Abstract

We propose a reliable reverse engineering approach for a postproduction characterization of complicated optical coatings for ultrafast laser applications. We perform the postproduction characterization on the basis of in situ broadband monitoring data and validate the results using ex situ transmittance data and group delay measurements.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. V. Amotchkina, M. K. Trubetskov, V. Pervak, B. Romanov, and A. V. Tikhonravov, “On the reliability of reverse engineering results,” Appl. Opt. 51, 5543–5551 (2012).
    [CrossRef]
  2. T. V. Amotchkina, S. Schlichting, H. Ehlers, M. K. Trubetskov, A. V. Tikhonravov, and D. Ristau, “Computational manufacturing as a key element in the design–production chain for modern multilayer coatings,” Appl. Opt. 51, 7604–7615 (2012).
    [CrossRef]
  3. O. Stenzel, S. Wilbrandt, D. Fasold, and N. Kaiser, “A hybrid in situ monitoring strategy for optical coating deposition: application to the preparation of chirped dielectric mirrors,” J. Opt. A 10, 085305 (2008).
    [CrossRef]
  4. T. V. Amotchkina, M. K. Trubetskov, A. V. Tikhonravov, S. Schlichting, H. Ehlers, D. Ristau, D. Death, R. J. Francis, and V. Pervak, “Quality control of oblique incidence optical coatings based on normal incidence measurement data,” Opt. Express 21, 21508–21522 (2013).
    [CrossRef]
  5. T. V. Amotchkina, M. K. Trubetskov, V. Pervak, S. Schlichting, H. Ehlers, D. Ristau, and A. V. Tikhonravov, “Comparison of algorithms used for optical characterization of multilayer optical coatings,” Appl. Opt. 50, 3389–3395 (2011).
    [CrossRef]
  6. S. Wilbrandt, O. Stenzel, and N. Kaiser, “All-optical in-situ analysis of PIAD deposition processes,” Proc. SPIE 7101, 71010D (2008).
    [CrossRef]
  7. V. Janicki, J. Sancho-Parramon, O. Stenzel, M. Lappschies, B. Görtz, C. Rickers, C. Polenzky, and U. Richter, “Optical characterization of hybrid antireflective coatings using spectrophotometric and ellipsometric measurements,” Appl. Opt. 46, 6084–6091 (2007).
    [CrossRef]
  8. A. V. Tikhonravov, T. V. Amotchkina, M. K. Trubetskov, R. J. Francis, V. Janicki, J. Sancho-Parramon, H. Zorc, and V. Pervak, “Optical characterization and reverse engineering based on multiangle spectroscopy,” Appl. Opt. 51, 245–254 (2012).
    [CrossRef]
  9. L. Gao, F. Lemarchand, and M. Lequime, “Exploitation of multiple incidences spectrometric measurements for thin film reverse engineering,” Opt. Express 20, 15734–15751 (2012).
    [CrossRef]
  10. M. Trubetskov, A. Tikhonravov, and V. Pervak, “Time-domain approach for designing dispersive mirrors based on the needle optimization technique Theory,” Opt. Express 16, 20637–20647 (2008).
    [CrossRef]
  11. O. Nohadani, J. R. Birge, F. X. Kärtner, and D. J. Bertsimas, “Robust chirped mirrors,” Appl. Opt. 47, 2630–2636 (2008).
    [CrossRef]
  12. V. Pervak, I. Ahmad, M. K. Trubetskov, A. V. Tikhonravov, and F. Krausz, “Double-angle multilayer mirrors with smooth dispersion characteristics,” Opt. Express 17, 7943–7951 (2009).
    [CrossRef]
  13. M. K. Trubetskov, “Design of dispersive mirrors for ultrafast applications,” Chin. Opt. Lett. 8, 12–17 (2010).
    [CrossRef]
  14. M. K. Trubetskov, V. Pervak, and A. V. Tikhonravov, “Phase optimization of dispersive mirrors based on floating constants,” Opt. Express 18, 27613–27618 (2010).
    [CrossRef]
  15. V. Pervak, M. K. Trubetskov, and A. V. Tikhonravov, “Robust synthesis of dispersive mirrors,” Opt. Express 19, 2371–2380 (2011).
    [CrossRef]
  16. V. Pervak, V. Fedorov, Y. A. Pervak, and M. Trubetskov, “Empirical study of the group delay dispersion achievable with multilayer mirrors,” Opt. Express 21, 18311–18316 (2013).
    [CrossRef]
  17. A. V. Tikhonravov and M. K. Trubetskov, “OptiLayer software,” http://www.optilayer.com .
  18. C. Skrobol, I. Ahmad, S. Klingebiel, C. Wandt, S. A. Trushin, Z. Major, F. Krausz, and S. Karsch, “Broadband amplification by picosecond OPCPA in DKDP pumped at 515  nm,” Opt. Express 20, 4619–4629 (2012).
    [CrossRef]
  19. V. Pervak, A. V. Tikhonravov, M. K. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, “1.5-octave chirped mirror for pulse compression down to sub-3  fs,” Appl. Phys. B 87, 5–12 (2007).
    [CrossRef]
  20. D. Ristau, H. Ehlers, T. Gross, and M. Lappschies, “Optical broadband monitoring of conventional and ion processes,” Appl. Opt. 45, 1495–1501 (2006).
    [CrossRef]
  21. T. V. Amotchkina, A. V. Tikhonravov, M. K. Trubetskov, D. Grupe, A. Apolonski, and V. Pervak, “Measurement of group delay of dispersive mirrors with white-light interferometer,” Appl. Opt. 48, 949–956 (2009).
    [CrossRef]
  22. M. K. Trubetskov, M. von Pechmann, I. B. Angelov, K. L. Vodopyanov, F. Krausz, and V. Pervak, “Measurements of the group delay and the group delay dispersion with resonance scanning interferometer,” Opt. Express 21, 6658–6669 (2013).
    [CrossRef]
  23. V. Pervak, “Recent development and new ideas in the field of dispersive multilayer optics,” Appl. Opt. 50, C55–C61 (2011).
    [CrossRef]
  24. A. N. Tikhonov and V. I. Arsenin, Solutions of Ill-posed Problems (Winston, 1977).

2013 (3)

2012 (5)

2011 (3)

2010 (2)

2009 (2)

2008 (4)

O. Nohadani, J. R. Birge, F. X. Kärtner, and D. J. Bertsimas, “Robust chirped mirrors,” Appl. Opt. 47, 2630–2636 (2008).
[CrossRef]

M. Trubetskov, A. Tikhonravov, and V. Pervak, “Time-domain approach for designing dispersive mirrors based on the needle optimization technique Theory,” Opt. Express 16, 20637–20647 (2008).
[CrossRef]

O. Stenzel, S. Wilbrandt, D. Fasold, and N. Kaiser, “A hybrid in situ monitoring strategy for optical coating deposition: application to the preparation of chirped dielectric mirrors,” J. Opt. A 10, 085305 (2008).
[CrossRef]

S. Wilbrandt, O. Stenzel, and N. Kaiser, “All-optical in-situ analysis of PIAD deposition processes,” Proc. SPIE 7101, 71010D (2008).
[CrossRef]

2007 (2)

V. Pervak, A. V. Tikhonravov, M. K. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, “1.5-octave chirped mirror for pulse compression down to sub-3  fs,” Appl. Phys. B 87, 5–12 (2007).
[CrossRef]

V. Janicki, J. Sancho-Parramon, O. Stenzel, M. Lappschies, B. Görtz, C. Rickers, C. Polenzky, and U. Richter, “Optical characterization of hybrid antireflective coatings using spectrophotometric and ellipsometric measurements,” Appl. Opt. 46, 6084–6091 (2007).
[CrossRef]

2006 (1)

Ahmad, I.

Amotchkina, T. V.

Angelov, I. B.

Apolonski, A.

T. V. Amotchkina, A. V. Tikhonravov, M. K. Trubetskov, D. Grupe, A. Apolonski, and V. Pervak, “Measurement of group delay of dispersive mirrors with white-light interferometer,” Appl. Opt. 48, 949–956 (2009).
[CrossRef]

V. Pervak, A. V. Tikhonravov, M. K. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, “1.5-octave chirped mirror for pulse compression down to sub-3  fs,” Appl. Phys. B 87, 5–12 (2007).
[CrossRef]

Arsenin, V. I.

A. N. Tikhonov and V. I. Arsenin, Solutions of Ill-posed Problems (Winston, 1977).

Bertsimas, D. J.

Birge, J. R.

Death, D.

Ehlers, H.

Fasold, D.

O. Stenzel, S. Wilbrandt, D. Fasold, and N. Kaiser, “A hybrid in situ monitoring strategy for optical coating deposition: application to the preparation of chirped dielectric mirrors,” J. Opt. A 10, 085305 (2008).
[CrossRef]

Fedorov, V.

Francis, R. J.

Gao, L.

Görtz, B.

Gross, T.

Grupe, D.

Janicki, V.

Kaiser, N.

O. Stenzel, S. Wilbrandt, D. Fasold, and N. Kaiser, “A hybrid in situ monitoring strategy for optical coating deposition: application to the preparation of chirped dielectric mirrors,” J. Opt. A 10, 085305 (2008).
[CrossRef]

S. Wilbrandt, O. Stenzel, and N. Kaiser, “All-optical in-situ analysis of PIAD deposition processes,” Proc. SPIE 7101, 71010D (2008).
[CrossRef]

Karsch, S.

Kärtner, F. X.

Klingebiel, S.

Krausz, F.

Lappschies, M.

Lemarchand, F.

Lequime, M.

Major, Z.

Naumov, S.

V. Pervak, A. V. Tikhonravov, M. K. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, “1.5-octave chirped mirror for pulse compression down to sub-3  fs,” Appl. Phys. B 87, 5–12 (2007).
[CrossRef]

Nohadani, O.

Pervak, V.

M. K. Trubetskov, M. von Pechmann, I. B. Angelov, K. L. Vodopyanov, F. Krausz, and V. Pervak, “Measurements of the group delay and the group delay dispersion with resonance scanning interferometer,” Opt. Express 21, 6658–6669 (2013).
[CrossRef]

V. Pervak, V. Fedorov, Y. A. Pervak, and M. Trubetskov, “Empirical study of the group delay dispersion achievable with multilayer mirrors,” Opt. Express 21, 18311–18316 (2013).
[CrossRef]

T. V. Amotchkina, M. K. Trubetskov, A. V. Tikhonravov, S. Schlichting, H. Ehlers, D. Ristau, D. Death, R. J. Francis, and V. Pervak, “Quality control of oblique incidence optical coatings based on normal incidence measurement data,” Opt. Express 21, 21508–21522 (2013).
[CrossRef]

T. V. Amotchkina, M. K. Trubetskov, V. Pervak, B. Romanov, and A. V. Tikhonravov, “On the reliability of reverse engineering results,” Appl. Opt. 51, 5543–5551 (2012).
[CrossRef]

A. V. Tikhonravov, T. V. Amotchkina, M. K. Trubetskov, R. J. Francis, V. Janicki, J. Sancho-Parramon, H. Zorc, and V. Pervak, “Optical characterization and reverse engineering based on multiangle spectroscopy,” Appl. Opt. 51, 245–254 (2012).
[CrossRef]

T. V. Amotchkina, M. K. Trubetskov, V. Pervak, S. Schlichting, H. Ehlers, D. Ristau, and A. V. Tikhonravov, “Comparison of algorithms used for optical characterization of multilayer optical coatings,” Appl. Opt. 50, 3389–3395 (2011).
[CrossRef]

V. Pervak, “Recent development and new ideas in the field of dispersive multilayer optics,” Appl. Opt. 50, C55–C61 (2011).
[CrossRef]

V. Pervak, M. K. Trubetskov, and A. V. Tikhonravov, “Robust synthesis of dispersive mirrors,” Opt. Express 19, 2371–2380 (2011).
[CrossRef]

M. K. Trubetskov, V. Pervak, and A. V. Tikhonravov, “Phase optimization of dispersive mirrors based on floating constants,” Opt. Express 18, 27613–27618 (2010).
[CrossRef]

T. V. Amotchkina, A. V. Tikhonravov, M. K. Trubetskov, D. Grupe, A. Apolonski, and V. Pervak, “Measurement of group delay of dispersive mirrors with white-light interferometer,” Appl. Opt. 48, 949–956 (2009).
[CrossRef]

V. Pervak, I. Ahmad, M. K. Trubetskov, A. V. Tikhonravov, and F. Krausz, “Double-angle multilayer mirrors with smooth dispersion characteristics,” Opt. Express 17, 7943–7951 (2009).
[CrossRef]

M. Trubetskov, A. Tikhonravov, and V. Pervak, “Time-domain approach for designing dispersive mirrors based on the needle optimization technique Theory,” Opt. Express 16, 20637–20647 (2008).
[CrossRef]

V. Pervak, A. V. Tikhonravov, M. K. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, “1.5-octave chirped mirror for pulse compression down to sub-3  fs,” Appl. Phys. B 87, 5–12 (2007).
[CrossRef]

Pervak, Y. A.

Polenzky, C.

Richter, U.

Rickers, C.

Ristau, D.

Romanov, B.

Sancho-Parramon, J.

Schlichting, S.

Skrobol, C.

Stenzel, O.

S. Wilbrandt, O. Stenzel, and N. Kaiser, “All-optical in-situ analysis of PIAD deposition processes,” Proc. SPIE 7101, 71010D (2008).
[CrossRef]

O. Stenzel, S. Wilbrandt, D. Fasold, and N. Kaiser, “A hybrid in situ monitoring strategy for optical coating deposition: application to the preparation of chirped dielectric mirrors,” J. Opt. A 10, 085305 (2008).
[CrossRef]

V. Janicki, J. Sancho-Parramon, O. Stenzel, M. Lappschies, B. Görtz, C. Rickers, C. Polenzky, and U. Richter, “Optical characterization of hybrid antireflective coatings using spectrophotometric and ellipsometric measurements,” Appl. Opt. 46, 6084–6091 (2007).
[CrossRef]

Tikhonov, A. N.

A. N. Tikhonov and V. I. Arsenin, Solutions of Ill-posed Problems (Winston, 1977).

Tikhonravov, A.

Tikhonravov, A. V.

T. V. Amotchkina, M. K. Trubetskov, A. V. Tikhonravov, S. Schlichting, H. Ehlers, D. Ristau, D. Death, R. J. Francis, and V. Pervak, “Quality control of oblique incidence optical coatings based on normal incidence measurement data,” Opt. Express 21, 21508–21522 (2013).
[CrossRef]

T. V. Amotchkina, S. Schlichting, H. Ehlers, M. K. Trubetskov, A. V. Tikhonravov, and D. Ristau, “Computational manufacturing as a key element in the design–production chain for modern multilayer coatings,” Appl. Opt. 51, 7604–7615 (2012).
[CrossRef]

T. V. Amotchkina, M. K. Trubetskov, V. Pervak, B. Romanov, and A. V. Tikhonravov, “On the reliability of reverse engineering results,” Appl. Opt. 51, 5543–5551 (2012).
[CrossRef]

A. V. Tikhonravov, T. V. Amotchkina, M. K. Trubetskov, R. J. Francis, V. Janicki, J. Sancho-Parramon, H. Zorc, and V. Pervak, “Optical characterization and reverse engineering based on multiangle spectroscopy,” Appl. Opt. 51, 245–254 (2012).
[CrossRef]

T. V. Amotchkina, M. K. Trubetskov, V. Pervak, S. Schlichting, H. Ehlers, D. Ristau, and A. V. Tikhonravov, “Comparison of algorithms used for optical characterization of multilayer optical coatings,” Appl. Opt. 50, 3389–3395 (2011).
[CrossRef]

V. Pervak, M. K. Trubetskov, and A. V. Tikhonravov, “Robust synthesis of dispersive mirrors,” Opt. Express 19, 2371–2380 (2011).
[CrossRef]

M. K. Trubetskov, V. Pervak, and A. V. Tikhonravov, “Phase optimization of dispersive mirrors based on floating constants,” Opt. Express 18, 27613–27618 (2010).
[CrossRef]

V. Pervak, I. Ahmad, M. K. Trubetskov, A. V. Tikhonravov, and F. Krausz, “Double-angle multilayer mirrors with smooth dispersion characteristics,” Opt. Express 17, 7943–7951 (2009).
[CrossRef]

T. V. Amotchkina, A. V. Tikhonravov, M. K. Trubetskov, D. Grupe, A. Apolonski, and V. Pervak, “Measurement of group delay of dispersive mirrors with white-light interferometer,” Appl. Opt. 48, 949–956 (2009).
[CrossRef]

V. Pervak, A. V. Tikhonravov, M. K. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, “1.5-octave chirped mirror for pulse compression down to sub-3  fs,” Appl. Phys. B 87, 5–12 (2007).
[CrossRef]

Trubetskov, M.

Trubetskov, M. K.

T. V. Amotchkina, M. K. Trubetskov, A. V. Tikhonravov, S. Schlichting, H. Ehlers, D. Ristau, D. Death, R. J. Francis, and V. Pervak, “Quality control of oblique incidence optical coatings based on normal incidence measurement data,” Opt. Express 21, 21508–21522 (2013).
[CrossRef]

M. K. Trubetskov, M. von Pechmann, I. B. Angelov, K. L. Vodopyanov, F. Krausz, and V. Pervak, “Measurements of the group delay and the group delay dispersion with resonance scanning interferometer,” Opt. Express 21, 6658–6669 (2013).
[CrossRef]

T. V. Amotchkina, S. Schlichting, H. Ehlers, M. K. Trubetskov, A. V. Tikhonravov, and D. Ristau, “Computational manufacturing as a key element in the design–production chain for modern multilayer coatings,” Appl. Opt. 51, 7604–7615 (2012).
[CrossRef]

T. V. Amotchkina, M. K. Trubetskov, V. Pervak, B. Romanov, and A. V. Tikhonravov, “On the reliability of reverse engineering results,” Appl. Opt. 51, 5543–5551 (2012).
[CrossRef]

A. V. Tikhonravov, T. V. Amotchkina, M. K. Trubetskov, R. J. Francis, V. Janicki, J. Sancho-Parramon, H. Zorc, and V. Pervak, “Optical characterization and reverse engineering based on multiangle spectroscopy,” Appl. Opt. 51, 245–254 (2012).
[CrossRef]

T. V. Amotchkina, M. K. Trubetskov, V. Pervak, S. Schlichting, H. Ehlers, D. Ristau, and A. V. Tikhonravov, “Comparison of algorithms used for optical characterization of multilayer optical coatings,” Appl. Opt. 50, 3389–3395 (2011).
[CrossRef]

V. Pervak, M. K. Trubetskov, and A. V. Tikhonravov, “Robust synthesis of dispersive mirrors,” Opt. Express 19, 2371–2380 (2011).
[CrossRef]

M. K. Trubetskov, V. Pervak, and A. V. Tikhonravov, “Phase optimization of dispersive mirrors based on floating constants,” Opt. Express 18, 27613–27618 (2010).
[CrossRef]

M. K. Trubetskov, “Design of dispersive mirrors for ultrafast applications,” Chin. Opt. Lett. 8, 12–17 (2010).
[CrossRef]

T. V. Amotchkina, A. V. Tikhonravov, M. K. Trubetskov, D. Grupe, A. Apolonski, and V. Pervak, “Measurement of group delay of dispersive mirrors with white-light interferometer,” Appl. Opt. 48, 949–956 (2009).
[CrossRef]

V. Pervak, I. Ahmad, M. K. Trubetskov, A. V. Tikhonravov, and F. Krausz, “Double-angle multilayer mirrors with smooth dispersion characteristics,” Opt. Express 17, 7943–7951 (2009).
[CrossRef]

V. Pervak, A. V. Tikhonravov, M. K. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, “1.5-octave chirped mirror for pulse compression down to sub-3  fs,” Appl. Phys. B 87, 5–12 (2007).
[CrossRef]

Trushin, S. A.

Vodopyanov, K. L.

von Pechmann, M.

Wandt, C.

Wilbrandt, S.

O. Stenzel, S. Wilbrandt, D. Fasold, and N. Kaiser, “A hybrid in situ monitoring strategy for optical coating deposition: application to the preparation of chirped dielectric mirrors,” J. Opt. A 10, 085305 (2008).
[CrossRef]

S. Wilbrandt, O. Stenzel, and N. Kaiser, “All-optical in-situ analysis of PIAD deposition processes,” Proc. SPIE 7101, 71010D (2008).
[CrossRef]

Zorc, H.

Appl. Opt. (9)

D. Ristau, H. Ehlers, T. Gross, and M. Lappschies, “Optical broadband monitoring of conventional and ion processes,” Appl. Opt. 45, 1495–1501 (2006).
[CrossRef]

V. Janicki, J. Sancho-Parramon, O. Stenzel, M. Lappschies, B. Görtz, C. Rickers, C. Polenzky, and U. Richter, “Optical characterization of hybrid antireflective coatings using spectrophotometric and ellipsometric measurements,” Appl. Opt. 46, 6084–6091 (2007).
[CrossRef]

O. Nohadani, J. R. Birge, F. X. Kärtner, and D. J. Bertsimas, “Robust chirped mirrors,” Appl. Opt. 47, 2630–2636 (2008).
[CrossRef]

T. V. Amotchkina, A. V. Tikhonravov, M. K. Trubetskov, D. Grupe, A. Apolonski, and V. Pervak, “Measurement of group delay of dispersive mirrors with white-light interferometer,” Appl. Opt. 48, 949–956 (2009).
[CrossRef]

V. Pervak, “Recent development and new ideas in the field of dispersive multilayer optics,” Appl. Opt. 50, C55–C61 (2011).
[CrossRef]

T. V. Amotchkina, M. K. Trubetskov, V. Pervak, S. Schlichting, H. Ehlers, D. Ristau, and A. V. Tikhonravov, “Comparison of algorithms used for optical characterization of multilayer optical coatings,” Appl. Opt. 50, 3389–3395 (2011).
[CrossRef]

A. V. Tikhonravov, T. V. Amotchkina, M. K. Trubetskov, R. J. Francis, V. Janicki, J. Sancho-Parramon, H. Zorc, and V. Pervak, “Optical characterization and reverse engineering based on multiangle spectroscopy,” Appl. Opt. 51, 245–254 (2012).
[CrossRef]

T. V. Amotchkina, M. K. Trubetskov, V. Pervak, B. Romanov, and A. V. Tikhonravov, “On the reliability of reverse engineering results,” Appl. Opt. 51, 5543–5551 (2012).
[CrossRef]

T. V. Amotchkina, S. Schlichting, H. Ehlers, M. K. Trubetskov, A. V. Tikhonravov, and D. Ristau, “Computational manufacturing as a key element in the design–production chain for modern multilayer coatings,” Appl. Opt. 51, 7604–7615 (2012).
[CrossRef]

Appl. Phys. B (1)

V. Pervak, A. V. Tikhonravov, M. K. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, “1.5-octave chirped mirror for pulse compression down to sub-3  fs,” Appl. Phys. B 87, 5–12 (2007).
[CrossRef]

Chin. Opt. Lett. (1)

M. K. Trubetskov, “Design of dispersive mirrors for ultrafast applications,” Chin. Opt. Lett. 8, 12–17 (2010).
[CrossRef]

J. Opt. A (1)

O. Stenzel, S. Wilbrandt, D. Fasold, and N. Kaiser, “A hybrid in situ monitoring strategy for optical coating deposition: application to the preparation of chirped dielectric mirrors,” J. Opt. A 10, 085305 (2008).
[CrossRef]

Opt. Express (9)

M. Trubetskov, A. Tikhonravov, and V. Pervak, “Time-domain approach for designing dispersive mirrors based on the needle optimization technique Theory,” Opt. Express 16, 20637–20647 (2008).
[CrossRef]

C. Skrobol, I. Ahmad, S. Klingebiel, C. Wandt, S. A. Trushin, Z. Major, F. Krausz, and S. Karsch, “Broadband amplification by picosecond OPCPA in DKDP pumped at 515  nm,” Opt. Express 20, 4619–4629 (2012).
[CrossRef]

L. Gao, F. Lemarchand, and M. Lequime, “Exploitation of multiple incidences spectrometric measurements for thin film reverse engineering,” Opt. Express 20, 15734–15751 (2012).
[CrossRef]

M. K. Trubetskov, V. Pervak, and A. V. Tikhonravov, “Phase optimization of dispersive mirrors based on floating constants,” Opt. Express 18, 27613–27618 (2010).
[CrossRef]

V. Pervak, M. K. Trubetskov, and A. V. Tikhonravov, “Robust synthesis of dispersive mirrors,” Opt. Express 19, 2371–2380 (2011).
[CrossRef]

V. Pervak, I. Ahmad, M. K. Trubetskov, A. V. Tikhonravov, and F. Krausz, “Double-angle multilayer mirrors with smooth dispersion characteristics,” Opt. Express 17, 7943–7951 (2009).
[CrossRef]

M. K. Trubetskov, M. von Pechmann, I. B. Angelov, K. L. Vodopyanov, F. Krausz, and V. Pervak, “Measurements of the group delay and the group delay dispersion with resonance scanning interferometer,” Opt. Express 21, 6658–6669 (2013).
[CrossRef]

V. Pervak, V. Fedorov, Y. A. Pervak, and M. Trubetskov, “Empirical study of the group delay dispersion achievable with multilayer mirrors,” Opt. Express 21, 18311–18316 (2013).
[CrossRef]

T. V. Amotchkina, M. K. Trubetskov, A. V. Tikhonravov, S. Schlichting, H. Ehlers, D. Ristau, D. Death, R. J. Francis, and V. Pervak, “Quality control of oblique incidence optical coatings based on normal incidence measurement data,” Opt. Express 21, 21508–21522 (2013).
[CrossRef]

Proc. SPIE (1)

S. Wilbrandt, O. Stenzel, and N. Kaiser, “All-optical in-situ analysis of PIAD deposition processes,” Proc. SPIE 7101, 71010D (2008).
[CrossRef]

Other (2)

A. V. Tikhonravov and M. K. Trubetskov, “OptiLayer software,” http://www.optilayer.com .

A. N. Tikhonov and V. I. Arsenin, Solutions of Ill-posed Problems (Winston, 1977).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

(a) GD and reflectance of a 74-layers design for six-bounces double-angle PCM. (b) Physical layer thicknesses of the 74-layers PCM design.

Fig. 2.
Fig. 2.

(a) GD and reflectance of a 96-layers design for 20-bounces double-angle PC. (b) Physical layer thicknesses of the 96-layers PC.

Fig. 3.
Fig. 3.

(a) GDD and reflectance of a 68-layers OC design. (b) Physical layer thicknesses of the 68-layers OC.

Fig. 4.
Fig. 4.

Relative errors in layer thicknesses in PCM coating estimated in the frame of (a) random errors model and (b) quasi-random errors model.

Fig. 5.
Fig. 5.

Comparison of theoretical, experimental, and model GD in the case of (a) random errors model and (b) quasi-random errors model. The data are related to the PCM-Suprasil sample.

Fig. 6.
Fig. 6.

Achieved fittings of BBM data by model transmittance data related to PC-Glass sample after (a) 25th layer, (b) 50th layer, (c) 75th layer, and (d) 95th layer.

Fig. 7.
Fig. 7.

Comparison of theoretical, experimental, and model transmittance (a) and GDD (b). The data are related to the PC-Suprasil sample. Transmittance is shown only in informative wavelength ranges; the high-reflection zone is omitted.

Fig. 8.
Fig. 8.

Determined relative errors in layer thicknesses of PC-Glass sample.

Fig. 9.
Fig. 9.

Comparison of theoretical, experimental, and model transmittance (a) and GD (b). The data are related to the OC-Suprasil sample.

Fig. 10.
Fig. 10.

Determined relative errors in layer thicknesses of OC-Glass sample.

Fig. 11.
Fig. 11.

(a) Experimental transmittance data related to 21 PC samples. Different colors correspond to different samples. (b) Deviations of the positions of transmittance peaks from 1460 nm.

Tables (2)

Tables Icon

Table 1. Cauchy Parameters of Thin-Film Materials and Substrates

Tables Icon

Table 2. Comparison of Discrepancy Function Values Calculated for PCM Coating

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

n(λ)=A0+A1(λ0/λ)2+A2(λ0/λ)4,
MDF2=1mLi=1mj=1L[T(Xi,λj)T^(i)(λj)]2.
T(Xi,λj)=T(d1(1+δ1+ΔH),,di(1+δi+Δ{HorL});nH(λ),nL(λ);λ).
DFGD2=1Lj=1L[GD(X,λj)GD^(λj)]2,
DFT2=1Lj=1L[T(X,λj)T^(λj)]2.
TDF2=1mLi=1mj=1L[T(Xi,λj)T^(i)(λj)]2+αmi=1mδi2.
λ0+Δλλ01+ΔnH+nLnHdH+nLdL,
ΔdH+dLΔλλ0nHdH+nLdL(nH+nL)(dH+dL).
ΔdH+dL·100%514602.23·4555+1.47·6759(2.23+1.47)(4555+6759)·100%=0.16%<0.2%.

Metrics