Abstract

This analysis explores the theory and design of dielectric multilayer reflection-enhancing thin film stacks based on high and low refractive index alternating layers of cadmium sulfide (CdS) and lead sulfide (PbS) on silver (Ag)-coated hollow glass waveguides (HGWs) for low loss transmission at midinfrared wavelengths. The fundamentals for determining propagation losses in such multilayer thin-film-coated Ag hollow waveguides is thoroughly discussed, and forms the basis for further theoretical analysis presented in this study. The effects on propagation loss resulting from several key parameters of these multilayer thin film stacks is further explored in order to bridge the gap between results predicted through calculation under ideal conditions and deviations from such ideal models that often arise in practice. In particular, the effects on loss due to the number of dielectric thin film layers deposited, deviation from ideal individual layer thicknesses, and surface roughness related scattering losses are presented and thoroughly investigated. Through such extensive theoretical analysis the level of understanding of the underlying loss mechanisms of multilayer thin-film Ag-coated HGWs is greatly advanced, considerably increasing the potential practical development of next-generation ultralow-loss mid-IR Ag/multilayer dielectric-coated HGWs.

© 2013 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Harrington, Infrared Fiber Optics and Their Applications (SPIE, 2004).
  2. D. Rabii and J. A. Harrington, “Measurement and control of thin film uniformity in hollow glass waveguides,” Opt. Eng. 38, 2009–2015 (1999).
    [CrossRef]
  3. J. A. Harrington and V. Gopal, “Method, and article of the method, for fabricating a hollow waveguide,” U.S. Patent7,315,675 (January12008).
  4. M. Miyagi and S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. LT-2, 116–126 (1984).
    [CrossRef]
  5. S. J. Orfanidis, Electromagnetic Waves and Antennas (Rutgers University, 2010).
  6. J. D. Joannopoulos, S. G. Johnson, R. D. Mead, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, 2nd Ed. (Princeton University, 2008).
  7. E. Hecht, Optics, 3rd Ed. (Addison Wesley Longman, 1998).
  8. O. S. Heavens, Optical Properties of Thin Film Solids, 1st ed. (Dover Publications, 1991).
  9. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991).
  10. R. J. George, “New dielectric thin film coatings for Ag and Cu coated hollow infrared waveguides,” Ph.D. dissertation (Rutgers University, 2004).
  11. V. Gopal and J. A. Harrington, “Deposition and characterization of metal sulfide dielectric coatings for hollow glass waveguides,” Opt. Express 11, 3182–3187 (2003).
    [CrossRef]
  12. C. M. Bledt, J. E. Melzer, and J. A. Harrington, “Investigation of metal sulfide optical thin film growth in low-loss IR hollow glass waveguides,” Opt. Mater. Express, 3, 1397–1407 (2013).
    [CrossRef]
  13. M. Miyagi and S. Kawakami, “Waveguide loss evaluation by the ray-optics method,” J. Opt. Soc. Am. 73, 486–489 (1983).
    [CrossRef]
  14. Y. Matsuura, M. Saito, and M. Miyagi, “Loss characteristics of circular hollow waveguides for incoherent infrared light,” J. Opt. Soc. Am. A 6, 423–427 (1989).
    [CrossRef]
  15. Y. Matsuura and J. A. Harrington, “Hollow glass waveguides with three-layer dielectric coating fabricated by chemical vapor deposition,” J. Opt. Soc. Am. A 14, 1255–1259 (1997).
    [CrossRef]
  16. M. Saito, S. Sato, and M. Miyagi, “Loss characteristics of infrared hollow waveguides in multimode transmission,” J. Opt. Soc. Am. A 10, 277–282 (1993).
    [CrossRef]
  17. E. D. Palik and G. Ghosh, Handbook of Optical Constants of Solids (Academic, 1998).
  18. C. M. Bledt, J. E. Melzer, and J. A. Harrington, “Theoretical and experimental investigation of infrared properties of tapered silver/silver halide-coated hollow waveguides,” Appl. Opt. 52, 3703–3712 (2013).
    [CrossRef]
  19. Y. Fink, J. N. Winn, S. Fan, J. Michel, C. Chen, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998).
    [CrossRef]

2013 (2)

2003 (1)

1999 (1)

D. Rabii and J. A. Harrington, “Measurement and control of thin film uniformity in hollow glass waveguides,” Opt. Eng. 38, 2009–2015 (1999).
[CrossRef]

1998 (1)

Y. Fink, J. N. Winn, S. Fan, J. Michel, C. Chen, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998).
[CrossRef]

1997 (1)

1993 (1)

1989 (1)

1984 (1)

M. Miyagi and S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. LT-2, 116–126 (1984).
[CrossRef]

1983 (1)

Bledt, C. M.

Chen, C.

Y. Fink, J. N. Winn, S. Fan, J. Michel, C. Chen, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998).
[CrossRef]

Fan, S.

Y. Fink, J. N. Winn, S. Fan, J. Michel, C. Chen, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998).
[CrossRef]

Fink, Y.

Y. Fink, J. N. Winn, S. Fan, J. Michel, C. Chen, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998).
[CrossRef]

George, R. J.

R. J. George, “New dielectric thin film coatings for Ag and Cu coated hollow infrared waveguides,” Ph.D. dissertation (Rutgers University, 2004).

Ghosh, G.

E. D. Palik and G. Ghosh, Handbook of Optical Constants of Solids (Academic, 1998).

Gopal, V.

V. Gopal and J. A. Harrington, “Deposition and characterization of metal sulfide dielectric coatings for hollow glass waveguides,” Opt. Express 11, 3182–3187 (2003).
[CrossRef]

J. A. Harrington and V. Gopal, “Method, and article of the method, for fabricating a hollow waveguide,” U.S. Patent7,315,675 (January12008).

Harrington, J. A.

Heavens, O. S.

O. S. Heavens, Optical Properties of Thin Film Solids, 1st ed. (Dover Publications, 1991).

Hecht, E.

E. Hecht, Optics, 3rd Ed. (Addison Wesley Longman, 1998).

Joannopoulos, J. D.

Y. Fink, J. N. Winn, S. Fan, J. Michel, C. Chen, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998).
[CrossRef]

J. D. Joannopoulos, S. G. Johnson, R. D. Mead, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, 2nd Ed. (Princeton University, 2008).

Johnson, S. G.

J. D. Joannopoulos, S. G. Johnson, R. D. Mead, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, 2nd Ed. (Princeton University, 2008).

Kawakami, S.

M. Miyagi and S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. LT-2, 116–126 (1984).
[CrossRef]

M. Miyagi and S. Kawakami, “Waveguide loss evaluation by the ray-optics method,” J. Opt. Soc. Am. 73, 486–489 (1983).
[CrossRef]

Matsuura, Y.

Mead, R. D.

J. D. Joannopoulos, S. G. Johnson, R. D. Mead, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, 2nd Ed. (Princeton University, 2008).

Melzer, J. E.

Michel, J.

Y. Fink, J. N. Winn, S. Fan, J. Michel, C. Chen, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998).
[CrossRef]

Miyagi, M.

Orfanidis, S. J.

S. J. Orfanidis, Electromagnetic Waves and Antennas (Rutgers University, 2010).

Palik, E. D.

E. D. Palik and G. Ghosh, Handbook of Optical Constants of Solids (Academic, 1998).

Rabii, D.

D. Rabii and J. A. Harrington, “Measurement and control of thin film uniformity in hollow glass waveguides,” Opt. Eng. 38, 2009–2015 (1999).
[CrossRef]

Saito, M.

Saleh, B. E. A.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991).

Sato, S.

Teich, M. C.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991).

Thomas, E. L.

Y. Fink, J. N. Winn, S. Fan, J. Michel, C. Chen, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998).
[CrossRef]

Winn, J. N.

Y. Fink, J. N. Winn, S. Fan, J. Michel, C. Chen, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998).
[CrossRef]

J. D. Joannopoulos, S. G. Johnson, R. D. Mead, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, 2nd Ed. (Princeton University, 2008).

Appl. Opt. (1)

J. Lightwave Technol. (1)

M. Miyagi and S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. LT-2, 116–126 (1984).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (3)

Opt. Eng. (1)

D. Rabii and J. A. Harrington, “Measurement and control of thin film uniformity in hollow glass waveguides,” Opt. Eng. 38, 2009–2015 (1999).
[CrossRef]

Opt. Express (1)

Opt. Mater. Express (1)

Science (1)

Y. Fink, J. N. Winn, S. Fan, J. Michel, C. Chen, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998).
[CrossRef]

Other (9)

J. A. Harrington, Infrared Fiber Optics and Their Applications (SPIE, 2004).

J. A. Harrington and V. Gopal, “Method, and article of the method, for fabricating a hollow waveguide,” U.S. Patent7,315,675 (January12008).

S. J. Orfanidis, Electromagnetic Waves and Antennas (Rutgers University, 2010).

J. D. Joannopoulos, S. G. Johnson, R. D. Mead, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, 2nd Ed. (Princeton University, 2008).

E. Hecht, Optics, 3rd Ed. (Addison Wesley Longman, 1998).

O. S. Heavens, Optical Properties of Thin Film Solids, 1st ed. (Dover Publications, 1991).

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991).

R. J. George, “New dielectric thin film coatings for Ag and Cu coated hollow infrared waveguides,” Ph.D. dissertation (Rutgers University, 2004).

E. D. Palik and G. Ghosh, Handbook of Optical Constants of Solids (Academic, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics