).
[CrossRef]

Vijayraghavan, K.

K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4, 2021 (2013).
[CrossRef]

Vizbaras, A.

K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4, 2021 (2013).
[CrossRef]

Vodopyanov, K.

Wang, P.

P. Liu, D. Xu, C. Liu, D. Lv, Y. Lv, P. Wang, and J. Yao, “P-polarized Cherenkov THz wave radiation generated by optical rectification for a Brewster-cut LiNbO3 crystal,” J. Opt. 13, 085202 (2011).
[CrossRef]

Xu, D.

P. Liu, D. Xu, C. Liu, D. Lv, Y. Lv, P. Wang, and J. Yao, “P-polarized Cherenkov THz wave radiation generated by optical rectification for a Brewster-cut LiNbO3 crystal,” J. Opt. 13, 085202 (2011).
[CrossRef]

Yada, H.

M. Nagai, H. Yada, T. Arikawa, and K. Tanaka, “Terahertz time-domain attenuated total reflection spectroscopy in water and biological solution,” Int. J. Infrared Millim. Waves 27, 505–515 (2006).
[CrossRef]

Yamada, H.

Yamashita, K.

H. Hirori, K. Yamashita, M. Nagai, and K. Tanaka, “Attenuated total reflection spectroscopy in time domain using terahertz coherent pulses,” Jpn. J. Appl. Phys. 43, L1287–L1289 (2004).
[CrossRef]

Yao, J.

P. Liu, D. Xu, C. Liu, D. Lv, Y. Lv, P. Wang, and J. Yao, “P-polarized Cherenkov THz wave radiation generated by optical rectification for a Brewster-cut LiNbO3 crystal,” J. Opt. 13, 085202 (2011).
[CrossRef]

Zhang, X. C.

A. Rice, Y. Jin, X. F. Ma, X. C. Zhang, D. Bliss, J. Larkin, and M. Alexander, “Terahertz optical rectification from 〈110〉 zinc-blende crystals,” Appl. Phys. Lett. 64, 1324–1326 (1994).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

D. Li, G. Ma, J. Ge, and N. Dai, “Terahertz pulse shaping via birefringence in lithium niobate crystal,” Appl. Phys. B 94, 623–628 (2009).
[CrossRef]

Appl. Phys. Express (1)

T. Shibuya, T. Tsutsui, K. Suizu, T. Akiba, and K. Kawase, “Efficient Cherenkov-type phase-matched widely tunable terahertz-wave generation via an optimized pump beam shape,” Appl. Phys. Express 2, 032302 (2009).
[CrossRef]

Appl. Phys. Lett. (3)

A. Rice, Y. Jin, X. F. Ma, X. C. Zhang, D. Bliss, J. Larkin, and M. Alexander, “Terahertz optical rectification from 〈110〉 zinc-blende crystals,” Appl. Phys. Lett. 64, 1324–1326 (1994).
[CrossRef]

T. Tanabe, K. Suto, J. Nishizawa, K. Saito, and T. Kimura, “Tunable terahertz wave generation in the 3- to 7-THz region from GaP,” Appl. Phys. Lett. 83, 237–239 (2003).
[CrossRef]

G. D. Boyd, T. J. Bridges, C. K. N. Patel, and E. Buehler, “Phase-matched submillimeter wave generation by difference-frequency mixing in ZnGeP2,” Appl. Phys. Lett. 21, 553–555 (1972).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, “T-ray imaging,” IEEE J. Sel. Top. Quantum Electron. 2, 679–692 (1996).
[CrossRef]

Int. J. Infrared Millim. Waves (2)

M. Schall, H. Helm, and S. R. Keiding, “Far infrared properties of electro-optic crystals measured by THz time-domain spectroscopy,” Int. J. Infrared Millim. Waves 20, 595–604 (1999).
[CrossRef]

M. Nagai, H. Yada, T. Arikawa, and K. Tanaka, “Terahertz time-domain attenuated total reflection spectroscopy in water and biological solution,” Int. J. Infrared Millim. Waves 27, 505–515 (2006).
[CrossRef]

J. Opt. (1)

P. Liu, D. Xu, C. Liu, D. Lv, Y. Lv, P. Wang, and J. Yao, “P-polarized Cherenkov THz wave radiation generated by optical rectification for a Brewster-cut LiNbO3 crystal,” J. Opt. 13, 085202 (2011).
[CrossRef]

Jpn. J. Appl. Phys. (1)

H. Hirori, K. Yamashita, M. Nagai, and K. Tanaka, “Attenuated total reflection spectroscopy in time domain using terahertz coherent pulses,” Jpn. J. Appl. Phys. 43, L1287–L1289 (2004).
[CrossRef]

Nat. Commun. (1)

K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4, 2021 (2013).
[CrossRef]

Nat. Photonics (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[CrossRef]

Opt. Express (3)

Opt. Lett. (4)

Phys. Rev. B (2)

E. S. Belonogaya, A. V. Tyukhtin, and S. N. Galyamin, “Approximate method for calculating the radiation from a moving charge in the presence of a complex object,” Phys. Rev. B 87, 043201 (2013).
[CrossRef]

M. I. Bakunov, A. V. Maslov, and S. B. Bodrov, “Cherenkov radiation of terahertz surface plasmon polaritons from a superluminal optical spot,” Phys. Rev. B 72, 195336 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Top panel is for s-polarized THz wave generation, and the bottom panel is for p polarization. The polarization of the incident pump wave is parallel to the optic axis of the crystal in both cases.

Fig. 2.
Fig. 2.

(a) Schematic of Cherenkov radiation and of the output coupling of the THz wave. (b) Refraction of the THz wave at the interface between air and the cladding.

Fig. 3.
Fig. 3.

Schematic diagram of the experimental setup used for satisfying Cherenkov phase matching.

Fig. 4.
Fig. 4.

Terahertz output spectrum for each polarization. The continuous line denotes the p-polarized output, and the dotted–dashed line is for s polarization.

Fig. 5.
Fig. 5.

THz wave output spectra obtained under different angle of prism. The continuous line plots the THz output spectrum when θpr=50°. The dotted–dashed line denotes the output when θpr=40°.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

cosθch=λTHznTHz2Lc=λTHznTHzλpλs(npλsnsλp)noptnTHz,
nTHz(s)=nenTHz(p)=nenone2sin2θch+no2cosθch,
nprsin(π2θclad(s))=nTHz(s)sin(π2θch)cosθclad(s)=nTHz(s)nprcosθch=nTHz(s)nprnoptnTHz(s)=noptnpr,
nprsin(π2θclad(p))=nTHz(p)sin(π2θch)cosθclad(p)=nTHz(p)nprcosθch=nTHz(p)nprnoptnTHz(p)=noptnpr.
θair=π2θprarcsin(nprsin(π2θprθclad)).

Metrics