Abstract

Optimization of the design of a nonimaging dish concentrator (NIDC) for a dense-array concentrator photovoltaic system is presented. A new algorithm has been developed to determine configuration of facet mirrors in a NIDC. Analytical formulas were derived to analyze the optical performance of a NIDC and then compared with a simulated result obtained from a numerical method. Comprehensive analysis of optical performance via analytical method has been carried out based on facet dimension and focal distance of the concentrator with a total reflective area of 120m2. The result shows that a facet dimension of 49.8 cm, focal distance of 8 m, and solar concentration ratio of 411.8 suns is the most optimized design for the lowest cost-per-output power, which is US$1.93 per watt.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. K. Chong, C. W. Wong, F. L. Siaw, and T. K. Yew, “Optical characterization of nonimaging planar concentrator for the application in concentrator photovoltaic system,” J. Sol. Energy Eng. 132, 011011 (2010).
    [CrossRef]
  2. A. W. Bett, B. Burger, F. Dimroth, G. Siefer, and H. Lerchenmuller, “High-concentration PV using III-V solar cells,” in Conference Record of the IEEE Fourth World Conference on Photovoltaic Energy Conversion (2006), pp. 615–620.
  3. G. S. Kinsey, R. A. Sherif, H. L. Cotal, P. Pien, R. R. King, R. J. Brandt, W. G. Wise, E. L. Labios, K. F. Wan, M. Haddad, J. M. Lacey, C. M. Fetzer, P. Verlinden, K. Lasich, and N. H. Karam, “Multijunction solar cells for dense-array concentrators,” in Conference Record of the IEEE Fourth World Conference on Photovoltaic Energy Conversion (2006), pp. 625–627.
  4. C. T. Kuo, H. Y. Shin, H. F. Hong, C. H. Wu, C. D. Lee, I. T. Lung, and Y. T. Hsu, “Development of the high concentration III-V photovoltaic system at INER, Taiwan,” Renew. Energy 34, 1931–1933 (2009).
    [CrossRef]
  5. E. Kussul, T. Baidyk, F. Lara-Rosano, J. M. Saniger, N. Bruce, and C. Estrada, “Micro-facet solar concentrator,” Int. J. Sustain. Energy 27, 61–71 (2008).
    [CrossRef]
  6. G. Johnston, K. Lovegrove, and A. Luzzi, “Optical performance of spherical reflecting elements for use with paraboloidal dish concentrator,” Sol. Energy 74, 133–140 (2003).
    [CrossRef]
  7. S. Ulmer, P. Heller, and W. Reinalter, “Slope measurements of parabolic dish concentrators using color-coded targets,” J. Sol. Energy Eng. 130, 011015 (2008).
    [CrossRef]
  8. V. Andreev, V. Grilikhes, V. Rumyantsev, N. Timoshina, and M. Shvarts, “Effect of non-uniform light intensity distribution on temperature coefficients of concentrators solar cells,” in Third World Conference on Photovoltaic Energy Conversion, (2003), pp. 881–884.
  9. J. S. Coventry, “Performance of a concentrating photovoltaic/thermal solar collector,” Sol. Energy 78, 211–222 (2005).
    [CrossRef]
  10. E. Franklin and J. Coventry, “Effects of highly non-uniform illumination distribution on electrical performance of solar cells,” in ANZSES Solar Conference, New Castle, Australia (2002).
  11. K. Nishioka, T. Takamoto, T. Agui, M. Kaneiwa, Y. Uraoka, and T. Fuyuki, “Annual output estimation of concentrator photovoltaic systems using high-efficiency InGaP/InGaAs/Ge triple-junction solar cells based on experimental solar cell’s characteristics and field-test meteorological data,” Sol. Energy Mater. Sol. Cells 90, 57–67 (2006).
    [CrossRef]
  12. D. Faiman, S. Biryukov, and K. K. Pearlmutter, “PETAL: a research pathway to fossil-competitive solar electricity,” in Conference Record of the 29th IEEE Photovoltaic Specialists Conference (2002), pp. 1384–1387.
  13. D. R. Mills and G. L. Morrison, “Compact linear Fresnel reflector solar thermal power plants,” Sol. Energy 68, 263–283 (2000).
    [CrossRef]
  14. K. Araki, M. Kondo, H. Uozumi, N. J. Ekins-Daukes, T. Egami, M. Hiramatsu, Y. Miyazaki, and M. Yamaguchi, “Packaging III-V tandem solar cells for practical terrestrial applications achievable to 27% of module efficiency by conventional machine assemble technology,” Sol. Energy Mater. Sol. Cells 90, 3320–3326 (2006).
    [CrossRef]
  15. Y. Kemmoku, T. Sakakibara, M. Hiramatsu, Y. Miyazaki, and T. Egami, “Field test of a concentrator photovoltaic system with flat Fresnel lens,” in Third World Conference on Photovoltaic Energy Conversion (2003), pp. 2379–2382.
  16. K. Ryu, J. G. Rhee, K. M. Park, and J. Kim, “Concept and design of modular Fresnel lenses for concentration solar PV system,” Sol. Energy 80, 1580–1587 (2006).
    [CrossRef]
  17. H. Ries, J. M. Gordon, and M. Lasken, “High-flux photovoltaic solar concentrators with kaleidoscope-based optical designs,” Sol. Energy 60, 11–16 (1997).
    [CrossRef]
  18. G. Segev and A. Kribus, “Performance of CPV modules based on vertical multi-juctNion cells under non-uniform illuminations,” Sol. Energy 88, 120–128 (2013).
    [CrossRef]
  19. Z. Wang, H. Zhang, D. Wen, W. Zhao, and Z. Zhou, “Characterization of the InDaP/InGaAs/Ge triple-junction solar cell with a two-stage dish-style concentration system,” Energy Convers. Manage. 76, 177–184 (2013).
    [CrossRef]
  20. K. Kreske, “Optical design of a solar flux homogenizer for concentrator photovoltaics,” Appl. Opt. 41, 2053–2058 (2002).
    [CrossRef]
  21. K. K. Chong, F. L. Siaw, C. W. Wong, and G. S. Wong, “Design and construction of non-imaging planar concentrator for concentrator photovoltaic system,” Renew. Energy 34, 1364–1370 (2009).
    [CrossRef]
  22. K.-K. Chong, C.-W. Wong, T.-K. Yew, and M.-H. Tan, “Solar concentrator assembly,” U.S. Patent Application13/901,519 (filed on May23, 2013, pending).
  23. K.-K. Chong, C.-W. Wong, T.-K. Yew, and M.-H. Tan, “Solar concentrator assembly,” Malaysian Patent No. PI 2012002439 (filed on May31, 2012, pending).
  24. C.-W. Wong, K.-K. Chong, and T.-K. Yew, “Analytical model of non-imaging planar concentrator for the application in dense-array concentrator photovoltaic system,” in 1st International Symposium on Innovative Technologies in Engineering and Science (2013), pp. 679–686.
  25. Emcore, 2012. “CTJ photovoltaic cell – 10  mm × 10 mm, triple junction solar cell for terrestrial applications,” http://www.emcore.com .

2013

G. Segev and A. Kribus, “Performance of CPV modules based on vertical multi-juctNion cells under non-uniform illuminations,” Sol. Energy 88, 120–128 (2013).
[CrossRef]

Z. Wang, H. Zhang, D. Wen, W. Zhao, and Z. Zhou, “Characterization of the InDaP/InGaAs/Ge triple-junction solar cell with a two-stage dish-style concentration system,” Energy Convers. Manage. 76, 177–184 (2013).
[CrossRef]

2010

K. K. Chong, C. W. Wong, F. L. Siaw, and T. K. Yew, “Optical characterization of nonimaging planar concentrator for the application in concentrator photovoltaic system,” J. Sol. Energy Eng. 132, 011011 (2010).
[CrossRef]

2009

C. T. Kuo, H. Y. Shin, H. F. Hong, C. H. Wu, C. D. Lee, I. T. Lung, and Y. T. Hsu, “Development of the high concentration III-V photovoltaic system at INER, Taiwan,” Renew. Energy 34, 1931–1933 (2009).
[CrossRef]

K. K. Chong, F. L. Siaw, C. W. Wong, and G. S. Wong, “Design and construction of non-imaging planar concentrator for concentrator photovoltaic system,” Renew. Energy 34, 1364–1370 (2009).
[CrossRef]

2008

E. Kussul, T. Baidyk, F. Lara-Rosano, J. M. Saniger, N. Bruce, and C. Estrada, “Micro-facet solar concentrator,” Int. J. Sustain. Energy 27, 61–71 (2008).
[CrossRef]

S. Ulmer, P. Heller, and W. Reinalter, “Slope measurements of parabolic dish concentrators using color-coded targets,” J. Sol. Energy Eng. 130, 011015 (2008).
[CrossRef]

2006

K. Nishioka, T. Takamoto, T. Agui, M. Kaneiwa, Y. Uraoka, and T. Fuyuki, “Annual output estimation of concentrator photovoltaic systems using high-efficiency InGaP/InGaAs/Ge triple-junction solar cells based on experimental solar cell’s characteristics and field-test meteorological data,” Sol. Energy Mater. Sol. Cells 90, 57–67 (2006).
[CrossRef]

K. Araki, M. Kondo, H. Uozumi, N. J. Ekins-Daukes, T. Egami, M. Hiramatsu, Y. Miyazaki, and M. Yamaguchi, “Packaging III-V tandem solar cells for practical terrestrial applications achievable to 27% of module efficiency by conventional machine assemble technology,” Sol. Energy Mater. Sol. Cells 90, 3320–3326 (2006).
[CrossRef]

K. Ryu, J. G. Rhee, K. M. Park, and J. Kim, “Concept and design of modular Fresnel lenses for concentration solar PV system,” Sol. Energy 80, 1580–1587 (2006).
[CrossRef]

2005

J. S. Coventry, “Performance of a concentrating photovoltaic/thermal solar collector,” Sol. Energy 78, 211–222 (2005).
[CrossRef]

2003

G. Johnston, K. Lovegrove, and A. Luzzi, “Optical performance of spherical reflecting elements for use with paraboloidal dish concentrator,” Sol. Energy 74, 133–140 (2003).
[CrossRef]

2002

2000

D. R. Mills and G. L. Morrison, “Compact linear Fresnel reflector solar thermal power plants,” Sol. Energy 68, 263–283 (2000).
[CrossRef]

1997

H. Ries, J. M. Gordon, and M. Lasken, “High-flux photovoltaic solar concentrators with kaleidoscope-based optical designs,” Sol. Energy 60, 11–16 (1997).
[CrossRef]

Agui, T.

K. Nishioka, T. Takamoto, T. Agui, M. Kaneiwa, Y. Uraoka, and T. Fuyuki, “Annual output estimation of concentrator photovoltaic systems using high-efficiency InGaP/InGaAs/Ge triple-junction solar cells based on experimental solar cell’s characteristics and field-test meteorological data,” Sol. Energy Mater. Sol. Cells 90, 57–67 (2006).
[CrossRef]

Andreev, V.

V. Andreev, V. Grilikhes, V. Rumyantsev, N. Timoshina, and M. Shvarts, “Effect of non-uniform light intensity distribution on temperature coefficients of concentrators solar cells,” in Third World Conference on Photovoltaic Energy Conversion, (2003), pp. 881–884.

Araki, K.

K. Araki, M. Kondo, H. Uozumi, N. J. Ekins-Daukes, T. Egami, M. Hiramatsu, Y. Miyazaki, and M. Yamaguchi, “Packaging III-V tandem solar cells for practical terrestrial applications achievable to 27% of module efficiency by conventional machine assemble technology,” Sol. Energy Mater. Sol. Cells 90, 3320–3326 (2006).
[CrossRef]

Baidyk, T.

E. Kussul, T. Baidyk, F. Lara-Rosano, J. M. Saniger, N. Bruce, and C. Estrada, “Micro-facet solar concentrator,” Int. J. Sustain. Energy 27, 61–71 (2008).
[CrossRef]

Bett, A. W.

A. W. Bett, B. Burger, F. Dimroth, G. Siefer, and H. Lerchenmuller, “High-concentration PV using III-V solar cells,” in Conference Record of the IEEE Fourth World Conference on Photovoltaic Energy Conversion (2006), pp. 615–620.

Biryukov, S.

D. Faiman, S. Biryukov, and K. K. Pearlmutter, “PETAL: a research pathway to fossil-competitive solar electricity,” in Conference Record of the 29th IEEE Photovoltaic Specialists Conference (2002), pp. 1384–1387.

Brandt, R. J.

G. S. Kinsey, R. A. Sherif, H. L. Cotal, P. Pien, R. R. King, R. J. Brandt, W. G. Wise, E. L. Labios, K. F. Wan, M. Haddad, J. M. Lacey, C. M. Fetzer, P. Verlinden, K. Lasich, and N. H. Karam, “Multijunction solar cells for dense-array concentrators,” in Conference Record of the IEEE Fourth World Conference on Photovoltaic Energy Conversion (2006), pp. 625–627.

Bruce, N.

E. Kussul, T. Baidyk, F. Lara-Rosano, J. M. Saniger, N. Bruce, and C. Estrada, “Micro-facet solar concentrator,” Int. J. Sustain. Energy 27, 61–71 (2008).
[CrossRef]

Burger, B.

A. W. Bett, B. Burger, F. Dimroth, G. Siefer, and H. Lerchenmuller, “High-concentration PV using III-V solar cells,” in Conference Record of the IEEE Fourth World Conference on Photovoltaic Energy Conversion (2006), pp. 615–620.

Chong, K. K.

K. K. Chong, C. W. Wong, F. L. Siaw, and T. K. Yew, “Optical characterization of nonimaging planar concentrator for the application in concentrator photovoltaic system,” J. Sol. Energy Eng. 132, 011011 (2010).
[CrossRef]

K. K. Chong, F. L. Siaw, C. W. Wong, and G. S. Wong, “Design and construction of non-imaging planar concentrator for concentrator photovoltaic system,” Renew. Energy 34, 1364–1370 (2009).
[CrossRef]

Chong, K.-K.

K.-K. Chong, C.-W. Wong, T.-K. Yew, and M.-H. Tan, “Solar concentrator assembly,” Malaysian Patent No. PI 2012002439 (filed on May31, 2012, pending).

C.-W. Wong, K.-K. Chong, and T.-K. Yew, “Analytical model of non-imaging planar concentrator for the application in dense-array concentrator photovoltaic system,” in 1st International Symposium on Innovative Technologies in Engineering and Science (2013), pp. 679–686.

K.-K. Chong, C.-W. Wong, T.-K. Yew, and M.-H. Tan, “Solar concentrator assembly,” U.S. Patent Application13/901,519 (filed on May23, 2013, pending).

Cotal, H. L.

G. S. Kinsey, R. A. Sherif, H. L. Cotal, P. Pien, R. R. King, R. J. Brandt, W. G. Wise, E. L. Labios, K. F. Wan, M. Haddad, J. M. Lacey, C. M. Fetzer, P. Verlinden, K. Lasich, and N. H. Karam, “Multijunction solar cells for dense-array concentrators,” in Conference Record of the IEEE Fourth World Conference on Photovoltaic Energy Conversion (2006), pp. 625–627.

Coventry, J.

E. Franklin and J. Coventry, “Effects of highly non-uniform illumination distribution on electrical performance of solar cells,” in ANZSES Solar Conference, New Castle, Australia (2002).

Coventry, J. S.

J. S. Coventry, “Performance of a concentrating photovoltaic/thermal solar collector,” Sol. Energy 78, 211–222 (2005).
[CrossRef]

Dimroth, F.

A. W. Bett, B. Burger, F. Dimroth, G. Siefer, and H. Lerchenmuller, “High-concentration PV using III-V solar cells,” in Conference Record of the IEEE Fourth World Conference on Photovoltaic Energy Conversion (2006), pp. 615–620.

Egami, T.

K. Araki, M. Kondo, H. Uozumi, N. J. Ekins-Daukes, T. Egami, M. Hiramatsu, Y. Miyazaki, and M. Yamaguchi, “Packaging III-V tandem solar cells for practical terrestrial applications achievable to 27% of module efficiency by conventional machine assemble technology,” Sol. Energy Mater. Sol. Cells 90, 3320–3326 (2006).
[CrossRef]

Y. Kemmoku, T. Sakakibara, M. Hiramatsu, Y. Miyazaki, and T. Egami, “Field test of a concentrator photovoltaic system with flat Fresnel lens,” in Third World Conference on Photovoltaic Energy Conversion (2003), pp. 2379–2382.

Ekins-Daukes, N. J.

K. Araki, M. Kondo, H. Uozumi, N. J. Ekins-Daukes, T. Egami, M. Hiramatsu, Y. Miyazaki, and M. Yamaguchi, “Packaging III-V tandem solar cells for practical terrestrial applications achievable to 27% of module efficiency by conventional machine assemble technology,” Sol. Energy Mater. Sol. Cells 90, 3320–3326 (2006).
[CrossRef]

Estrada, C.

E. Kussul, T. Baidyk, F. Lara-Rosano, J. M. Saniger, N. Bruce, and C. Estrada, “Micro-facet solar concentrator,” Int. J. Sustain. Energy 27, 61–71 (2008).
[CrossRef]

Faiman, D.

D. Faiman, S. Biryukov, and K. K. Pearlmutter, “PETAL: a research pathway to fossil-competitive solar electricity,” in Conference Record of the 29th IEEE Photovoltaic Specialists Conference (2002), pp. 1384–1387.

Fetzer, C. M.

G. S. Kinsey, R. A. Sherif, H. L. Cotal, P. Pien, R. R. King, R. J. Brandt, W. G. Wise, E. L. Labios, K. F. Wan, M. Haddad, J. M. Lacey, C. M. Fetzer, P. Verlinden, K. Lasich, and N. H. Karam, “Multijunction solar cells for dense-array concentrators,” in Conference Record of the IEEE Fourth World Conference on Photovoltaic Energy Conversion (2006), pp. 625–627.

Franklin, E.

E. Franklin and J. Coventry, “Effects of highly non-uniform illumination distribution on electrical performance of solar cells,” in ANZSES Solar Conference, New Castle, Australia (2002).

Fuyuki, T.

K. Nishioka, T. Takamoto, T. Agui, M. Kaneiwa, Y. Uraoka, and T. Fuyuki, “Annual output estimation of concentrator photovoltaic systems using high-efficiency InGaP/InGaAs/Ge triple-junction solar cells based on experimental solar cell’s characteristics and field-test meteorological data,” Sol. Energy Mater. Sol. Cells 90, 57–67 (2006).
[CrossRef]

Gordon, J. M.

H. Ries, J. M. Gordon, and M. Lasken, “High-flux photovoltaic solar concentrators with kaleidoscope-based optical designs,” Sol. Energy 60, 11–16 (1997).
[CrossRef]

Grilikhes, V.

V. Andreev, V. Grilikhes, V. Rumyantsev, N. Timoshina, and M. Shvarts, “Effect of non-uniform light intensity distribution on temperature coefficients of concentrators solar cells,” in Third World Conference on Photovoltaic Energy Conversion, (2003), pp. 881–884.

Haddad, M.

G. S. Kinsey, R. A. Sherif, H. L. Cotal, P. Pien, R. R. King, R. J. Brandt, W. G. Wise, E. L. Labios, K. F. Wan, M. Haddad, J. M. Lacey, C. M. Fetzer, P. Verlinden, K. Lasich, and N. H. Karam, “Multijunction solar cells for dense-array concentrators,” in Conference Record of the IEEE Fourth World Conference on Photovoltaic Energy Conversion (2006), pp. 625–627.

Heller, P.

S. Ulmer, P. Heller, and W. Reinalter, “Slope measurements of parabolic dish concentrators using color-coded targets,” J. Sol. Energy Eng. 130, 011015 (2008).
[CrossRef]

Hiramatsu, M.

K. Araki, M. Kondo, H. Uozumi, N. J. Ekins-Daukes, T. Egami, M. Hiramatsu, Y. Miyazaki, and M. Yamaguchi, “Packaging III-V tandem solar cells for practical terrestrial applications achievable to 27% of module efficiency by conventional machine assemble technology,” Sol. Energy Mater. Sol. Cells 90, 3320–3326 (2006).
[CrossRef]

Y. Kemmoku, T. Sakakibara, M. Hiramatsu, Y. Miyazaki, and T. Egami, “Field test of a concentrator photovoltaic system with flat Fresnel lens,” in Third World Conference on Photovoltaic Energy Conversion (2003), pp. 2379–2382.

Hong, H. F.

C. T. Kuo, H. Y. Shin, H. F. Hong, C. H. Wu, C. D. Lee, I. T. Lung, and Y. T. Hsu, “Development of the high concentration III-V photovoltaic system at INER, Taiwan,” Renew. Energy 34, 1931–1933 (2009).
[CrossRef]

Hsu, Y. T.

C. T. Kuo, H. Y. Shin, H. F. Hong, C. H. Wu, C. D. Lee, I. T. Lung, and Y. T. Hsu, “Development of the high concentration III-V photovoltaic system at INER, Taiwan,” Renew. Energy 34, 1931–1933 (2009).
[CrossRef]

Johnston, G.

G. Johnston, K. Lovegrove, and A. Luzzi, “Optical performance of spherical reflecting elements for use with paraboloidal dish concentrator,” Sol. Energy 74, 133–140 (2003).
[CrossRef]

Kaneiwa, M.

K. Nishioka, T. Takamoto, T. Agui, M. Kaneiwa, Y. Uraoka, and T. Fuyuki, “Annual output estimation of concentrator photovoltaic systems using high-efficiency InGaP/InGaAs/Ge triple-junction solar cells based on experimental solar cell’s characteristics and field-test meteorological data,” Sol. Energy Mater. Sol. Cells 90, 57–67 (2006).
[CrossRef]

Karam, N. H.

G. S. Kinsey, R. A. Sherif, H. L. Cotal, P. Pien, R. R. King, R. J. Brandt, W. G. Wise, E. L. Labios, K. F. Wan, M. Haddad, J. M. Lacey, C. M. Fetzer, P. Verlinden, K. Lasich, and N. H. Karam, “Multijunction solar cells for dense-array concentrators,” in Conference Record of the IEEE Fourth World Conference on Photovoltaic Energy Conversion (2006), pp. 625–627.

Kemmoku, Y.

Y. Kemmoku, T. Sakakibara, M. Hiramatsu, Y. Miyazaki, and T. Egami, “Field test of a concentrator photovoltaic system with flat Fresnel lens,” in Third World Conference on Photovoltaic Energy Conversion (2003), pp. 2379–2382.

Kim, J.

K. Ryu, J. G. Rhee, K. M. Park, and J. Kim, “Concept and design of modular Fresnel lenses for concentration solar PV system,” Sol. Energy 80, 1580–1587 (2006).
[CrossRef]

King, R. R.

G. S. Kinsey, R. A. Sherif, H. L. Cotal, P. Pien, R. R. King, R. J. Brandt, W. G. Wise, E. L. Labios, K. F. Wan, M. Haddad, J. M. Lacey, C. M. Fetzer, P. Verlinden, K. Lasich, and N. H. Karam, “Multijunction solar cells for dense-array concentrators,” in Conference Record of the IEEE Fourth World Conference on Photovoltaic Energy Conversion (2006), pp. 625–627.

Kinsey, G. S.

G. S. Kinsey, R. A. Sherif, H. L. Cotal, P. Pien, R. R. King, R. J. Brandt, W. G. Wise, E. L. Labios, K. F. Wan, M. Haddad, J. M. Lacey, C. M. Fetzer, P. Verlinden, K. Lasich, and N. H. Karam, “Multijunction solar cells for dense-array concentrators,” in Conference Record of the IEEE Fourth World Conference on Photovoltaic Energy Conversion (2006), pp. 625–627.

Kondo, M.

K. Araki, M. Kondo, H. Uozumi, N. J. Ekins-Daukes, T. Egami, M. Hiramatsu, Y. Miyazaki, and M. Yamaguchi, “Packaging III-V tandem solar cells for practical terrestrial applications achievable to 27% of module efficiency by conventional machine assemble technology,” Sol. Energy Mater. Sol. Cells 90, 3320–3326 (2006).
[CrossRef]

Kreske, K.

Kribus, A.

G. Segev and A. Kribus, “Performance of CPV modules based on vertical multi-juctNion cells under non-uniform illuminations,” Sol. Energy 88, 120–128 (2013).
[CrossRef]

Kuo, C. T.

C. T. Kuo, H. Y. Shin, H. F. Hong, C. H. Wu, C. D. Lee, I. T. Lung, and Y. T. Hsu, “Development of the high concentration III-V photovoltaic system at INER, Taiwan,” Renew. Energy 34, 1931–1933 (2009).
[CrossRef]

Kussul, E.

E. Kussul, T. Baidyk, F. Lara-Rosano, J. M. Saniger, N. Bruce, and C. Estrada, “Micro-facet solar concentrator,” Int. J. Sustain. Energy 27, 61–71 (2008).
[CrossRef]

Labios, E. L.

G. S. Kinsey, R. A. Sherif, H. L. Cotal, P. Pien, R. R. King, R. J. Brandt, W. G. Wise, E. L. Labios, K. F. Wan, M. Haddad, J. M. Lacey, C. M. Fetzer, P. Verlinden, K. Lasich, and N. H. Karam, “Multijunction solar cells for dense-array concentrators,” in Conference Record of the IEEE Fourth World Conference on Photovoltaic Energy Conversion (2006), pp. 625–627.

Lacey, J. M.

G. S. Kinsey, R. A. Sherif, H. L. Cotal, P. Pien, R. R. King, R. J. Brandt, W. G. Wise, E. L. Labios, K. F. Wan, M. Haddad, J. M. Lacey, C. M. Fetzer, P. Verlinden, K. Lasich, and N. H. Karam, “Multijunction solar cells for dense-array concentrators,” in Conference Record of the IEEE Fourth World Conference on Photovoltaic Energy Conversion (2006), pp. 625–627.

Lara-Rosano, F.

E. Kussul, T. Baidyk, F. Lara-Rosano, J. M. Saniger, N. Bruce, and C. Estrada, “Micro-facet solar concentrator,” Int. J. Sustain. Energy 27, 61–71 (2008).
[CrossRef]

Lasich, K.

G. S. Kinsey, R. A. Sherif, H. L. Cotal, P. Pien, R. R. King, R. J. Brandt, W. G. Wise, E. L. Labios, K. F. Wan, M. Haddad, J. M. Lacey, C. M. Fetzer, P. Verlinden, K. Lasich, and N. H. Karam, “Multijunction solar cells for dense-array concentrators,” in Conference Record of the IEEE Fourth World Conference on Photovoltaic Energy Conversion (2006), pp. 625–627.

Lasken, M.

H. Ries, J. M. Gordon, and M. Lasken, “High-flux photovoltaic solar concentrators with kaleidoscope-based optical designs,” Sol. Energy 60, 11–16 (1997).
[CrossRef]

Lee, C. D.

C. T. Kuo, H. Y. Shin, H. F. Hong, C. H. Wu, C. D. Lee, I. T. Lung, and Y. T. Hsu, “Development of the high concentration III-V photovoltaic system at INER, Taiwan,” Renew. Energy 34, 1931–1933 (2009).
[CrossRef]

Lerchenmuller, H.

A. W. Bett, B. Burger, F. Dimroth, G. Siefer, and H. Lerchenmuller, “High-concentration PV using III-V solar cells,” in Conference Record of the IEEE Fourth World Conference on Photovoltaic Energy Conversion (2006), pp. 615–620.

Lovegrove, K.

G. Johnston, K. Lovegrove, and A. Luzzi, “Optical performance of spherical reflecting elements for use with paraboloidal dish concentrator,” Sol. Energy 74, 133–140 (2003).
[CrossRef]

Lung, I. T.

C. T. Kuo, H. Y. Shin, H. F. Hong, C. H. Wu, C. D. Lee, I. T. Lung, and Y. T. Hsu, “Development of the high concentration III-V photovoltaic system at INER, Taiwan,” Renew. Energy 34, 1931–1933 (2009).
[CrossRef]

Luzzi, A.

G. Johnston, K. Lovegrove, and A. Luzzi, “Optical performance of spherical reflecting elements for use with paraboloidal dish concentrator,” Sol. Energy 74, 133–140 (2003).
[CrossRef]

Mills, D. R.

D. R. Mills and G. L. Morrison, “Compact linear Fresnel reflector solar thermal power plants,” Sol. Energy 68, 263–283 (2000).
[CrossRef]

Miyazaki, Y.

K. Araki, M. Kondo, H. Uozumi, N. J. Ekins-Daukes, T. Egami, M. Hiramatsu, Y. Miyazaki, and M. Yamaguchi, “Packaging III-V tandem solar cells for practical terrestrial applications achievable to 27% of module efficiency by conventional machine assemble technology,” Sol. Energy Mater. Sol. Cells 90, 3320–3326 (2006).
[CrossRef]

Y. Kemmoku, T. Sakakibara, M. Hiramatsu, Y. Miyazaki, and T. Egami, “Field test of a concentrator photovoltaic system with flat Fresnel lens,” in Third World Conference on Photovoltaic Energy Conversion (2003), pp. 2379–2382.

Morrison, G. L.

D. R. Mills and G. L. Morrison, “Compact linear Fresnel reflector solar thermal power plants,” Sol. Energy 68, 263–283 (2000).
[CrossRef]

Nishioka, K.

K. Nishioka, T. Takamoto, T. Agui, M. Kaneiwa, Y. Uraoka, and T. Fuyuki, “Annual output estimation of concentrator photovoltaic systems using high-efficiency InGaP/InGaAs/Ge triple-junction solar cells based on experimental solar cell’s characteristics and field-test meteorological data,” Sol. Energy Mater. Sol. Cells 90, 57–67 (2006).
[CrossRef]

Park, K. M.

K. Ryu, J. G. Rhee, K. M. Park, and J. Kim, “Concept and design of modular Fresnel lenses for concentration solar PV system,” Sol. Energy 80, 1580–1587 (2006).
[CrossRef]

Pearlmutter, K. K.

D. Faiman, S. Biryukov, and K. K. Pearlmutter, “PETAL: a research pathway to fossil-competitive solar electricity,” in Conference Record of the 29th IEEE Photovoltaic Specialists Conference (2002), pp. 1384–1387.

Pien, P.

G. S. Kinsey, R. A. Sherif, H. L. Cotal, P. Pien, R. R. King, R. J. Brandt, W. G. Wise, E. L. Labios, K. F. Wan, M. Haddad, J. M. Lacey, C. M. Fetzer, P. Verlinden, K. Lasich, and N. H. Karam, “Multijunction solar cells for dense-array concentrators,” in Conference Record of the IEEE Fourth World Conference on Photovoltaic Energy Conversion (2006), pp. 625–627.

Reinalter, W.

S. Ulmer, P. Heller, and W. Reinalter, “Slope measurements of parabolic dish concentrators using color-coded targets,” J. Sol. Energy Eng. 130, 011015 (2008).
[CrossRef]

Rhee, J. G.

K. Ryu, J. G. Rhee, K. M. Park, and J. Kim, “Concept and design of modular Fresnel lenses for concentration solar PV system,” Sol. Energy 80, 1580–1587 (2006).
[CrossRef]

Ries, H.

H. Ries, J. M. Gordon, and M. Lasken, “High-flux photovoltaic solar concentrators with kaleidoscope-based optical designs,” Sol. Energy 60, 11–16 (1997).
[CrossRef]

Rumyantsev, V.

V. Andreev, V. Grilikhes, V. Rumyantsev, N. Timoshina, and M. Shvarts, “Effect of non-uniform light intensity distribution on temperature coefficients of concentrators solar cells,” in Third World Conference on Photovoltaic Energy Conversion, (2003), pp. 881–884.

Ryu, K.

K. Ryu, J. G. Rhee, K. M. Park, and J. Kim, “Concept and design of modular Fresnel lenses for concentration solar PV system,” Sol. Energy 80, 1580–1587 (2006).
[CrossRef]

Sakakibara, T.

Y. Kemmoku, T. Sakakibara, M. Hiramatsu, Y. Miyazaki, and T. Egami, “Field test of a concentrator photovoltaic system with flat Fresnel lens,” in Third World Conference on Photovoltaic Energy Conversion (2003), pp. 2379–2382.

Saniger, J. M.

E. Kussul, T. Baidyk, F. Lara-Rosano, J. M. Saniger, N. Bruce, and C. Estrada, “Micro-facet solar concentrator,” Int. J. Sustain. Energy 27, 61–71 (2008).
[CrossRef]

Segev, G.

G. Segev and A. Kribus, “Performance of CPV modules based on vertical multi-juctNion cells under non-uniform illuminations,” Sol. Energy 88, 120–128 (2013).
[CrossRef]

Sherif, R. A.

G. S. Kinsey, R. A. Sherif, H. L. Cotal, P. Pien, R. R. King, R. J. Brandt, W. G. Wise, E. L. Labios, K. F. Wan, M. Haddad, J. M. Lacey, C. M. Fetzer, P. Verlinden, K. Lasich, and N. H. Karam, “Multijunction solar cells for dense-array concentrators,” in Conference Record of the IEEE Fourth World Conference on Photovoltaic Energy Conversion (2006), pp. 625–627.

Shin, H. Y.

C. T. Kuo, H. Y. Shin, H. F. Hong, C. H. Wu, C. D. Lee, I. T. Lung, and Y. T. Hsu, “Development of the high concentration III-V photovoltaic system at INER, Taiwan,” Renew. Energy 34, 1931–1933 (2009).
[CrossRef]

Shvarts, M.

V. Andreev, V. Grilikhes, V. Rumyantsev, N. Timoshina, and M. Shvarts, “Effect of non-uniform light intensity distribution on temperature coefficients of concentrators solar cells,” in Third World Conference on Photovoltaic Energy Conversion, (2003), pp. 881–884.

Siaw, F. L.

K. K. Chong, C. W. Wong, F. L. Siaw, and T. K. Yew, “Optical characterization of nonimaging planar concentrator for the application in concentrator photovoltaic system,” J. Sol. Energy Eng. 132, 011011 (2010).
[CrossRef]

K. K. Chong, F. L. Siaw, C. W. Wong, and G. S. Wong, “Design and construction of non-imaging planar concentrator for concentrator photovoltaic system,” Renew. Energy 34, 1364–1370 (2009).
[CrossRef]

Siefer, G.

A. W. Bett, B. Burger, F. Dimroth, G. Siefer, and H. Lerchenmuller, “High-concentration PV using III-V solar cells,” in Conference Record of the IEEE Fourth World Conference on Photovoltaic Energy Conversion (2006), pp. 615–620.

Takamoto, T.

K. Nishioka, T. Takamoto, T. Agui, M. Kaneiwa, Y. Uraoka, and T. Fuyuki, “Annual output estimation of concentrator photovoltaic systems using high-efficiency InGaP/InGaAs/Ge triple-junction solar cells based on experimental solar cell’s characteristics and field-test meteorological data,” Sol. Energy Mater. Sol. Cells 90, 57–67 (2006).
[CrossRef]

Tan, M.-H.

K.-K. Chong, C.-W. Wong, T.-K. Yew, and M.-H. Tan, “Solar concentrator assembly,” U.S. Patent Application13/901,519 (filed on May23, 2013, pending).

K.-K. Chong, C.-W. Wong, T.-K. Yew, and M.-H. Tan, “Solar concentrator assembly,” Malaysian Patent No. PI 2012002439 (filed on May31, 2012, pending).

Timoshina, N.

V. Andreev, V. Grilikhes, V. Rumyantsev, N. Timoshina, and M. Shvarts, “Effect of non-uniform light intensity distribution on temperature coefficients of concentrators solar cells,” in Third World Conference on Photovoltaic Energy Conversion, (2003), pp. 881–884.

Ulmer, S.

S. Ulmer, P. Heller, and W. Reinalter, “Slope measurements of parabolic dish concentrators using color-coded targets,” J. Sol. Energy Eng. 130, 011015 (2008).
[CrossRef]

Uozumi, H.

K. Araki, M. Kondo, H. Uozumi, N. J. Ekins-Daukes, T. Egami, M. Hiramatsu, Y. Miyazaki, and M. Yamaguchi, “Packaging III-V tandem solar cells for practical terrestrial applications achievable to 27% of module efficiency by conventional machine assemble technology,” Sol. Energy Mater. Sol. Cells 90, 3320–3326 (2006).
[CrossRef]

Uraoka, Y.

K. Nishioka, T. Takamoto, T. Agui, M. Kaneiwa, Y. Uraoka, and T. Fuyuki, “Annual output estimation of concentrator photovoltaic systems using high-efficiency InGaP/InGaAs/Ge triple-junction solar cells based on experimental solar cell’s characteristics and field-test meteorological data,” Sol. Energy Mater. Sol. Cells 90, 57–67 (2006).
[CrossRef]

Verlinden, P.

G. S. Kinsey, R. A. Sherif, H. L. Cotal, P. Pien, R. R. King, R. J. Brandt, W. G. Wise, E. L. Labios, K. F. Wan, M. Haddad, J. M. Lacey, C. M. Fetzer, P. Verlinden, K. Lasich, and N. H. Karam, “Multijunction solar cells for dense-array concentrators,” in Conference Record of the IEEE Fourth World Conference on Photovoltaic Energy Conversion (2006), pp. 625–627.

Wan, K. F.

G. S. Kinsey, R. A. Sherif, H. L. Cotal, P. Pien, R. R. King, R. J. Brandt, W. G. Wise, E. L. Labios, K. F. Wan, M. Haddad, J. M. Lacey, C. M. Fetzer, P. Verlinden, K. Lasich, and N. H. Karam, “Multijunction solar cells for dense-array concentrators,” in Conference Record of the IEEE Fourth World Conference on Photovoltaic Energy Conversion (2006), pp. 625–627.

Wang, Z.

Z. Wang, H. Zhang, D. Wen, W. Zhao, and Z. Zhou, “Characterization of the InDaP/InGaAs/Ge triple-junction solar cell with a two-stage dish-style concentration system,” Energy Convers. Manage. 76, 177–184 (2013).
[CrossRef]

Wen, D.

Z. Wang, H. Zhang, D. Wen, W. Zhao, and Z. Zhou, “Characterization of the InDaP/InGaAs/Ge triple-junction solar cell with a two-stage dish-style concentration system,” Energy Convers. Manage. 76, 177–184 (2013).
[CrossRef]

Wise, W. G.

G. S. Kinsey, R. A. Sherif, H. L. Cotal, P. Pien, R. R. King, R. J. Brandt, W. G. Wise, E. L. Labios, K. F. Wan, M. Haddad, J. M. Lacey, C. M. Fetzer, P. Verlinden, K. Lasich, and N. H. Karam, “Multijunction solar cells for dense-array concentrators,” in Conference Record of the IEEE Fourth World Conference on Photovoltaic Energy Conversion (2006), pp. 625–627.

Wong, C. W.

K. K. Chong, C. W. Wong, F. L. Siaw, and T. K. Yew, “Optical characterization of nonimaging planar concentrator for the application in concentrator photovoltaic system,” J. Sol. Energy Eng. 132, 011011 (2010).
[CrossRef]

K. K. Chong, F. L. Siaw, C. W. Wong, and G. S. Wong, “Design and construction of non-imaging planar concentrator for concentrator photovoltaic system,” Renew. Energy 34, 1364–1370 (2009).
[CrossRef]

Wong, C.-W.

K.-K. Chong, C.-W. Wong, T.-K. Yew, and M.-H. Tan, “Solar concentrator assembly,” Malaysian Patent No. PI 2012002439 (filed on May31, 2012, pending).

C.-W. Wong, K.-K. Chong, and T.-K. Yew, “Analytical model of non-imaging planar concentrator for the application in dense-array concentrator photovoltaic system,” in 1st International Symposium on Innovative Technologies in Engineering and Science (2013), pp. 679–686.

K.-K. Chong, C.-W. Wong, T.-K. Yew, and M.-H. Tan, “Solar concentrator assembly,” U.S. Patent Application13/901,519 (filed on May23, 2013, pending).

Wong, G. S.

K. K. Chong, F. L. Siaw, C. W. Wong, and G. S. Wong, “Design and construction of non-imaging planar concentrator for concentrator photovoltaic system,” Renew. Energy 34, 1364–1370 (2009).
[CrossRef]

Wu, C. H.

C. T. Kuo, H. Y. Shin, H. F. Hong, C. H. Wu, C. D. Lee, I. T. Lung, and Y. T. Hsu, “Development of the high concentration III-V photovoltaic system at INER, Taiwan,” Renew. Energy 34, 1931–1933 (2009).
[CrossRef]

Yamaguchi, M.

K. Araki, M. Kondo, H. Uozumi, N. J. Ekins-Daukes, T. Egami, M. Hiramatsu, Y. Miyazaki, and M. Yamaguchi, “Packaging III-V tandem solar cells for practical terrestrial applications achievable to 27% of module efficiency by conventional machine assemble technology,” Sol. Energy Mater. Sol. Cells 90, 3320–3326 (2006).
[CrossRef]

Yew, T. K.

K. K. Chong, C. W. Wong, F. L. Siaw, and T. K. Yew, “Optical characterization of nonimaging planar concentrator for the application in concentrator photovoltaic system,” J. Sol. Energy Eng. 132, 011011 (2010).
[CrossRef]

Yew, T.-K.

K.-K. Chong, C.-W. Wong, T.-K. Yew, and M.-H. Tan, “Solar concentrator assembly,” U.S. Patent Application13/901,519 (filed on May23, 2013, pending).

K.-K. Chong, C.-W. Wong, T.-K. Yew, and M.-H. Tan, “Solar concentrator assembly,” Malaysian Patent No. PI 2012002439 (filed on May31, 2012, pending).

C.-W. Wong, K.-K. Chong, and T.-K. Yew, “Analytical model of non-imaging planar concentrator for the application in dense-array concentrator photovoltaic system,” in 1st International Symposium on Innovative Technologies in Engineering and Science (2013), pp. 679–686.

Zhang, H.

Z. Wang, H. Zhang, D. Wen, W. Zhao, and Z. Zhou, “Characterization of the InDaP/InGaAs/Ge triple-junction solar cell with a two-stage dish-style concentration system,” Energy Convers. Manage. 76, 177–184 (2013).
[CrossRef]

Zhao, W.

Z. Wang, H. Zhang, D. Wen, W. Zhao, and Z. Zhou, “Characterization of the InDaP/InGaAs/Ge triple-junction solar cell with a two-stage dish-style concentration system,” Energy Convers. Manage. 76, 177–184 (2013).
[CrossRef]

Zhou, Z.

Z. Wang, H. Zhang, D. Wen, W. Zhao, and Z. Zhou, “Characterization of the InDaP/InGaAs/Ge triple-junction solar cell with a two-stage dish-style concentration system,” Energy Convers. Manage. 76, 177–184 (2013).
[CrossRef]

Appl. Opt.

Energy Convers. Manage.

Z. Wang, H. Zhang, D. Wen, W. Zhao, and Z. Zhou, “Characterization of the InDaP/InGaAs/Ge triple-junction solar cell with a two-stage dish-style concentration system,” Energy Convers. Manage. 76, 177–184 (2013).
[CrossRef]

Int. J. Sustain. Energy

E. Kussul, T. Baidyk, F. Lara-Rosano, J. M. Saniger, N. Bruce, and C. Estrada, “Micro-facet solar concentrator,” Int. J. Sustain. Energy 27, 61–71 (2008).
[CrossRef]

J. Sol. Energy Eng.

K. K. Chong, C. W. Wong, F. L. Siaw, and T. K. Yew, “Optical characterization of nonimaging planar concentrator for the application in concentrator photovoltaic system,” J. Sol. Energy Eng. 132, 011011 (2010).
[CrossRef]

S. Ulmer, P. Heller, and W. Reinalter, “Slope measurements of parabolic dish concentrators using color-coded targets,” J. Sol. Energy Eng. 130, 011015 (2008).
[CrossRef]

Renew. Energy

K. K. Chong, F. L. Siaw, C. W. Wong, and G. S. Wong, “Design and construction of non-imaging planar concentrator for concentrator photovoltaic system,” Renew. Energy 34, 1364–1370 (2009).
[CrossRef]

C. T. Kuo, H. Y. Shin, H. F. Hong, C. H. Wu, C. D. Lee, I. T. Lung, and Y. T. Hsu, “Development of the high concentration III-V photovoltaic system at INER, Taiwan,” Renew. Energy 34, 1931–1933 (2009).
[CrossRef]

Sol. Energy

K. Ryu, J. G. Rhee, K. M. Park, and J. Kim, “Concept and design of modular Fresnel lenses for concentration solar PV system,” Sol. Energy 80, 1580–1587 (2006).
[CrossRef]

H. Ries, J. M. Gordon, and M. Lasken, “High-flux photovoltaic solar concentrators with kaleidoscope-based optical designs,” Sol. Energy 60, 11–16 (1997).
[CrossRef]

G. Segev and A. Kribus, “Performance of CPV modules based on vertical multi-juctNion cells under non-uniform illuminations,” Sol. Energy 88, 120–128 (2013).
[CrossRef]

D. R. Mills and G. L. Morrison, “Compact linear Fresnel reflector solar thermal power plants,” Sol. Energy 68, 263–283 (2000).
[CrossRef]

J. S. Coventry, “Performance of a concentrating photovoltaic/thermal solar collector,” Sol. Energy 78, 211–222 (2005).
[CrossRef]

G. Johnston, K. Lovegrove, and A. Luzzi, “Optical performance of spherical reflecting elements for use with paraboloidal dish concentrator,” Sol. Energy 74, 133–140 (2003).
[CrossRef]

Sol. Energy Mater. Sol. Cells

K. Araki, M. Kondo, H. Uozumi, N. J. Ekins-Daukes, T. Egami, M. Hiramatsu, Y. Miyazaki, and M. Yamaguchi, “Packaging III-V tandem solar cells for practical terrestrial applications achievable to 27% of module efficiency by conventional machine assemble technology,” Sol. Energy Mater. Sol. Cells 90, 3320–3326 (2006).
[CrossRef]

K. Nishioka, T. Takamoto, T. Agui, M. Kaneiwa, Y. Uraoka, and T. Fuyuki, “Annual output estimation of concentrator photovoltaic systems using high-efficiency InGaP/InGaAs/Ge triple-junction solar cells based on experimental solar cell’s characteristics and field-test meteorological data,” Sol. Energy Mater. Sol. Cells 90, 57–67 (2006).
[CrossRef]

Other

D. Faiman, S. Biryukov, and K. K. Pearlmutter, “PETAL: a research pathway to fossil-competitive solar electricity,” in Conference Record of the 29th IEEE Photovoltaic Specialists Conference (2002), pp. 1384–1387.

Y. Kemmoku, T. Sakakibara, M. Hiramatsu, Y. Miyazaki, and T. Egami, “Field test of a concentrator photovoltaic system with flat Fresnel lens,” in Third World Conference on Photovoltaic Energy Conversion (2003), pp. 2379–2382.

K.-K. Chong, C.-W. Wong, T.-K. Yew, and M.-H. Tan, “Solar concentrator assembly,” U.S. Patent Application13/901,519 (filed on May23, 2013, pending).

K.-K. Chong, C.-W. Wong, T.-K. Yew, and M.-H. Tan, “Solar concentrator assembly,” Malaysian Patent No. PI 2012002439 (filed on May31, 2012, pending).

C.-W. Wong, K.-K. Chong, and T.-K. Yew, “Analytical model of non-imaging planar concentrator for the application in dense-array concentrator photovoltaic system,” in 1st International Symposium on Innovative Technologies in Engineering and Science (2013), pp. 679–686.

Emcore, 2012. “CTJ photovoltaic cell – 10  mm × 10 mm, triple junction solar cell for terrestrial applications,” http://www.emcore.com .

A. W. Bett, B. Burger, F. Dimroth, G. Siefer, and H. Lerchenmuller, “High-concentration PV using III-V solar cells,” in Conference Record of the IEEE Fourth World Conference on Photovoltaic Energy Conversion (2006), pp. 615–620.

G. S. Kinsey, R. A. Sherif, H. L. Cotal, P. Pien, R. R. King, R. J. Brandt, W. G. Wise, E. L. Labios, K. F. Wan, M. Haddad, J. M. Lacey, C. M. Fetzer, P. Verlinden, K. Lasich, and N. H. Karam, “Multijunction solar cells for dense-array concentrators,” in Conference Record of the IEEE Fourth World Conference on Photovoltaic Energy Conversion (2006), pp. 625–627.

E. Franklin and J. Coventry, “Effects of highly non-uniform illumination distribution on electrical performance of solar cells,” in ANZSES Solar Conference, New Castle, Australia (2002).

V. Andreev, V. Grilikhes, V. Rumyantsev, N. Timoshina, and M. Shvarts, “Effect of non-uniform light intensity distribution on temperature coefficients of concentrators solar cells,” in Third World Conference on Photovoltaic Energy Conversion, (2003), pp. 881–884.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1.
Fig. 1.

Cartesian coordinate system representing the coordinate, incident angle θi,j, and the two tilted angles, σi,j and γi,j, of i, j mirror where F is the focal distance of the NIDC and O is the origin, which is the center of the concentrator frame.

Fig. 2.
Fig. 2.

Initial facet mirror’s configuration of the NIDC. The concentrator can be divided into four quadrants, which are the top right, top left, bottom right, and bottom left.

Fig. 3.
Fig. 3.

Cross-sectional view of the planar concentrator. Blocking effect starts to occur at the fifth row of the facet mirror counting from the center of the concentrator.

Fig. 4.
Fig. 4.

Conceptual drawing that defines the initial positions of facet mirrors with the same height and then obtains final positions of facet mirrors with gradually increased height to eliminate sunlight blocking and shadowing by adjacent mirrors. Gi is initial gap between the facet mirror, and G is the gap between facet mirrors after reposition. (a) Along Y and Z axes. (b) Along X and Z axes.

Fig. 5.
Fig. 5.

Initial coordinate of the facet mirror where the origin is at the middle of the facet mirror surface, and Pi is the center point of the four edges of the facet mirror.

Fig. 6.
Fig. 6.

Flow chart to illustrate the special computational algorithm to compute the geometry of the NIDC, which defines the initial orientations of all facet mirrors at the same height and then obtains final orientations of facet mirrors with gradually increased height, so that all the facet images remain superimposition at the common receiver without sunlight blocking and shadowing among adjacent mirrors.

Fig. 7.
Fig. 7.

Conceptual drawing to illustrate how the facet mirrors are virtually lifted up for eliminating sunlight blocking and shadowing in the computational algorithm. (a) Along Y and Z axes. (b) Along X and Z axes.

Fig. 8.
Fig. 8.

Example of NIDC configuration completed by using the computational algorithm, which consists of 196 facet mirrors.

Fig. 9.
Fig. 9.

Cross-section view of the NIDC, which shows how the individual facet mirror with dimension w×w reflects and superimposes the sunray to the receiver.

Fig. 10.
Fig. 10.

Numerical simulation results of solar flux distribution for the case of 22×22 array of 49.8 cm facet dimension with 10 m focal distance. (a) 3D plot. (b) 2D plot.

Fig. 11.
Fig. 11.

In the case of 22×22 array of 49.8 cm facet dimension with focal distance from 6 to 10 m. (a) Graph shows the average solar concentration ratio at uniform illumination area for both numerical and analytical methods versus focal distances. (b) Graph shows the area of uniform illumination for numerical and analytical methods versus focal distances.

Fig. 12.
Fig. 12.

Bar chart to show the comparisons of average solar concentration ratio at uniform illumination area versus facet dimensions at different focal distances.

Fig. 13.
Fig. 13.

Bar chart to show the comparisons of uniform illumination areas versus facet dimensions at different focal distances.

Fig. 14.
Fig. 14.

Bar chart to show the comparisons of a number of CPV cells used on the receiver versus facet dimensions at different focal distances.

Fig. 15.
Fig. 15.

Graph to show the cell conversion efficiencies versus solar concentration ratio for Emcore CTJ photovoltaic cell, 10mm×10mm [25].

Fig. 16.
Fig. 16.

Bar chart to show the comparisons of system output power versus facet dimensions at different focal distances.

Fig. 17.
Fig. 17.

Bar chart to show the comparisons of total system cost-per-output power versus facet dimensions at different focal distances.

Tables (2)

Tables Icon

Table 1. Specification and Design Parameters of the NIDC

Tables Icon

Table 2. Specifications Used in the Simulation for Different Arrays of Facet Mirrors

Equations (29)

Equations on this page are rendered with MathJax. Learn more.

Mi,j=[MxMyMz]i,j.
T=[TxTyTz]=[00F],
I⃗=[001].
N⃗i,j=[NxNyNz]i,j=I⃗+R⃗i,j2cosθi,j=[Nx=Mx2cosθi,jMx2+My2+(FMz)2Ny=My2cosθi,jMx2+My2+(FMz)2Nz=(FMz)+Mx2+My2+(FMz)22cosθi,jMx2+My2+(FMz)2]i,j,
θi,j={12tan1[(Mx2+My2)1/2FMz]}i,j.
σi,j=sin1[Mx2cosθi,jMx2+My2+(FMz)2],
γi,j=tan1[My(FMz)+Mx2+My2+(FMz)2].
(Pk)i,j=[PkxPkyPkz1]i,j,
(Hk)i,j=[HkxHkyHkz1]i,j.
[σi,j]=[cosσi,j0sinσi,j00100sinσi,j0cosσi,j00001].
[γi,j]=[10000cosγi,jsinγi,j00sinγi,jcosγi,j00001].
[T1]i,j=[100Mx010My001Mz0001].
Hk=MTPk,
MT=[T1]i,j[γi,j][σi,j].
(H3z)i,j+1=(H1z)i,j,
(H3y)i,j+1=(H1y)i,j+G.
(H4z)i+1,j=(H2z)i,j,
(H4x)i+1,j=(H2x)i,j+G.
C=i=12mj=12ncos2θi,j.
L=1+2+3=Wcosθi,j+(FMzW2sinθi,j)[tan(2θi,j+ε)](FMz+W2sinθi,j)[tan(2θi,jε)],
1=(FMzW2sinθi,j)[tan(2θi,j+ε)tan(2θi,jε)]
2=Wcosθi,j+(FMzW2sinθi,j)[tan(2θi,jε)](FMz+W2sinθi,j)[tan(2θi,j+ε)],
3=(FMz+W2sinθi,j)[tan(2θi,j+ε)tan(2θi,jε)].
Aove=L2={Wcosθmax+(FMzW2sinθmax)[tan(2θmax+ε)](FMz+W2sinθmax)[tan(2θmaxε)]}2,
Auni=22={Wcosθmin+(FMzW2sinθmin)[tan(2θminε)](FMz+W2sinθmin)[tan(2θmin+ε)]}2,
NCPV=[int(2+gb+g)]2,
Pout=ηCPV×I×C×NCPV×ACPV,
Sc/w=NCPV×CCPV+Cfacets+CmechPout,
Aerror%=±nm2(nm2/Res)2nm2×100%,

Metrics