Abstract

Electronic speckle photography (ESP) for in-plane displacement (IPD) and deformation measurements is well known with its more modern form, digital image correlation (DIC). Two speckle images of an optically rough surface before and after deformation, called reference and test images, are recorded and processed for IPD or deformation measurement of the test image with respect to the reference image. The reliability of ESP in measurements depends strongly on the postprocessing of the two images by DIC, which we have referred to as conventional DIC. In this paper, we are proposing a small but useful modification in the existing DIC methods by introducing some additional steps, which drastically improves the results obtained with the existing techniques. The modification to the conventional DIC method has been referred to as modified DIC. Computer-simulated and experimental results have been presented to validate the superiority of modified DIC over conventional DIC methods.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. Helm, S. R. McNeil, and M. A. Sutton, “Improved three-dimensional image correlation for surface displacement measurement,” Opt. Eng. 35, 1911–1920 (1996).
    [CrossRef]
  2. B. Pan, H. M. Xie, L. H. Yang, and Z. Y. Wang, “Accurate measurement of satellite antenna surface using three-dimensional digital correlation technique,” Strain 45, 194–200 (2009).
    [CrossRef]
  3. J. Brillaud and F. Lagattu, “Limits and possibilities of laser speckle and white-light image-correlation methods: theory and experiments,” Appl. Opt. 41, 6603–6613 (2002).
    [CrossRef]
  4. D. S. Zhang, M. Luo, and D. D. Arola, “Displacement/strain measurements using an optical microscope and digital image correlation,” Opt. Eng. 45, 033605 (2006).
    [CrossRef]
  5. C. Franck, S. Hong, S. A. Maskarinec, D. A. Tirrell, and G. Ravichandran, “Three-dimensional full-field measurements of large deformations in soft materials using confocal microscopy and digital volume correlation,” Exp. Mech. 47, 427–438 (2007).
    [CrossRef]
  6. H. Wang, H. Xie, Y. Ju, and Q. Duan, “Error analysis of digital speckle correlation method under scanning electron microscope,” Exp. Tech. 30, 42–45 (2006).
  7. M. A. Sutton, N. Li, D. C. Joy, A. P. Reynolds, and X. Li, “Scanning electron microscopy for quantitative small and large deformation measurements: part I. SEM imaging at magnifications from 200 to 10,000,” Exp. Mech. 47, 775–787 (2007).
    [CrossRef]
  8. S. W. Cho, I. Chasiotis, T. A. Friedmann, and J. P. Sullivan, “Young’s modulus, Poisson’s ratio and failure properties of tetrahedral amorphous diamond-like carbon for MEMS devices,” J. Micromech. Microeng. 15, 728–735 (2005).
    [CrossRef]
  9. X. D. Li, W. Xu, M. A. Sutton, and M. Mello, “In situ nanoscale in-plane deformation studies of ultrathin polymeric films during tensile deformation using atomic force microscopy and digital image correlation techniques,” IEEE Trans. Nanotechnol. 6, 4–12 (2007).
    [CrossRef]
  10. X. D. Li, W. Xu, M. A. Sutton, and M. Mello, “Nanoscale deformation and cracking studies of advanced metal evaporated magnetic tapes using atomic force microscopy and digital image correlation techniques,” Meas. Sci. Technol. 22, 835–844 (2006).
  11. G. Vendroux, N. Schmidt, and W. G. Knauss, “Submicron deformation field measurements: part 3. Demonstration of deformation determinations,” Exp. Mech. 38, 154–160 (1998).
    [CrossRef]
  12. M. A. Sutton, S. R. McNeill, J. D. Helm, and Y. J. Chao, “Advances in two-dimensional and three-dimensional computer vision,” Top. Appl. Phys. 77, 323–372 (2000).
    [CrossRef]
  13. H. W. Schreier, “Investigation of two and three-dimensional image correlation techniques with applications in experimental mechanics,” Ph.D. thesis (University of South Carolina, 2003).
  14. M. A. Sutton, J. H. Yan, V. Tiwari, W. H. Schreier, and J. J. Orteu, “The effect of out-of-plane motion on 2D and 3D digital image correlation measurements,” Opt. Lasers Eng. 46, 746–757 (2008).
    [CrossRef]
  15. S. Yoneyama, H. Kikuta, A. Kitagawa, and K. Kitamura, “Lens distortion correction for digital image correlation by measuring rigid body displacement,” Opt. Eng. 45, 023602 (2006).
    [CrossRef]
  16. M. A. Sutton, N. Li, D. Garcia, N. Cornille, J. J. Orteu, S. R. McNeill, H. W. Schreier, and X. Li, “Metrology in a scanning electron microscope: theoretical developments and experimental validation,” Meas. Sci. Technol. 17, 2613–2622 (2006).
    [CrossRef]
  17. M. A. Sutton, N. Li, D. Garcia, N. Cornille, J. J. Orteu, S. R. McNeill, H. W. Schreier, X. Li, and A. P. Reynolds, “Scanning electron microscopy for quantitative small and large deformation measurements: part II. Experimental validation for magnifications from 200 to 10,000,” Exp. Mech. 47, 789–804 (2007).
    [CrossRef]
  18. Y. F. Sun and J. H. L. Pang, “AFM image reconstruction for deformation measurements by digital image correlation,” Nanotechnology 17, 933–939 (2006).
    [CrossRef]
  19. A. Giachetti, “Matching techniques to compute image motion,” Image Vis. Comput. 18, 247–260 (2000).
  20. H. W. Schreier and M. A. Sutton, “Systematic errors in digital image correlation due to undermatched subset shape functions,” Exp. Mech. 42, 303–310 (2002).
    [CrossRef]
  21. B. Pan, H. M. Xie, Z. Q. Guo, and T. Hua, “Full-field strain measurement using a two-dimensional Savitzky–Golay digital differentiator in digital image correlation,” Opt. Eng. 46, 033601 (2007).
    [CrossRef]
  22. P. Bing, X. Hui-min, X. Bo-qin, and D. Fu-long, “Performance of sub-pixel registration algorithms in digital image correlation,” Meas. Sci. Technol. 17, 1615–1621 (2006).
    [CrossRef]
  23. W. G. Knauss, I. Chasiotis, and Y. Huang, “Mechanical measurements at the micron and nanometer scales,” Mech. Mater. 35, 217–231 (2003).
    [CrossRef]
  24. B. Pan, H. Xie, Z. Wang, K. Qian, and Z. Wang, “Study on subset size selection in digital image correlation for speckle patterns,” Opt. Express 16, 7037–7048 (2008).
    [CrossRef]
  25. D. J. Chen, F. P. Chiang, Y. S. Tan, and H. S. Don, “Digital speckle-displacement measurement using a complex spectrum method,” Appl. Opt. 32, 1839–1849 (1993).
    [CrossRef]
  26. M. Sjödhal and L. R. Benckert, “Electronic speckle photography: analysis of an algorithm giving the displacement with subpixel accuracy,” Appl. Opt. 32, 2278–2284 (1993).
    [CrossRef]
  27. F. Hild, B. Raka, M. Baudequin, S. Roux, and F. Cantelaube, “Multiscale displacement field measurements of compressed mineral-wool samples by digital image correlation,” Appl. Opt. 41, 6815–6828 (2002).
    [CrossRef]
  28. B. Pan, H. Xie, Y. Xia, and Q. Wang, “Large deformation measurement based on reliable initial guess in digital image correlation method,” Acta Optica Sin. 29, 400–406 (2009).
  29. J. D. Helm and J. R. Deanner, “Off-axis two-dimensional digital image correlation,” in Proceedings of 2004 SEM X International Congress & Exposition on Experimental and Applied MechanicsCosta Mesa, 2004-06-1-10CT:SEM.
  30. Z. F. Zhang, Y. L. Kang, H. W. Wang, Q. H. Qin, Y. Qiu, and X. Q. Li, “A novel coarse-fine search scheme for digital image correlation method,” Measurement 39, 710–718 (2006).
    [CrossRef]
  31. B. Pan and H. M. Xie, “Digital image correlation method with differential evolution,” J. Optoelectron Laser 18, 100–103 (2007).
  32. G. Vendroux and W. G. Knauss, “Submicron deformation field measurements: part 2. Improved digital image correlation,” Exp. Mech. 38, 86–92 (1998).
    [CrossRef]
  33. I. Chasiotis and W. G. Knauss, “A new microtensile tester for the study of MEMS materials with the aid of atomic force microscopy,” Exp. Mech. 42, 51–57 (2002).
    [CrossRef]
  34. M. A. Sutton, J. L. Turner, H. A. Bruck, and T. A. Chao, “Full-field representation of discretely sampled surface deformation for displacement and strain analysis,” Exp. Mech. 31, 168–177 (1991).
    [CrossRef]
  35. C. C. B. Wang, J. M. Deng, G. A. Ateshian, and C. T. Hung, “An automated approach for direct measurement of two-dimensional strain distributions within articular cartilage under unconfined compression,” J. Biomech. Eng. 124, 557–567 (2002).
    [CrossRef]
  36. W. Tong, “Detection of plastic deformation patterns in a binary aluminum alloy,” Exp. Mech. 37, 452–459 (1997).
    [CrossRef]
  37. B. Pan, A. Asundi, H. Xie, and J. Gao, “Digital image correlation using iterative least squares and pointwise least squares for displacement field and strain field measurements,” Opt. Lasers Eng. 47, 865–874 (2009).
    [CrossRef]
  38. J. W. Luo, J. Bai, P. He, and K. Ying, “Axial strain calculation using a low-pass digital differentiator in ultrasound elastography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51, 1119–1127 (2004).
    [CrossRef]
  39. B. Pan, H. Xie, Z. Guo, and T. Hua, “Data smoothing and strain estimation using Savitzky–Golay filters in digital image correlation,” Key Eng. Mater. 326–328, 155–158 (2006).
    [CrossRef]
  40. D. Lecompte, A. Smits, S. Bossuyt, H. Sol, J. Vantomme, D. V. Hemelrijck, and A. M. Habraken, “Quality assessment of speckle patterns for digital image correlation,” Opt. Lasers Eng. 44, 1132–1145 (2006).
    [CrossRef]
  41. L. B. Meng, G. C. Jin, and X. F. Yao, “Errors caused by misalignment of the optical camera axis and the object surface in the DSCM,” J. Tsinghua Univ. 46, 1930–1932 (2006).
  42. H. W. Schreier, D. Garcia, and M. A. Sutton, “Advances in light microscope stereo vision,” Exp. Mech. 44, 278–288 (2004).
    [CrossRef]
  43. H. Jin and H. A. Bruck, “A new method for characterizing nonlinearity in scanning probe microscopes using digital image correlation,” Nanotechnology 16, 1849–1855 (2005).
    [CrossRef]
  44. Z. Y. Wang, H. Q. Li, J. W. Tong, and J. T. Ruan, “Statistical analysis of the effect of intensity pattern noise on the displacement measurement precision of digital image correlated using self-correlated images,” Exp. Mech. 47, 701–707 (2007).
    [CrossRef]
  45. W. H. Peters and W. F. Ranson, “Digital imaging techniques in experimental stress analysis,” Opt. Eng. 21, 427–431 (1981).
  46. F. J. Yang, X. Y. He, and C. G. Quan, “Characterization of dynamic microgyroscopes by use of temporal digital image correlation,” Appl. Opt. 45, 7785–7790 (2006).
    [CrossRef]
  47. P. C. Hung and P. S. Voloshin, “In-plane strain measurement by digital image correlation,” J. Braz. Soc. Mech. Sci. Eng. 25, 215–221 (2003).
  48. W. Sun, C. G. Quan, C. J. Tay, and X. Y. He, “Global and local coordinates in digital image correlation,” Appl. Opt. 46, 1050–1056 (2007).
    [CrossRef]
  49. W. Sun, C. G. Quan, and X. Y. He, “Dynamic characterization of a microgyroscope by digital image spectrum correlation,” Opt. Eng. 47, 033602 (2008).
    [CrossRef]
  50. H. A. Bruck, S. R. McNeil, M. A. Sutton, and W. H. Peters, “Digital image correlation using Newton–Raphson method of partial differential correction,” Exp. Mech. 29, 261–267 (1989).
    [CrossRef]
  51. P. Zhou and K. E. Goodson, “Subpixel displacement and deformation gradient measurement using digital image/speckle correlation,” Opt. Eng. 40, 1613–1620 (2001).
    [CrossRef]
  52. J. Zhang and G. C. Jin, “Application of an improved subpixel registration algorithm on digital speckle correlation measurement,” Opt. Laser Technol. 35, 533–542 (2003).
    [CrossRef]
  53. Y. F. Sun, J. H. L. Pang, C. K. Wong, and F. Su, “Finite-element formulation for a digital image correlation method,” Appl. Opt. 44, 7357–7363 (2005).
    [CrossRef]
  54. P. K. Rastogi, Digital Speckle Pattern Interferometry and Related Techniques (Wiley, 2001).
  55. J. N. Butters and J. A. Leendertz, “A double exposure technique for speckle pattern interferometry,” J. Phys. E 4, 277–279 (1971).
    [CrossRef]
  56. J. N. Butters and J. A. Leendertz, “Speckle pattern and holographic techniques in engineering metrology,” Opt. Laser Technol. 3, 26–30 (1971).
    [CrossRef]
  57. T. Kreis, Handbook of Holographic Interferometry (Wiley-VCH, 2004).
  58. M. Sjödahl, “Some recent advances in electronic speckle photography,” Opt. Lasers Eng. 29, 125–144 (1998).
    [CrossRef]
  59. M. Sjödahl, “Electronic speckle photography: measurement of in-plane strain fields through the use of defocused laser speckle,” Appl. Opt. 34, 5799–5808 (1995).
    [CrossRef]
  60. I. Yamaguchi, “Automatic measurement of in-plane translation by speckle correlation using a linear image sensor,” J. Phys. E 19, 944–948 (1986).
    [CrossRef]
  61. P. Smid, P. Horvath, and M. Hrabovsky, “Speckle correlation method used to measure object’s in-plane velocity,” Appl. Opt. 46, 3709–3715 (2007).
    [CrossRef]
  62. P. Horvath, M. Hrabovsky, and P. Smid, “Full theory of speckle displacement and decorrelation in the image field by wave and geometrical descriptions and its application in mechanics,” J. Mod. Opt. 51, 725–742 (2004).
    [CrossRef]

2009 (3)

B. Pan, H. Xie, Y. Xia, and Q. Wang, “Large deformation measurement based on reliable initial guess in digital image correlation method,” Acta Optica Sin. 29, 400–406 (2009).

B. Pan, A. Asundi, H. Xie, and J. Gao, “Digital image correlation using iterative least squares and pointwise least squares for displacement field and strain field measurements,” Opt. Lasers Eng. 47, 865–874 (2009).
[CrossRef]

B. Pan, H. M. Xie, L. H. Yang, and Z. Y. Wang, “Accurate measurement of satellite antenna surface using three-dimensional digital correlation technique,” Strain 45, 194–200 (2009).
[CrossRef]

2008 (3)

W. Sun, C. G. Quan, and X. Y. He, “Dynamic characterization of a microgyroscope by digital image spectrum correlation,” Opt. Eng. 47, 033602 (2008).
[CrossRef]

B. Pan, H. Xie, Z. Wang, K. Qian, and Z. Wang, “Study on subset size selection in digital image correlation for speckle patterns,” Opt. Express 16, 7037–7048 (2008).
[CrossRef]

M. A. Sutton, J. H. Yan, V. Tiwari, W. H. Schreier, and J. J. Orteu, “The effect of out-of-plane motion on 2D and 3D digital image correlation measurements,” Opt. Lasers Eng. 46, 746–757 (2008).
[CrossRef]

2007 (9)

M. A. Sutton, N. Li, D. Garcia, N. Cornille, J. J. Orteu, S. R. McNeill, H. W. Schreier, X. Li, and A. P. Reynolds, “Scanning electron microscopy for quantitative small and large deformation measurements: part II. Experimental validation for magnifications from 200 to 10,000,” Exp. Mech. 47, 789–804 (2007).
[CrossRef]

B. Pan, H. M. Xie, Z. Q. Guo, and T. Hua, “Full-field strain measurement using a two-dimensional Savitzky–Golay digital differentiator in digital image correlation,” Opt. Eng. 46, 033601 (2007).
[CrossRef]

C. Franck, S. Hong, S. A. Maskarinec, D. A. Tirrell, and G. Ravichandran, “Three-dimensional full-field measurements of large deformations in soft materials using confocal microscopy and digital volume correlation,” Exp. Mech. 47, 427–438 (2007).
[CrossRef]

M. A. Sutton, N. Li, D. C. Joy, A. P. Reynolds, and X. Li, “Scanning electron microscopy for quantitative small and large deformation measurements: part I. SEM imaging at magnifications from 200 to 10,000,” Exp. Mech. 47, 775–787 (2007).
[CrossRef]

X. D. Li, W. Xu, M. A. Sutton, and M. Mello, “In situ nanoscale in-plane deformation studies of ultrathin polymeric films during tensile deformation using atomic force microscopy and digital image correlation techniques,” IEEE Trans. Nanotechnol. 6, 4–12 (2007).
[CrossRef]

B. Pan and H. M. Xie, “Digital image correlation method with differential evolution,” J. Optoelectron Laser 18, 100–103 (2007).

Z. Y. Wang, H. Q. Li, J. W. Tong, and J. T. Ruan, “Statistical analysis of the effect of intensity pattern noise on the displacement measurement precision of digital image correlated using self-correlated images,” Exp. Mech. 47, 701–707 (2007).
[CrossRef]

W. Sun, C. G. Quan, C. J. Tay, and X. Y. He, “Global and local coordinates in digital image correlation,” Appl. Opt. 46, 1050–1056 (2007).
[CrossRef]

P. Smid, P. Horvath, and M. Hrabovsky, “Speckle correlation method used to measure object’s in-plane velocity,” Appl. Opt. 46, 3709–3715 (2007).
[CrossRef]

2006 (12)

F. J. Yang, X. Y. He, and C. G. Quan, “Characterization of dynamic microgyroscopes by use of temporal digital image correlation,” Appl. Opt. 45, 7785–7790 (2006).
[CrossRef]

B. Pan, H. Xie, Z. Guo, and T. Hua, “Data smoothing and strain estimation using Savitzky–Golay filters in digital image correlation,” Key Eng. Mater. 326–328, 155–158 (2006).
[CrossRef]

D. Lecompte, A. Smits, S. Bossuyt, H. Sol, J. Vantomme, D. V. Hemelrijck, and A. M. Habraken, “Quality assessment of speckle patterns for digital image correlation,” Opt. Lasers Eng. 44, 1132–1145 (2006).
[CrossRef]

L. B. Meng, G. C. Jin, and X. F. Yao, “Errors caused by misalignment of the optical camera axis and the object surface in the DSCM,” J. Tsinghua Univ. 46, 1930–1932 (2006).

X. D. Li, W. Xu, M. A. Sutton, and M. Mello, “Nanoscale deformation and cracking studies of advanced metal evaporated magnetic tapes using atomic force microscopy and digital image correlation techniques,” Meas. Sci. Technol. 22, 835–844 (2006).

D. S. Zhang, M. Luo, and D. D. Arola, “Displacement/strain measurements using an optical microscope and digital image correlation,” Opt. Eng. 45, 033605 (2006).
[CrossRef]

H. Wang, H. Xie, Y. Ju, and Q. Duan, “Error analysis of digital speckle correlation method under scanning electron microscope,” Exp. Tech. 30, 42–45 (2006).

P. Bing, X. Hui-min, X. Bo-qin, and D. Fu-long, “Performance of sub-pixel registration algorithms in digital image correlation,” Meas. Sci. Technol. 17, 1615–1621 (2006).
[CrossRef]

Z. F. Zhang, Y. L. Kang, H. W. Wang, Q. H. Qin, Y. Qiu, and X. Q. Li, “A novel coarse-fine search scheme for digital image correlation method,” Measurement 39, 710–718 (2006).
[CrossRef]

Y. F. Sun and J. H. L. Pang, “AFM image reconstruction for deformation measurements by digital image correlation,” Nanotechnology 17, 933–939 (2006).
[CrossRef]

S. Yoneyama, H. Kikuta, A. Kitagawa, and K. Kitamura, “Lens distortion correction for digital image correlation by measuring rigid body displacement,” Opt. Eng. 45, 023602 (2006).
[CrossRef]

M. A. Sutton, N. Li, D. Garcia, N. Cornille, J. J. Orteu, S. R. McNeill, H. W. Schreier, and X. Li, “Metrology in a scanning electron microscope: theoretical developments and experimental validation,” Meas. Sci. Technol. 17, 2613–2622 (2006).
[CrossRef]

2005 (3)

S. W. Cho, I. Chasiotis, T. A. Friedmann, and J. P. Sullivan, “Young’s modulus, Poisson’s ratio and failure properties of tetrahedral amorphous diamond-like carbon for MEMS devices,” J. Micromech. Microeng. 15, 728–735 (2005).
[CrossRef]

H. Jin and H. A. Bruck, “A new method for characterizing nonlinearity in scanning probe microscopes using digital image correlation,” Nanotechnology 16, 1849–1855 (2005).
[CrossRef]

Y. F. Sun, J. H. L. Pang, C. K. Wong, and F. Su, “Finite-element formulation for a digital image correlation method,” Appl. Opt. 44, 7357–7363 (2005).
[CrossRef]

2004 (3)

P. Horvath, M. Hrabovsky, and P. Smid, “Full theory of speckle displacement and decorrelation in the image field by wave and geometrical descriptions and its application in mechanics,” J. Mod. Opt. 51, 725–742 (2004).
[CrossRef]

H. W. Schreier, D. Garcia, and M. A. Sutton, “Advances in light microscope stereo vision,” Exp. Mech. 44, 278–288 (2004).
[CrossRef]

J. W. Luo, J. Bai, P. He, and K. Ying, “Axial strain calculation using a low-pass digital differentiator in ultrasound elastography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51, 1119–1127 (2004).
[CrossRef]

2003 (3)

W. G. Knauss, I. Chasiotis, and Y. Huang, “Mechanical measurements at the micron and nanometer scales,” Mech. Mater. 35, 217–231 (2003).
[CrossRef]

J. Zhang and G. C. Jin, “Application of an improved subpixel registration algorithm on digital speckle correlation measurement,” Opt. Laser Technol. 35, 533–542 (2003).
[CrossRef]

P. C. Hung and P. S. Voloshin, “In-plane strain measurement by digital image correlation,” J. Braz. Soc. Mech. Sci. Eng. 25, 215–221 (2003).

2002 (5)

J. Brillaud and F. Lagattu, “Limits and possibilities of laser speckle and white-light image-correlation methods: theory and experiments,” Appl. Opt. 41, 6603–6613 (2002).
[CrossRef]

F. Hild, B. Raka, M. Baudequin, S. Roux, and F. Cantelaube, “Multiscale displacement field measurements of compressed mineral-wool samples by digital image correlation,” Appl. Opt. 41, 6815–6828 (2002).
[CrossRef]

C. C. B. Wang, J. M. Deng, G. A. Ateshian, and C. T. Hung, “An automated approach for direct measurement of two-dimensional strain distributions within articular cartilage under unconfined compression,” J. Biomech. Eng. 124, 557–567 (2002).
[CrossRef]

I. Chasiotis and W. G. Knauss, “A new microtensile tester for the study of MEMS materials with the aid of atomic force microscopy,” Exp. Mech. 42, 51–57 (2002).
[CrossRef]

H. W. Schreier and M. A. Sutton, “Systematic errors in digital image correlation due to undermatched subset shape functions,” Exp. Mech. 42, 303–310 (2002).
[CrossRef]

2001 (1)

P. Zhou and K. E. Goodson, “Subpixel displacement and deformation gradient measurement using digital image/speckle correlation,” Opt. Eng. 40, 1613–1620 (2001).
[CrossRef]

2000 (2)

A. Giachetti, “Matching techniques to compute image motion,” Image Vis. Comput. 18, 247–260 (2000).

M. A. Sutton, S. R. McNeill, J. D. Helm, and Y. J. Chao, “Advances in two-dimensional and three-dimensional computer vision,” Top. Appl. Phys. 77, 323–372 (2000).
[CrossRef]

1998 (3)

G. Vendroux, N. Schmidt, and W. G. Knauss, “Submicron deformation field measurements: part 3. Demonstration of deformation determinations,” Exp. Mech. 38, 154–160 (1998).
[CrossRef]

G. Vendroux and W. G. Knauss, “Submicron deformation field measurements: part 2. Improved digital image correlation,” Exp. Mech. 38, 86–92 (1998).
[CrossRef]

M. Sjödahl, “Some recent advances in electronic speckle photography,” Opt. Lasers Eng. 29, 125–144 (1998).
[CrossRef]

1997 (1)

W. Tong, “Detection of plastic deformation patterns in a binary aluminum alloy,” Exp. Mech. 37, 452–459 (1997).
[CrossRef]

1996 (1)

J. D. Helm, S. R. McNeil, and M. A. Sutton, “Improved three-dimensional image correlation for surface displacement measurement,” Opt. Eng. 35, 1911–1920 (1996).
[CrossRef]

1995 (1)

1993 (2)

1991 (1)

M. A. Sutton, J. L. Turner, H. A. Bruck, and T. A. Chao, “Full-field representation of discretely sampled surface deformation for displacement and strain analysis,” Exp. Mech. 31, 168–177 (1991).
[CrossRef]

1989 (1)

H. A. Bruck, S. R. McNeil, M. A. Sutton, and W. H. Peters, “Digital image correlation using Newton–Raphson method of partial differential correction,” Exp. Mech. 29, 261–267 (1989).
[CrossRef]

1986 (1)

I. Yamaguchi, “Automatic measurement of in-plane translation by speckle correlation using a linear image sensor,” J. Phys. E 19, 944–948 (1986).
[CrossRef]

1981 (1)

W. H. Peters and W. F. Ranson, “Digital imaging techniques in experimental stress analysis,” Opt. Eng. 21, 427–431 (1981).

1971 (2)

J. N. Butters and J. A. Leendertz, “A double exposure technique for speckle pattern interferometry,” J. Phys. E 4, 277–279 (1971).
[CrossRef]

J. N. Butters and J. A. Leendertz, “Speckle pattern and holographic techniques in engineering metrology,” Opt. Laser Technol. 3, 26–30 (1971).
[CrossRef]

Arola, D. D.

D. S. Zhang, M. Luo, and D. D. Arola, “Displacement/strain measurements using an optical microscope and digital image correlation,” Opt. Eng. 45, 033605 (2006).
[CrossRef]

Asundi, A.

B. Pan, A. Asundi, H. Xie, and J. Gao, “Digital image correlation using iterative least squares and pointwise least squares for displacement field and strain field measurements,” Opt. Lasers Eng. 47, 865–874 (2009).
[CrossRef]

Ateshian, G. A.

C. C. B. Wang, J. M. Deng, G. A. Ateshian, and C. T. Hung, “An automated approach for direct measurement of two-dimensional strain distributions within articular cartilage under unconfined compression,” J. Biomech. Eng. 124, 557–567 (2002).
[CrossRef]

Bai, J.

J. W. Luo, J. Bai, P. He, and K. Ying, “Axial strain calculation using a low-pass digital differentiator in ultrasound elastography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51, 1119–1127 (2004).
[CrossRef]

Baudequin, M.

Benckert, L. R.

Bing, P.

P. Bing, X. Hui-min, X. Bo-qin, and D. Fu-long, “Performance of sub-pixel registration algorithms in digital image correlation,” Meas. Sci. Technol. 17, 1615–1621 (2006).
[CrossRef]

Bo-qin, X.

P. Bing, X. Hui-min, X. Bo-qin, and D. Fu-long, “Performance of sub-pixel registration algorithms in digital image correlation,” Meas. Sci. Technol. 17, 1615–1621 (2006).
[CrossRef]

Bossuyt, S.

D. Lecompte, A. Smits, S. Bossuyt, H. Sol, J. Vantomme, D. V. Hemelrijck, and A. M. Habraken, “Quality assessment of speckle patterns for digital image correlation,” Opt. Lasers Eng. 44, 1132–1145 (2006).
[CrossRef]

Brillaud, J.

Bruck, H. A.

H. Jin and H. A. Bruck, “A new method for characterizing nonlinearity in scanning probe microscopes using digital image correlation,” Nanotechnology 16, 1849–1855 (2005).
[CrossRef]

M. A. Sutton, J. L. Turner, H. A. Bruck, and T. A. Chao, “Full-field representation of discretely sampled surface deformation for displacement and strain analysis,” Exp. Mech. 31, 168–177 (1991).
[CrossRef]

H. A. Bruck, S. R. McNeil, M. A. Sutton, and W. H. Peters, “Digital image correlation using Newton–Raphson method of partial differential correction,” Exp. Mech. 29, 261–267 (1989).
[CrossRef]

Butters, J. N.

J. N. Butters and J. A. Leendertz, “Speckle pattern and holographic techniques in engineering metrology,” Opt. Laser Technol. 3, 26–30 (1971).
[CrossRef]

J. N. Butters and J. A. Leendertz, “A double exposure technique for speckle pattern interferometry,” J. Phys. E 4, 277–279 (1971).
[CrossRef]

Cantelaube, F.

Chao, T. A.

M. A. Sutton, J. L. Turner, H. A. Bruck, and T. A. Chao, “Full-field representation of discretely sampled surface deformation for displacement and strain analysis,” Exp. Mech. 31, 168–177 (1991).
[CrossRef]

Chao, Y. J.

M. A. Sutton, S. R. McNeill, J. D. Helm, and Y. J. Chao, “Advances in two-dimensional and three-dimensional computer vision,” Top. Appl. Phys. 77, 323–372 (2000).
[CrossRef]

Chasiotis, I.

S. W. Cho, I. Chasiotis, T. A. Friedmann, and J. P. Sullivan, “Young’s modulus, Poisson’s ratio and failure properties of tetrahedral amorphous diamond-like carbon for MEMS devices,” J. Micromech. Microeng. 15, 728–735 (2005).
[CrossRef]

W. G. Knauss, I. Chasiotis, and Y. Huang, “Mechanical measurements at the micron and nanometer scales,” Mech. Mater. 35, 217–231 (2003).
[CrossRef]

I. Chasiotis and W. G. Knauss, “A new microtensile tester for the study of MEMS materials with the aid of atomic force microscopy,” Exp. Mech. 42, 51–57 (2002).
[CrossRef]

Chen, D. J.

Chiang, F. P.

Cho, S. W.

S. W. Cho, I. Chasiotis, T. A. Friedmann, and J. P. Sullivan, “Young’s modulus, Poisson’s ratio and failure properties of tetrahedral amorphous diamond-like carbon for MEMS devices,” J. Micromech. Microeng. 15, 728–735 (2005).
[CrossRef]

Cornille, N.

M. A. Sutton, N. Li, D. Garcia, N. Cornille, J. J. Orteu, S. R. McNeill, H. W. Schreier, X. Li, and A. P. Reynolds, “Scanning electron microscopy for quantitative small and large deformation measurements: part II. Experimental validation for magnifications from 200 to 10,000,” Exp. Mech. 47, 789–804 (2007).
[CrossRef]

M. A. Sutton, N. Li, D. Garcia, N. Cornille, J. J. Orteu, S. R. McNeill, H. W. Schreier, and X. Li, “Metrology in a scanning electron microscope: theoretical developments and experimental validation,” Meas. Sci. Technol. 17, 2613–2622 (2006).
[CrossRef]

Deanner, J. R.

J. D. Helm and J. R. Deanner, “Off-axis two-dimensional digital image correlation,” in Proceedings of 2004 SEM X International Congress & Exposition on Experimental and Applied MechanicsCosta Mesa, 2004-06-1-10CT:SEM.

Deng, J. M.

C. C. B. Wang, J. M. Deng, G. A. Ateshian, and C. T. Hung, “An automated approach for direct measurement of two-dimensional strain distributions within articular cartilage under unconfined compression,” J. Biomech. Eng. 124, 557–567 (2002).
[CrossRef]

Don, H. S.

Duan, Q.

H. Wang, H. Xie, Y. Ju, and Q. Duan, “Error analysis of digital speckle correlation method under scanning electron microscope,” Exp. Tech. 30, 42–45 (2006).

Franck, C.

C. Franck, S. Hong, S. A. Maskarinec, D. A. Tirrell, and G. Ravichandran, “Three-dimensional full-field measurements of large deformations in soft materials using confocal microscopy and digital volume correlation,” Exp. Mech. 47, 427–438 (2007).
[CrossRef]

Friedmann, T. A.

S. W. Cho, I. Chasiotis, T. A. Friedmann, and J. P. Sullivan, “Young’s modulus, Poisson’s ratio and failure properties of tetrahedral amorphous diamond-like carbon for MEMS devices,” J. Micromech. Microeng. 15, 728–735 (2005).
[CrossRef]

Fu-long, D.

P. Bing, X. Hui-min, X. Bo-qin, and D. Fu-long, “Performance of sub-pixel registration algorithms in digital image correlation,” Meas. Sci. Technol. 17, 1615–1621 (2006).
[CrossRef]

Gao, J.

B. Pan, A. Asundi, H. Xie, and J. Gao, “Digital image correlation using iterative least squares and pointwise least squares for displacement field and strain field measurements,” Opt. Lasers Eng. 47, 865–874 (2009).
[CrossRef]

Garcia, D.

M. A. Sutton, N. Li, D. Garcia, N. Cornille, J. J. Orteu, S. R. McNeill, H. W. Schreier, X. Li, and A. P. Reynolds, “Scanning electron microscopy for quantitative small and large deformation measurements: part II. Experimental validation for magnifications from 200 to 10,000,” Exp. Mech. 47, 789–804 (2007).
[CrossRef]

M. A. Sutton, N. Li, D. Garcia, N. Cornille, J. J. Orteu, S. R. McNeill, H. W. Schreier, and X. Li, “Metrology in a scanning electron microscope: theoretical developments and experimental validation,” Meas. Sci. Technol. 17, 2613–2622 (2006).
[CrossRef]

H. W. Schreier, D. Garcia, and M. A. Sutton, “Advances in light microscope stereo vision,” Exp. Mech. 44, 278–288 (2004).
[CrossRef]

Giachetti, A.

A. Giachetti, “Matching techniques to compute image motion,” Image Vis. Comput. 18, 247–260 (2000).

Goodson, K. E.

P. Zhou and K. E. Goodson, “Subpixel displacement and deformation gradient measurement using digital image/speckle correlation,” Opt. Eng. 40, 1613–1620 (2001).
[CrossRef]

Guo, Z.

B. Pan, H. Xie, Z. Guo, and T. Hua, “Data smoothing and strain estimation using Savitzky–Golay filters in digital image correlation,” Key Eng. Mater. 326–328, 155–158 (2006).
[CrossRef]

Guo, Z. Q.

B. Pan, H. M. Xie, Z. Q. Guo, and T. Hua, “Full-field strain measurement using a two-dimensional Savitzky–Golay digital differentiator in digital image correlation,” Opt. Eng. 46, 033601 (2007).
[CrossRef]

Habraken, A. M.

D. Lecompte, A. Smits, S. Bossuyt, H. Sol, J. Vantomme, D. V. Hemelrijck, and A. M. Habraken, “Quality assessment of speckle patterns for digital image correlation,” Opt. Lasers Eng. 44, 1132–1145 (2006).
[CrossRef]

He, P.

J. W. Luo, J. Bai, P. He, and K. Ying, “Axial strain calculation using a low-pass digital differentiator in ultrasound elastography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51, 1119–1127 (2004).
[CrossRef]

He, X. Y.

Helm, J. D.

M. A. Sutton, S. R. McNeill, J. D. Helm, and Y. J. Chao, “Advances in two-dimensional and three-dimensional computer vision,” Top. Appl. Phys. 77, 323–372 (2000).
[CrossRef]

J. D. Helm, S. R. McNeil, and M. A. Sutton, “Improved three-dimensional image correlation for surface displacement measurement,” Opt. Eng. 35, 1911–1920 (1996).
[CrossRef]

J. D. Helm and J. R. Deanner, “Off-axis two-dimensional digital image correlation,” in Proceedings of 2004 SEM X International Congress & Exposition on Experimental and Applied MechanicsCosta Mesa, 2004-06-1-10CT:SEM.

Hemelrijck, D. V.

D. Lecompte, A. Smits, S. Bossuyt, H. Sol, J. Vantomme, D. V. Hemelrijck, and A. M. Habraken, “Quality assessment of speckle patterns for digital image correlation,” Opt. Lasers Eng. 44, 1132–1145 (2006).
[CrossRef]

Hild, F.

Hong, S.

C. Franck, S. Hong, S. A. Maskarinec, D. A. Tirrell, and G. Ravichandran, “Three-dimensional full-field measurements of large deformations in soft materials using confocal microscopy and digital volume correlation,” Exp. Mech. 47, 427–438 (2007).
[CrossRef]

Horvath, P.

P. Smid, P. Horvath, and M. Hrabovsky, “Speckle correlation method used to measure object’s in-plane velocity,” Appl. Opt. 46, 3709–3715 (2007).
[CrossRef]

P. Horvath, M. Hrabovsky, and P. Smid, “Full theory of speckle displacement and decorrelation in the image field by wave and geometrical descriptions and its application in mechanics,” J. Mod. Opt. 51, 725–742 (2004).
[CrossRef]

Hrabovsky, M.

P. Smid, P. Horvath, and M. Hrabovsky, “Speckle correlation method used to measure object’s in-plane velocity,” Appl. Opt. 46, 3709–3715 (2007).
[CrossRef]

P. Horvath, M. Hrabovsky, and P. Smid, “Full theory of speckle displacement and decorrelation in the image field by wave and geometrical descriptions and its application in mechanics,” J. Mod. Opt. 51, 725–742 (2004).
[CrossRef]

Hua, T.

B. Pan, H. M. Xie, Z. Q. Guo, and T. Hua, “Full-field strain measurement using a two-dimensional Savitzky–Golay digital differentiator in digital image correlation,” Opt. Eng. 46, 033601 (2007).
[CrossRef]

B. Pan, H. Xie, Z. Guo, and T. Hua, “Data smoothing and strain estimation using Savitzky–Golay filters in digital image correlation,” Key Eng. Mater. 326–328, 155–158 (2006).
[CrossRef]

Huang, Y.

W. G. Knauss, I. Chasiotis, and Y. Huang, “Mechanical measurements at the micron and nanometer scales,” Mech. Mater. 35, 217–231 (2003).
[CrossRef]

Hui-min, X.

P. Bing, X. Hui-min, X. Bo-qin, and D. Fu-long, “Performance of sub-pixel registration algorithms in digital image correlation,” Meas. Sci. Technol. 17, 1615–1621 (2006).
[CrossRef]

Hung, C. T.

C. C. B. Wang, J. M. Deng, G. A. Ateshian, and C. T. Hung, “An automated approach for direct measurement of two-dimensional strain distributions within articular cartilage under unconfined compression,” J. Biomech. Eng. 124, 557–567 (2002).
[CrossRef]

Hung, P. C.

P. C. Hung and P. S. Voloshin, “In-plane strain measurement by digital image correlation,” J. Braz. Soc. Mech. Sci. Eng. 25, 215–221 (2003).

Jin, G. C.

L. B. Meng, G. C. Jin, and X. F. Yao, “Errors caused by misalignment of the optical camera axis and the object surface in the DSCM,” J. Tsinghua Univ. 46, 1930–1932 (2006).

J. Zhang and G. C. Jin, “Application of an improved subpixel registration algorithm on digital speckle correlation measurement,” Opt. Laser Technol. 35, 533–542 (2003).
[CrossRef]

Jin, H.

H. Jin and H. A. Bruck, “A new method for characterizing nonlinearity in scanning probe microscopes using digital image correlation,” Nanotechnology 16, 1849–1855 (2005).
[CrossRef]

Joy, D. C.

M. A. Sutton, N. Li, D. C. Joy, A. P. Reynolds, and X. Li, “Scanning electron microscopy for quantitative small and large deformation measurements: part I. SEM imaging at magnifications from 200 to 10,000,” Exp. Mech. 47, 775–787 (2007).
[CrossRef]

Ju, Y.

H. Wang, H. Xie, Y. Ju, and Q. Duan, “Error analysis of digital speckle correlation method under scanning electron microscope,” Exp. Tech. 30, 42–45 (2006).

Kang, Y. L.

Z. F. Zhang, Y. L. Kang, H. W. Wang, Q. H. Qin, Y. Qiu, and X. Q. Li, “A novel coarse-fine search scheme for digital image correlation method,” Measurement 39, 710–718 (2006).
[CrossRef]

Kikuta, H.

S. Yoneyama, H. Kikuta, A. Kitagawa, and K. Kitamura, “Lens distortion correction for digital image correlation by measuring rigid body displacement,” Opt. Eng. 45, 023602 (2006).
[CrossRef]

Kitagawa, A.

S. Yoneyama, H. Kikuta, A. Kitagawa, and K. Kitamura, “Lens distortion correction for digital image correlation by measuring rigid body displacement,” Opt. Eng. 45, 023602 (2006).
[CrossRef]

Kitamura, K.

S. Yoneyama, H. Kikuta, A. Kitagawa, and K. Kitamura, “Lens distortion correction for digital image correlation by measuring rigid body displacement,” Opt. Eng. 45, 023602 (2006).
[CrossRef]

Knauss, W. G.

W. G. Knauss, I. Chasiotis, and Y. Huang, “Mechanical measurements at the micron and nanometer scales,” Mech. Mater. 35, 217–231 (2003).
[CrossRef]

I. Chasiotis and W. G. Knauss, “A new microtensile tester for the study of MEMS materials with the aid of atomic force microscopy,” Exp. Mech. 42, 51–57 (2002).
[CrossRef]

G. Vendroux, N. Schmidt, and W. G. Knauss, “Submicron deformation field measurements: part 3. Demonstration of deformation determinations,” Exp. Mech. 38, 154–160 (1998).
[CrossRef]

G. Vendroux and W. G. Knauss, “Submicron deformation field measurements: part 2. Improved digital image correlation,” Exp. Mech. 38, 86–92 (1998).
[CrossRef]

Kreis, T.

T. Kreis, Handbook of Holographic Interferometry (Wiley-VCH, 2004).

Lagattu, F.

Lecompte, D.

D. Lecompte, A. Smits, S. Bossuyt, H. Sol, J. Vantomme, D. V. Hemelrijck, and A. M. Habraken, “Quality assessment of speckle patterns for digital image correlation,” Opt. Lasers Eng. 44, 1132–1145 (2006).
[CrossRef]

Leendertz, J. A.

J. N. Butters and J. A. Leendertz, “A double exposure technique for speckle pattern interferometry,” J. Phys. E 4, 277–279 (1971).
[CrossRef]

J. N. Butters and J. A. Leendertz, “Speckle pattern and holographic techniques in engineering metrology,” Opt. Laser Technol. 3, 26–30 (1971).
[CrossRef]

Li, H. Q.

Z. Y. Wang, H. Q. Li, J. W. Tong, and J. T. Ruan, “Statistical analysis of the effect of intensity pattern noise on the displacement measurement precision of digital image correlated using self-correlated images,” Exp. Mech. 47, 701–707 (2007).
[CrossRef]

Li, N.

M. A. Sutton, N. Li, D. Garcia, N. Cornille, J. J. Orteu, S. R. McNeill, H. W. Schreier, X. Li, and A. P. Reynolds, “Scanning electron microscopy for quantitative small and large deformation measurements: part II. Experimental validation for magnifications from 200 to 10,000,” Exp. Mech. 47, 789–804 (2007).
[CrossRef]

M. A. Sutton, N. Li, D. C. Joy, A. P. Reynolds, and X. Li, “Scanning electron microscopy for quantitative small and large deformation measurements: part I. SEM imaging at magnifications from 200 to 10,000,” Exp. Mech. 47, 775–787 (2007).
[CrossRef]

M. A. Sutton, N. Li, D. Garcia, N. Cornille, J. J. Orteu, S. R. McNeill, H. W. Schreier, and X. Li, “Metrology in a scanning electron microscope: theoretical developments and experimental validation,” Meas. Sci. Technol. 17, 2613–2622 (2006).
[CrossRef]

Li, X.

M. A. Sutton, N. Li, D. C. Joy, A. P. Reynolds, and X. Li, “Scanning electron microscopy for quantitative small and large deformation measurements: part I. SEM imaging at magnifications from 200 to 10,000,” Exp. Mech. 47, 775–787 (2007).
[CrossRef]

M. A. Sutton, N. Li, D. Garcia, N. Cornille, J. J. Orteu, S. R. McNeill, H. W. Schreier, X. Li, and A. P. Reynolds, “Scanning electron microscopy for quantitative small and large deformation measurements: part II. Experimental validation for magnifications from 200 to 10,000,” Exp. Mech. 47, 789–804 (2007).
[CrossRef]

M. A. Sutton, N. Li, D. Garcia, N. Cornille, J. J. Orteu, S. R. McNeill, H. W. Schreier, and X. Li, “Metrology in a scanning electron microscope: theoretical developments and experimental validation,” Meas. Sci. Technol. 17, 2613–2622 (2006).
[CrossRef]

Li, X. D.

X. D. Li, W. Xu, M. A. Sutton, and M. Mello, “In situ nanoscale in-plane deformation studies of ultrathin polymeric films during tensile deformation using atomic force microscopy and digital image correlation techniques,” IEEE Trans. Nanotechnol. 6, 4–12 (2007).
[CrossRef]

X. D. Li, W. Xu, M. A. Sutton, and M. Mello, “Nanoscale deformation and cracking studies of advanced metal evaporated magnetic tapes using atomic force microscopy and digital image correlation techniques,” Meas. Sci. Technol. 22, 835–844 (2006).

Li, X. Q.

Z. F. Zhang, Y. L. Kang, H. W. Wang, Q. H. Qin, Y. Qiu, and X. Q. Li, “A novel coarse-fine search scheme for digital image correlation method,” Measurement 39, 710–718 (2006).
[CrossRef]

Luo, J. W.

J. W. Luo, J. Bai, P. He, and K. Ying, “Axial strain calculation using a low-pass digital differentiator in ultrasound elastography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51, 1119–1127 (2004).
[CrossRef]

Luo, M.

D. S. Zhang, M. Luo, and D. D. Arola, “Displacement/strain measurements using an optical microscope and digital image correlation,” Opt. Eng. 45, 033605 (2006).
[CrossRef]

Maskarinec, S. A.

C. Franck, S. Hong, S. A. Maskarinec, D. A. Tirrell, and G. Ravichandran, “Three-dimensional full-field measurements of large deformations in soft materials using confocal microscopy and digital volume correlation,” Exp. Mech. 47, 427–438 (2007).
[CrossRef]

McNeil, S. R.

J. D. Helm, S. R. McNeil, and M. A. Sutton, “Improved three-dimensional image correlation for surface displacement measurement,” Opt. Eng. 35, 1911–1920 (1996).
[CrossRef]

H. A. Bruck, S. R. McNeil, M. A. Sutton, and W. H. Peters, “Digital image correlation using Newton–Raphson method of partial differential correction,” Exp. Mech. 29, 261–267 (1989).
[CrossRef]

McNeill, S. R.

M. A. Sutton, N. Li, D. Garcia, N. Cornille, J. J. Orteu, S. R. McNeill, H. W. Schreier, X. Li, and A. P. Reynolds, “Scanning electron microscopy for quantitative small and large deformation measurements: part II. Experimental validation for magnifications from 200 to 10,000,” Exp. Mech. 47, 789–804 (2007).
[CrossRef]

M. A. Sutton, N. Li, D. Garcia, N. Cornille, J. J. Orteu, S. R. McNeill, H. W. Schreier, and X. Li, “Metrology in a scanning electron microscope: theoretical developments and experimental validation,” Meas. Sci. Technol. 17, 2613–2622 (2006).
[CrossRef]

M. A. Sutton, S. R. McNeill, J. D. Helm, and Y. J. Chao, “Advances in two-dimensional and three-dimensional computer vision,” Top. Appl. Phys. 77, 323–372 (2000).
[CrossRef]

Mello, M.

X. D. Li, W. Xu, M. A. Sutton, and M. Mello, “In situ nanoscale in-plane deformation studies of ultrathin polymeric films during tensile deformation using atomic force microscopy and digital image correlation techniques,” IEEE Trans. Nanotechnol. 6, 4–12 (2007).
[CrossRef]

X. D. Li, W. Xu, M. A. Sutton, and M. Mello, “Nanoscale deformation and cracking studies of advanced metal evaporated magnetic tapes using atomic force microscopy and digital image correlation techniques,” Meas. Sci. Technol. 22, 835–844 (2006).

Meng, L. B.

L. B. Meng, G. C. Jin, and X. F. Yao, “Errors caused by misalignment of the optical camera axis and the object surface in the DSCM,” J. Tsinghua Univ. 46, 1930–1932 (2006).

Orteu, J. J.

M. A. Sutton, J. H. Yan, V. Tiwari, W. H. Schreier, and J. J. Orteu, “The effect of out-of-plane motion on 2D and 3D digital image correlation measurements,” Opt. Lasers Eng. 46, 746–757 (2008).
[CrossRef]

M. A. Sutton, N. Li, D. Garcia, N. Cornille, J. J. Orteu, S. R. McNeill, H. W. Schreier, X. Li, and A. P. Reynolds, “Scanning electron microscopy for quantitative small and large deformation measurements: part II. Experimental validation for magnifications from 200 to 10,000,” Exp. Mech. 47, 789–804 (2007).
[CrossRef]

M. A. Sutton, N. Li, D. Garcia, N. Cornille, J. J. Orteu, S. R. McNeill, H. W. Schreier, and X. Li, “Metrology in a scanning electron microscope: theoretical developments and experimental validation,” Meas. Sci. Technol. 17, 2613–2622 (2006).
[CrossRef]

Pan, B.

B. Pan, A. Asundi, H. Xie, and J. Gao, “Digital image correlation using iterative least squares and pointwise least squares for displacement field and strain field measurements,” Opt. Lasers Eng. 47, 865–874 (2009).
[CrossRef]

B. Pan, H. Xie, Y. Xia, and Q. Wang, “Large deformation measurement based on reliable initial guess in digital image correlation method,” Acta Optica Sin. 29, 400–406 (2009).

B. Pan, H. M. Xie, L. H. Yang, and Z. Y. Wang, “Accurate measurement of satellite antenna surface using three-dimensional digital correlation technique,” Strain 45, 194–200 (2009).
[CrossRef]

B. Pan, H. Xie, Z. Wang, K. Qian, and Z. Wang, “Study on subset size selection in digital image correlation for speckle patterns,” Opt. Express 16, 7037–7048 (2008).
[CrossRef]

B. Pan and H. M. Xie, “Digital image correlation method with differential evolution,” J. Optoelectron Laser 18, 100–103 (2007).

B. Pan, H. M. Xie, Z. Q. Guo, and T. Hua, “Full-field strain measurement using a two-dimensional Savitzky–Golay digital differentiator in digital image correlation,” Opt. Eng. 46, 033601 (2007).
[CrossRef]

B. Pan, H. Xie, Z. Guo, and T. Hua, “Data smoothing and strain estimation using Savitzky–Golay filters in digital image correlation,” Key Eng. Mater. 326–328, 155–158 (2006).
[CrossRef]

Pang, J. H. L.

Y. F. Sun and J. H. L. Pang, “AFM image reconstruction for deformation measurements by digital image correlation,” Nanotechnology 17, 933–939 (2006).
[CrossRef]

Y. F. Sun, J. H. L. Pang, C. K. Wong, and F. Su, “Finite-element formulation for a digital image correlation method,” Appl. Opt. 44, 7357–7363 (2005).
[CrossRef]

Peters, W. H.

H. A. Bruck, S. R. McNeil, M. A. Sutton, and W. H. Peters, “Digital image correlation using Newton–Raphson method of partial differential correction,” Exp. Mech. 29, 261–267 (1989).
[CrossRef]

W. H. Peters and W. F. Ranson, “Digital imaging techniques in experimental stress analysis,” Opt. Eng. 21, 427–431 (1981).

Qian, K.

Qin, Q. H.

Z. F. Zhang, Y. L. Kang, H. W. Wang, Q. H. Qin, Y. Qiu, and X. Q. Li, “A novel coarse-fine search scheme for digital image correlation method,” Measurement 39, 710–718 (2006).
[CrossRef]

Qiu, Y.

Z. F. Zhang, Y. L. Kang, H. W. Wang, Q. H. Qin, Y. Qiu, and X. Q. Li, “A novel coarse-fine search scheme for digital image correlation method,” Measurement 39, 710–718 (2006).
[CrossRef]

Quan, C. G.

Raka, B.

Ranson, W. F.

W. H. Peters and W. F. Ranson, “Digital imaging techniques in experimental stress analysis,” Opt. Eng. 21, 427–431 (1981).

Rastogi, P. K.

P. K. Rastogi, Digital Speckle Pattern Interferometry and Related Techniques (Wiley, 2001).

Ravichandran, G.

C. Franck, S. Hong, S. A. Maskarinec, D. A. Tirrell, and G. Ravichandran, “Three-dimensional full-field measurements of large deformations in soft materials using confocal microscopy and digital volume correlation,” Exp. Mech. 47, 427–438 (2007).
[CrossRef]

Reynolds, A. P.

M. A. Sutton, N. Li, D. C. Joy, A. P. Reynolds, and X. Li, “Scanning electron microscopy for quantitative small and large deformation measurements: part I. SEM imaging at magnifications from 200 to 10,000,” Exp. Mech. 47, 775–787 (2007).
[CrossRef]

M. A. Sutton, N. Li, D. Garcia, N. Cornille, J. J. Orteu, S. R. McNeill, H. W. Schreier, X. Li, and A. P. Reynolds, “Scanning electron microscopy for quantitative small and large deformation measurements: part II. Experimental validation for magnifications from 200 to 10,000,” Exp. Mech. 47, 789–804 (2007).
[CrossRef]

Roux, S.

Ruan, J. T.

Z. Y. Wang, H. Q. Li, J. W. Tong, and J. T. Ruan, “Statistical analysis of the effect of intensity pattern noise on the displacement measurement precision of digital image correlated using self-correlated images,” Exp. Mech. 47, 701–707 (2007).
[CrossRef]

Schmidt, N.

G. Vendroux, N. Schmidt, and W. G. Knauss, “Submicron deformation field measurements: part 3. Demonstration of deformation determinations,” Exp. Mech. 38, 154–160 (1998).
[CrossRef]

Schreier, H. W.

M. A. Sutton, N. Li, D. Garcia, N. Cornille, J. J. Orteu, S. R. McNeill, H. W. Schreier, X. Li, and A. P. Reynolds, “Scanning electron microscopy for quantitative small and large deformation measurements: part II. Experimental validation for magnifications from 200 to 10,000,” Exp. Mech. 47, 789–804 (2007).
[CrossRef]

M. A. Sutton, N. Li, D. Garcia, N. Cornille, J. J. Orteu, S. R. McNeill, H. W. Schreier, and X. Li, “Metrology in a scanning electron microscope: theoretical developments and experimental validation,” Meas. Sci. Technol. 17, 2613–2622 (2006).
[CrossRef]

H. W. Schreier, D. Garcia, and M. A. Sutton, “Advances in light microscope stereo vision,” Exp. Mech. 44, 278–288 (2004).
[CrossRef]

H. W. Schreier and M. A. Sutton, “Systematic errors in digital image correlation due to undermatched subset shape functions,” Exp. Mech. 42, 303–310 (2002).
[CrossRef]

H. W. Schreier, “Investigation of two and three-dimensional image correlation techniques with applications in experimental mechanics,” Ph.D. thesis (University of South Carolina, 2003).

Schreier, W. H.

M. A. Sutton, J. H. Yan, V. Tiwari, W. H. Schreier, and J. J. Orteu, “The effect of out-of-plane motion on 2D and 3D digital image correlation measurements,” Opt. Lasers Eng. 46, 746–757 (2008).
[CrossRef]

Sjödahl, M.

Sjödhal, M.

Smid, P.

P. Smid, P. Horvath, and M. Hrabovsky, “Speckle correlation method used to measure object’s in-plane velocity,” Appl. Opt. 46, 3709–3715 (2007).
[CrossRef]

P. Horvath, M. Hrabovsky, and P. Smid, “Full theory of speckle displacement and decorrelation in the image field by wave and geometrical descriptions and its application in mechanics,” J. Mod. Opt. 51, 725–742 (2004).
[CrossRef]

Smits, A.

D. Lecompte, A. Smits, S. Bossuyt, H. Sol, J. Vantomme, D. V. Hemelrijck, and A. M. Habraken, “Quality assessment of speckle patterns for digital image correlation,” Opt. Lasers Eng. 44, 1132–1145 (2006).
[CrossRef]

Sol, H.

D. Lecompte, A. Smits, S. Bossuyt, H. Sol, J. Vantomme, D. V. Hemelrijck, and A. M. Habraken, “Quality assessment of speckle patterns for digital image correlation,” Opt. Lasers Eng. 44, 1132–1145 (2006).
[CrossRef]

Su, F.

Sullivan, J. P.

S. W. Cho, I. Chasiotis, T. A. Friedmann, and J. P. Sullivan, “Young’s modulus, Poisson’s ratio and failure properties of tetrahedral amorphous diamond-like carbon for MEMS devices,” J. Micromech. Microeng. 15, 728–735 (2005).
[CrossRef]

Sun, W.

W. Sun, C. G. Quan, and X. Y. He, “Dynamic characterization of a microgyroscope by digital image spectrum correlation,” Opt. Eng. 47, 033602 (2008).
[CrossRef]

W. Sun, C. G. Quan, C. J. Tay, and X. Y. He, “Global and local coordinates in digital image correlation,” Appl. Opt. 46, 1050–1056 (2007).
[CrossRef]

Sun, Y. F.

Y. F. Sun and J. H. L. Pang, “AFM image reconstruction for deformation measurements by digital image correlation,” Nanotechnology 17, 933–939 (2006).
[CrossRef]

Y. F. Sun, J. H. L. Pang, C. K. Wong, and F. Su, “Finite-element formulation for a digital image correlation method,” Appl. Opt. 44, 7357–7363 (2005).
[CrossRef]

Sutton, M. A.

M. A. Sutton, J. H. Yan, V. Tiwari, W. H. Schreier, and J. J. Orteu, “The effect of out-of-plane motion on 2D and 3D digital image correlation measurements,” Opt. Lasers Eng. 46, 746–757 (2008).
[CrossRef]

M. A. Sutton, N. Li, D. C. Joy, A. P. Reynolds, and X. Li, “Scanning electron microscopy for quantitative small and large deformation measurements: part I. SEM imaging at magnifications from 200 to 10,000,” Exp. Mech. 47, 775–787 (2007).
[CrossRef]

X. D. Li, W. Xu, M. A. Sutton, and M. Mello, “In situ nanoscale in-plane deformation studies of ultrathin polymeric films during tensile deformation using atomic force microscopy and digital image correlation techniques,” IEEE Trans. Nanotechnol. 6, 4–12 (2007).
[CrossRef]

M. A. Sutton, N. Li, D. Garcia, N. Cornille, J. J. Orteu, S. R. McNeill, H. W. Schreier, X. Li, and A. P. Reynolds, “Scanning electron microscopy for quantitative small and large deformation measurements: part II. Experimental validation for magnifications from 200 to 10,000,” Exp. Mech. 47, 789–804 (2007).
[CrossRef]

X. D. Li, W. Xu, M. A. Sutton, and M. Mello, “Nanoscale deformation and cracking studies of advanced metal evaporated magnetic tapes using atomic force microscopy and digital image correlation techniques,” Meas. Sci. Technol. 22, 835–844 (2006).

M. A. Sutton, N. Li, D. Garcia, N. Cornille, J. J. Orteu, S. R. McNeill, H. W. Schreier, and X. Li, “Metrology in a scanning electron microscope: theoretical developments and experimental validation,” Meas. Sci. Technol. 17, 2613–2622 (2006).
[CrossRef]

H. W. Schreier, D. Garcia, and M. A. Sutton, “Advances in light microscope stereo vision,” Exp. Mech. 44, 278–288 (2004).
[CrossRef]

H. W. Schreier and M. A. Sutton, “Systematic errors in digital image correlation due to undermatched subset shape functions,” Exp. Mech. 42, 303–310 (2002).
[CrossRef]

M. A. Sutton, S. R. McNeill, J. D. Helm, and Y. J. Chao, “Advances in two-dimensional and three-dimensional computer vision,” Top. Appl. Phys. 77, 323–372 (2000).
[CrossRef]

J. D. Helm, S. R. McNeil, and M. A. Sutton, “Improved three-dimensional image correlation for surface displacement measurement,” Opt. Eng. 35, 1911–1920 (1996).
[CrossRef]

M. A. Sutton, J. L. Turner, H. A. Bruck, and T. A. Chao, “Full-field representation of discretely sampled surface deformation for displacement and strain analysis,” Exp. Mech. 31, 168–177 (1991).
[CrossRef]

H. A. Bruck, S. R. McNeil, M. A. Sutton, and W. H. Peters, “Digital image correlation using Newton–Raphson method of partial differential correction,” Exp. Mech. 29, 261–267 (1989).
[CrossRef]

Tan, Y. S.

Tay, C. J.

Tirrell, D. A.

C. Franck, S. Hong, S. A. Maskarinec, D. A. Tirrell, and G. Ravichandran, “Three-dimensional full-field measurements of large deformations in soft materials using confocal microscopy and digital volume correlation,” Exp. Mech. 47, 427–438 (2007).
[CrossRef]

Tiwari, V.

M. A. Sutton, J. H. Yan, V. Tiwari, W. H. Schreier, and J. J. Orteu, “The effect of out-of-plane motion on 2D and 3D digital image correlation measurements,” Opt. Lasers Eng. 46, 746–757 (2008).
[CrossRef]

Tong, J. W.

Z. Y. Wang, H. Q. Li, J. W. Tong, and J. T. Ruan, “Statistical analysis of the effect of intensity pattern noise on the displacement measurement precision of digital image correlated using self-correlated images,” Exp. Mech. 47, 701–707 (2007).
[CrossRef]

Tong, W.

W. Tong, “Detection of plastic deformation patterns in a binary aluminum alloy,” Exp. Mech. 37, 452–459 (1997).
[CrossRef]

Turner, J. L.

M. A. Sutton, J. L. Turner, H. A. Bruck, and T. A. Chao, “Full-field representation of discretely sampled surface deformation for displacement and strain analysis,” Exp. Mech. 31, 168–177 (1991).
[CrossRef]

Vantomme, J.

D. Lecompte, A. Smits, S. Bossuyt, H. Sol, J. Vantomme, D. V. Hemelrijck, and A. M. Habraken, “Quality assessment of speckle patterns for digital image correlation,” Opt. Lasers Eng. 44, 1132–1145 (2006).
[CrossRef]

Vendroux, G.

G. Vendroux, N. Schmidt, and W. G. Knauss, “Submicron deformation field measurements: part 3. Demonstration of deformation determinations,” Exp. Mech. 38, 154–160 (1998).
[CrossRef]

G. Vendroux and W. G. Knauss, “Submicron deformation field measurements: part 2. Improved digital image correlation,” Exp. Mech. 38, 86–92 (1998).
[CrossRef]

Voloshin, P. S.

P. C. Hung and P. S. Voloshin, “In-plane strain measurement by digital image correlation,” J. Braz. Soc. Mech. Sci. Eng. 25, 215–221 (2003).

Wang, C. C. B.

C. C. B. Wang, J. M. Deng, G. A. Ateshian, and C. T. Hung, “An automated approach for direct measurement of two-dimensional strain distributions within articular cartilage under unconfined compression,” J. Biomech. Eng. 124, 557–567 (2002).
[CrossRef]

Wang, H.

H. Wang, H. Xie, Y. Ju, and Q. Duan, “Error analysis of digital speckle correlation method under scanning electron microscope,” Exp. Tech. 30, 42–45 (2006).

Wang, H. W.

Z. F. Zhang, Y. L. Kang, H. W. Wang, Q. H. Qin, Y. Qiu, and X. Q. Li, “A novel coarse-fine search scheme for digital image correlation method,” Measurement 39, 710–718 (2006).
[CrossRef]

Wang, Q.

B. Pan, H. Xie, Y. Xia, and Q. Wang, “Large deformation measurement based on reliable initial guess in digital image correlation method,” Acta Optica Sin. 29, 400–406 (2009).

Wang, Z.

Wang, Z. Y.

B. Pan, H. M. Xie, L. H. Yang, and Z. Y. Wang, “Accurate measurement of satellite antenna surface using three-dimensional digital correlation technique,” Strain 45, 194–200 (2009).
[CrossRef]

Z. Y. Wang, H. Q. Li, J. W. Tong, and J. T. Ruan, “Statistical analysis of the effect of intensity pattern noise on the displacement measurement precision of digital image correlated using self-correlated images,” Exp. Mech. 47, 701–707 (2007).
[CrossRef]

Wong, C. K.

Xia, Y.

B. Pan, H. Xie, Y. Xia, and Q. Wang, “Large deformation measurement based on reliable initial guess in digital image correlation method,” Acta Optica Sin. 29, 400–406 (2009).

Xie, H.

B. Pan, H. Xie, Y. Xia, and Q. Wang, “Large deformation measurement based on reliable initial guess in digital image correlation method,” Acta Optica Sin. 29, 400–406 (2009).

B. Pan, A. Asundi, H. Xie, and J. Gao, “Digital image correlation using iterative least squares and pointwise least squares for displacement field and strain field measurements,” Opt. Lasers Eng. 47, 865–874 (2009).
[CrossRef]

B. Pan, H. Xie, Z. Wang, K. Qian, and Z. Wang, “Study on subset size selection in digital image correlation for speckle patterns,” Opt. Express 16, 7037–7048 (2008).
[CrossRef]

H. Wang, H. Xie, Y. Ju, and Q. Duan, “Error analysis of digital speckle correlation method under scanning electron microscope,” Exp. Tech. 30, 42–45 (2006).

B. Pan, H. Xie, Z. Guo, and T. Hua, “Data smoothing and strain estimation using Savitzky–Golay filters in digital image correlation,” Key Eng. Mater. 326–328, 155–158 (2006).
[CrossRef]

Xie, H. M.

B. Pan, H. M. Xie, L. H. Yang, and Z. Y. Wang, “Accurate measurement of satellite antenna surface using three-dimensional digital correlation technique,” Strain 45, 194–200 (2009).
[CrossRef]

B. Pan, H. M. Xie, Z. Q. Guo, and T. Hua, “Full-field strain measurement using a two-dimensional Savitzky–Golay digital differentiator in digital image correlation,” Opt. Eng. 46, 033601 (2007).
[CrossRef]

B. Pan and H. M. Xie, “Digital image correlation method with differential evolution,” J. Optoelectron Laser 18, 100–103 (2007).

Xu, W.

X. D. Li, W. Xu, M. A. Sutton, and M. Mello, “In situ nanoscale in-plane deformation studies of ultrathin polymeric films during tensile deformation using atomic force microscopy and digital image correlation techniques,” IEEE Trans. Nanotechnol. 6, 4–12 (2007).
[CrossRef]

X. D. Li, W. Xu, M. A. Sutton, and M. Mello, “Nanoscale deformation and cracking studies of advanced metal evaporated magnetic tapes using atomic force microscopy and digital image correlation techniques,” Meas. Sci. Technol. 22, 835–844 (2006).

Yamaguchi, I.

I. Yamaguchi, “Automatic measurement of in-plane translation by speckle correlation using a linear image sensor,” J. Phys. E 19, 944–948 (1986).
[CrossRef]

Yan, J. H.

M. A. Sutton, J. H. Yan, V. Tiwari, W. H. Schreier, and J. J. Orteu, “The effect of out-of-plane motion on 2D and 3D digital image correlation measurements,” Opt. Lasers Eng. 46, 746–757 (2008).
[CrossRef]

Yang, F. J.

Yang, L. H.

B. Pan, H. M. Xie, L. H. Yang, and Z. Y. Wang, “Accurate measurement of satellite antenna surface using three-dimensional digital correlation technique,” Strain 45, 194–200 (2009).
[CrossRef]

Yao, X. F.

L. B. Meng, G. C. Jin, and X. F. Yao, “Errors caused by misalignment of the optical camera axis and the object surface in the DSCM,” J. Tsinghua Univ. 46, 1930–1932 (2006).

Ying, K.

J. W. Luo, J. Bai, P. He, and K. Ying, “Axial strain calculation using a low-pass digital differentiator in ultrasound elastography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51, 1119–1127 (2004).
[CrossRef]

Yoneyama, S.

S. Yoneyama, H. Kikuta, A. Kitagawa, and K. Kitamura, “Lens distortion correction for digital image correlation by measuring rigid body displacement,” Opt. Eng. 45, 023602 (2006).
[CrossRef]

Zhang, D. S.

D. S. Zhang, M. Luo, and D. D. Arola, “Displacement/strain measurements using an optical microscope and digital image correlation,” Opt. Eng. 45, 033605 (2006).
[CrossRef]

Zhang, J.

J. Zhang and G. C. Jin, “Application of an improved subpixel registration algorithm on digital speckle correlation measurement,” Opt. Laser Technol. 35, 533–542 (2003).
[CrossRef]

Zhang, Z. F.

Z. F. Zhang, Y. L. Kang, H. W. Wang, Q. H. Qin, Y. Qiu, and X. Q. Li, “A novel coarse-fine search scheme for digital image correlation method,” Measurement 39, 710–718 (2006).
[CrossRef]

Zhou, P.

P. Zhou and K. E. Goodson, “Subpixel displacement and deformation gradient measurement using digital image/speckle correlation,” Opt. Eng. 40, 1613–1620 (2001).
[CrossRef]

Acta Optica Sin. (1)

B. Pan, H. Xie, Y. Xia, and Q. Wang, “Large deformation measurement based on reliable initial guess in digital image correlation method,” Acta Optica Sin. 29, 400–406 (2009).

Appl. Opt. (9)

D. J. Chen, F. P. Chiang, Y. S. Tan, and H. S. Don, “Digital speckle-displacement measurement using a complex spectrum method,” Appl. Opt. 32, 1839–1849 (1993).
[CrossRef]

M. Sjödahl, “Electronic speckle photography: measurement of in-plane strain fields through the use of defocused laser speckle,” Appl. Opt. 34, 5799–5808 (1995).
[CrossRef]

M. Sjödhal and L. R. Benckert, “Electronic speckle photography: analysis of an algorithm giving the displacement with subpixel accuracy,” Appl. Opt. 32, 2278–2284 (1993).
[CrossRef]

J. Brillaud and F. Lagattu, “Limits and possibilities of laser speckle and white-light image-correlation methods: theory and experiments,” Appl. Opt. 41, 6603–6613 (2002).
[CrossRef]

F. Hild, B. Raka, M. Baudequin, S. Roux, and F. Cantelaube, “Multiscale displacement field measurements of compressed mineral-wool samples by digital image correlation,” Appl. Opt. 41, 6815–6828 (2002).
[CrossRef]

Y. F. Sun, J. H. L. Pang, C. K. Wong, and F. Su, “Finite-element formulation for a digital image correlation method,” Appl. Opt. 44, 7357–7363 (2005).
[CrossRef]

F. J. Yang, X. Y. He, and C. G. Quan, “Characterization of dynamic microgyroscopes by use of temporal digital image correlation,” Appl. Opt. 45, 7785–7790 (2006).
[CrossRef]

W. Sun, C. G. Quan, C. J. Tay, and X. Y. He, “Global and local coordinates in digital image correlation,” Appl. Opt. 46, 1050–1056 (2007).
[CrossRef]

P. Smid, P. Horvath, and M. Hrabovsky, “Speckle correlation method used to measure object’s in-plane velocity,” Appl. Opt. 46, 3709–3715 (2007).
[CrossRef]

Exp. Mech. (12)

Z. Y. Wang, H. Q. Li, J. W. Tong, and J. T. Ruan, “Statistical analysis of the effect of intensity pattern noise on the displacement measurement precision of digital image correlated using self-correlated images,” Exp. Mech. 47, 701–707 (2007).
[CrossRef]

H. A. Bruck, S. R. McNeil, M. A. Sutton, and W. H. Peters, “Digital image correlation using Newton–Raphson method of partial differential correction,” Exp. Mech. 29, 261–267 (1989).
[CrossRef]

H. W. Schreier, D. Garcia, and M. A. Sutton, “Advances in light microscope stereo vision,” Exp. Mech. 44, 278–288 (2004).
[CrossRef]

G. Vendroux and W. G. Knauss, “Submicron deformation field measurements: part 2. Improved digital image correlation,” Exp. Mech. 38, 86–92 (1998).
[CrossRef]

I. Chasiotis and W. G. Knauss, “A new microtensile tester for the study of MEMS materials with the aid of atomic force microscopy,” Exp. Mech. 42, 51–57 (2002).
[CrossRef]

M. A. Sutton, J. L. Turner, H. A. Bruck, and T. A. Chao, “Full-field representation of discretely sampled surface deformation for displacement and strain analysis,” Exp. Mech. 31, 168–177 (1991).
[CrossRef]

W. Tong, “Detection of plastic deformation patterns in a binary aluminum alloy,” Exp. Mech. 37, 452–459 (1997).
[CrossRef]

C. Franck, S. Hong, S. A. Maskarinec, D. A. Tirrell, and G. Ravichandran, “Three-dimensional full-field measurements of large deformations in soft materials using confocal microscopy and digital volume correlation,” Exp. Mech. 47, 427–438 (2007).
[CrossRef]

M. A. Sutton, N. Li, D. C. Joy, A. P. Reynolds, and X. Li, “Scanning electron microscopy for quantitative small and large deformation measurements: part I. SEM imaging at magnifications from 200 to 10,000,” Exp. Mech. 47, 775–787 (2007).
[CrossRef]

G. Vendroux, N. Schmidt, and W. G. Knauss, “Submicron deformation field measurements: part 3. Demonstration of deformation determinations,” Exp. Mech. 38, 154–160 (1998).
[CrossRef]

M. A. Sutton, N. Li, D. Garcia, N. Cornille, J. J. Orteu, S. R. McNeill, H. W. Schreier, X. Li, and A. P. Reynolds, “Scanning electron microscopy for quantitative small and large deformation measurements: part II. Experimental validation for magnifications from 200 to 10,000,” Exp. Mech. 47, 789–804 (2007).
[CrossRef]

H. W. Schreier and M. A. Sutton, “Systematic errors in digital image correlation due to undermatched subset shape functions,” Exp. Mech. 42, 303–310 (2002).
[CrossRef]

Exp. Tech. (1)

H. Wang, H. Xie, Y. Ju, and Q. Duan, “Error analysis of digital speckle correlation method under scanning electron microscope,” Exp. Tech. 30, 42–45 (2006).

IEEE Trans. Nanotechnol. (1)

X. D. Li, W. Xu, M. A. Sutton, and M. Mello, “In situ nanoscale in-plane deformation studies of ultrathin polymeric films during tensile deformation using atomic force microscopy and digital image correlation techniques,” IEEE Trans. Nanotechnol. 6, 4–12 (2007).
[CrossRef]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

J. W. Luo, J. Bai, P. He, and K. Ying, “Axial strain calculation using a low-pass digital differentiator in ultrasound elastography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51, 1119–1127 (2004).
[CrossRef]

Image Vis. Comput. (1)

A. Giachetti, “Matching techniques to compute image motion,” Image Vis. Comput. 18, 247–260 (2000).

J. Biomech. Eng. (1)

C. C. B. Wang, J. M. Deng, G. A. Ateshian, and C. T. Hung, “An automated approach for direct measurement of two-dimensional strain distributions within articular cartilage under unconfined compression,” J. Biomech. Eng. 124, 557–567 (2002).
[CrossRef]

J. Braz. Soc. Mech. Sci. Eng. (1)

P. C. Hung and P. S. Voloshin, “In-plane strain measurement by digital image correlation,” J. Braz. Soc. Mech. Sci. Eng. 25, 215–221 (2003).

J. Micromech. Microeng. (1)

S. W. Cho, I. Chasiotis, T. A. Friedmann, and J. P. Sullivan, “Young’s modulus, Poisson’s ratio and failure properties of tetrahedral amorphous diamond-like carbon for MEMS devices,” J. Micromech. Microeng. 15, 728–735 (2005).
[CrossRef]

J. Mod. Opt. (1)

P. Horvath, M. Hrabovsky, and P. Smid, “Full theory of speckle displacement and decorrelation in the image field by wave and geometrical descriptions and its application in mechanics,” J. Mod. Opt. 51, 725–742 (2004).
[CrossRef]

J. Optoelectron Laser (1)

B. Pan and H. M. Xie, “Digital image correlation method with differential evolution,” J. Optoelectron Laser 18, 100–103 (2007).

J. Phys. E (2)

I. Yamaguchi, “Automatic measurement of in-plane translation by speckle correlation using a linear image sensor,” J. Phys. E 19, 944–948 (1986).
[CrossRef]

J. N. Butters and J. A. Leendertz, “A double exposure technique for speckle pattern interferometry,” J. Phys. E 4, 277–279 (1971).
[CrossRef]

J. Tsinghua Univ. (1)

L. B. Meng, G. C. Jin, and X. F. Yao, “Errors caused by misalignment of the optical camera axis and the object surface in the DSCM,” J. Tsinghua Univ. 46, 1930–1932 (2006).

Key Eng. Mater. (1)

B. Pan, H. Xie, Z. Guo, and T. Hua, “Data smoothing and strain estimation using Savitzky–Golay filters in digital image correlation,” Key Eng. Mater. 326–328, 155–158 (2006).
[CrossRef]

Meas. Sci. Technol. (3)

P. Bing, X. Hui-min, X. Bo-qin, and D. Fu-long, “Performance of sub-pixel registration algorithms in digital image correlation,” Meas. Sci. Technol. 17, 1615–1621 (2006).
[CrossRef]

X. D. Li, W. Xu, M. A. Sutton, and M. Mello, “Nanoscale deformation and cracking studies of advanced metal evaporated magnetic tapes using atomic force microscopy and digital image correlation techniques,” Meas. Sci. Technol. 22, 835–844 (2006).

M. A. Sutton, N. Li, D. Garcia, N. Cornille, J. J. Orteu, S. R. McNeill, H. W. Schreier, and X. Li, “Metrology in a scanning electron microscope: theoretical developments and experimental validation,” Meas. Sci. Technol. 17, 2613–2622 (2006).
[CrossRef]

Measurement (1)

Z. F. Zhang, Y. L. Kang, H. W. Wang, Q. H. Qin, Y. Qiu, and X. Q. Li, “A novel coarse-fine search scheme for digital image correlation method,” Measurement 39, 710–718 (2006).
[CrossRef]

Mech. Mater. (1)

W. G. Knauss, I. Chasiotis, and Y. Huang, “Mechanical measurements at the micron and nanometer scales,” Mech. Mater. 35, 217–231 (2003).
[CrossRef]

Nanotechnology (2)

Y. F. Sun and J. H. L. Pang, “AFM image reconstruction for deformation measurements by digital image correlation,” Nanotechnology 17, 933–939 (2006).
[CrossRef]

H. Jin and H. A. Bruck, “A new method for characterizing nonlinearity in scanning probe microscopes using digital image correlation,” Nanotechnology 16, 1849–1855 (2005).
[CrossRef]

Opt. Eng. (7)

W. Sun, C. G. Quan, and X. Y. He, “Dynamic characterization of a microgyroscope by digital image spectrum correlation,” Opt. Eng. 47, 033602 (2008).
[CrossRef]

P. Zhou and K. E. Goodson, “Subpixel displacement and deformation gradient measurement using digital image/speckle correlation,” Opt. Eng. 40, 1613–1620 (2001).
[CrossRef]

W. H. Peters and W. F. Ranson, “Digital imaging techniques in experimental stress analysis,” Opt. Eng. 21, 427–431 (1981).

J. D. Helm, S. R. McNeil, and M. A. Sutton, “Improved three-dimensional image correlation for surface displacement measurement,” Opt. Eng. 35, 1911–1920 (1996).
[CrossRef]

B. Pan, H. M. Xie, Z. Q. Guo, and T. Hua, “Full-field strain measurement using a two-dimensional Savitzky–Golay digital differentiator in digital image correlation,” Opt. Eng. 46, 033601 (2007).
[CrossRef]

S. Yoneyama, H. Kikuta, A. Kitagawa, and K. Kitamura, “Lens distortion correction for digital image correlation by measuring rigid body displacement,” Opt. Eng. 45, 023602 (2006).
[CrossRef]

D. S. Zhang, M. Luo, and D. D. Arola, “Displacement/strain measurements using an optical microscope and digital image correlation,” Opt. Eng. 45, 033605 (2006).
[CrossRef]

Opt. Express (1)

Opt. Laser Technol. (2)

J. Zhang and G. C. Jin, “Application of an improved subpixel registration algorithm on digital speckle correlation measurement,” Opt. Laser Technol. 35, 533–542 (2003).
[CrossRef]

J. N. Butters and J. A. Leendertz, “Speckle pattern and holographic techniques in engineering metrology,” Opt. Laser Technol. 3, 26–30 (1971).
[CrossRef]

Opt. Lasers Eng. (4)

M. Sjödahl, “Some recent advances in electronic speckle photography,” Opt. Lasers Eng. 29, 125–144 (1998).
[CrossRef]

M. A. Sutton, J. H. Yan, V. Tiwari, W. H. Schreier, and J. J. Orteu, “The effect of out-of-plane motion on 2D and 3D digital image correlation measurements,” Opt. Lasers Eng. 46, 746–757 (2008).
[CrossRef]

B. Pan, A. Asundi, H. Xie, and J. Gao, “Digital image correlation using iterative least squares and pointwise least squares for displacement field and strain field measurements,” Opt. Lasers Eng. 47, 865–874 (2009).
[CrossRef]

D. Lecompte, A. Smits, S. Bossuyt, H. Sol, J. Vantomme, D. V. Hemelrijck, and A. M. Habraken, “Quality assessment of speckle patterns for digital image correlation,” Opt. Lasers Eng. 44, 1132–1145 (2006).
[CrossRef]

Strain (1)

B. Pan, H. M. Xie, L. H. Yang, and Z. Y. Wang, “Accurate measurement of satellite antenna surface using three-dimensional digital correlation technique,” Strain 45, 194–200 (2009).
[CrossRef]

Top. Appl. Phys. (1)

M. A. Sutton, S. R. McNeill, J. D. Helm, and Y. J. Chao, “Advances in two-dimensional and three-dimensional computer vision,” Top. Appl. Phys. 77, 323–372 (2000).
[CrossRef]

Other (4)

H. W. Schreier, “Investigation of two and three-dimensional image correlation techniques with applications in experimental mechanics,” Ph.D. thesis (University of South Carolina, 2003).

J. D. Helm and J. R. Deanner, “Off-axis two-dimensional digital image correlation,” in Proceedings of 2004 SEM X International Congress & Exposition on Experimental and Applied MechanicsCosta Mesa, 2004-06-1-10CT:SEM.

P. K. Rastogi, Digital Speckle Pattern Interferometry and Related Techniques (Wiley, 2001).

T. Kreis, Handbook of Holographic Interferometry (Wiley-VCH, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (20)

Fig. 1.
Fig. 1.

Simulated speckle images [reference speckle image in (a) and test speckle images in (b)–(d)] corresponding to IPD of an optically planar rough object toward the left by 0, 10, 50, and 90 pixels, respectively.

Fig. 2.
Fig. 2.

Autocorrelation [image in Fig. 1(a)] and cross-correlation [images in Figs. 1(b)1(d)] results: image in (a) was generated by autocorrelation of the image in Fig. 1(a) and the cross-correlation results were generated by cross correlation of the reference image in Fig. 1(a) with the test images in Figs. 1(b)1(d).

Fig. 3.
Fig. 3.

Images in Fig. 2 raised to the power of 5 to visualize the actual sizes of the peak widths.

Fig. 4.
Fig. 4.

Display of “difference images (the first step in the modified DIC method)” obtained by subtraction of the reference image [Fig. 1(a)] from test images [Figs. 1(b)1(d)].

Fig. 5.
Fig. 5.

Cross-correlation results corresponding to the second step in the modified DIC method. Cross correlation was carried out between the difference images shown in Fig. 4 and the corresponding reference image shown in Fig. 1(a).

Fig. 6.
Fig. 6.

Filtering based on intermediate range rejection (the third step in the modified DIC method) of correlation images (shown in Fig. 5).

Fig. 7.
Fig. 7.

Images in Fig. 6 raised to the power of 5 to visualize the actual sizes of the peak widths (the fourth step in the modified DIC method).

Fig. 8.
Fig. 8.

Horizontal cross sections through the peaks for the images in Figs. 3(b)3(d) are shown in panels (a), (b), and (c), respectively (results corresponding to the conventional DIC method).

Fig. 9.
Fig. 9.

Horizontal cross sections through the peaks for the images in Figs. 7(a)7(c) are shown in panels (a), (b), and (c), respectively (results corresponding to the modified DIC method).

Fig. 10.
Fig. 10.

Schematic diagram of the experimental setup used in recording the reference and test images.

Fig. 11.
Fig. 11.

Experimentally recorded speckle images [reference speckle image in (a) and test speckle images in (b)–(d)] corresponding to IPD of an optically planar rough object toward the left by 0, 760, 2280, and 3800 μm.

Fig. 12.
Fig. 12.

Processing of experimental data for autocorrelation [image in Fig. 11(a)] and cross-correlation [images in Figs. 11(b)11(d)] results: the image in (a) was generated by autocorrelation of the image in Fig. 11(a) and the cross-correlation results were generated by cross correlation of the reference image in Fig. 11(a) with the test images in Figs. 11(b)11(d).

Fig. 13.
Fig. 13.

Images in Fig. 12 raised to the power of 5 to visualize the actual sizes of the peak widths.

Fig. 14.
Fig. 14.

Experimental result for display of “difference images (the first step in the modified DIC method)” obtained by subtraction of the reference image [Fig. 11(a)] from the test images [Figs. 11(b)11(d)].

Fig. 15.
Fig. 15.

Cross-correlation results for experimental data corresponding to the second step in the modified DIC method. Cross correlation was carried out between the difference images shown in Fig. 14 and the corresponding reference image shown in Fig. 11(a).

Fig. 16.
Fig. 16.

Filtering based on intermediate range rejection (the third step in the modified DIC method) of correlation images (shown in Fig. 15).

Fig. 17.
Fig. 17.

Images in Fig. 16 raised to the power of 5 to visualize the actual sizes of the peak widths (the fourth step in the modified DIC method).

Fig. 18.
Fig. 18.

Horizontal cross sections through peaks for the images in Figs. 13(b)13(d) shown in panels (a), (b), and (c), respectively (results corresponding to the conventional DIC method).

Fig. 19.
Fig. 19.

Horizontal cross sections through peaks for the images in Figs. 17(a)17(c) shown in panels (a), (b), and (c), respectively (results corresponding to the modified DIC method).

Fig. 20.
Fig. 20.

Calculation of displacement fields based on the modified DIC method: (a) image corresponding to object in static condition; (b) image corresponding to object in deformed position; (c) difference of the images shown in (a) and (b); (d) image obtained in cross correlation between patches from the image in (a) and the image in (c), after filtering and after raising to the power of 5; (e) displacement field corresponding to the displacement of different parts of the image in (b) with respect to the image in (a).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Idiff=ItestIref=|ObjtestSpsf|2|ObjrefSpsf|2,
Idiff*Iref=(ItestIref)*Iref=Itest*IrefIref*Iref.

Metrics