Abstract

The Fabry–Perot interferometer (FPI) cavity in a single-mode fiber with two open faces was fabricated by using the method of femtosecond laser-induced water breakdown. Then the FPI cavity was annealed by the arc discharge to greatly smooth its internal surface. The whole fabrication process features simple operation and high efficiency. The fabricated FPI cavity exhibits a perfect interferometer spectrum with reflection loss of only 3dB and fringe visibility of almost 30 dB. It can be used as a perfectly reliable liquid refractive index sensor, as it exhibits high sensitivity (1147.48nm/RIU), good linearity (99.93%), good repeatability, high actual measurement accuracy (1.29×104RIU), large measurement range, and good temperature insensitive characteristic.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Martinez-Rios, D. Monzon-Hernandez, and I. Torres-Gomez, “Highly sensitive cladding-etched arc-induced long-period fiber gratings for refractive index sensing,” Opt. Commun. 283, 958–962 (2010).
    [CrossRef]
  2. Y. Fan, T. Zhu, L. Shi, and Y. J. Rao, “Highly sensitive refractive index sensor based on two cascaded special long-period fiber gratings with rotary refractive index modulation,” Appl. Opt. 50, 4604–4610 (2011).
    [CrossRef]
  3. X. Fang, C. R. Liao, and D. N. Wang, “Femtosecond laser fabricated fiber Bragg grating in microfiber for refractive index sensing,” Opt. Lett. 35, 1007–1009 (2010).
    [CrossRef]
  4. Y. Ran, Y. N. Tan, L. P. Sun, S. Gao, J. Li, L. Jin, and B. O. Guan, “193  nm excimer laser inscribed Bragg gratings in microfibers for refractive index sensing,” Opt. Express 19, 18577–18583 (2011).
    [CrossRef]
  5. Y. Ran, L. Jin, L. P. Sun, J. Li, and B. O. Guan, “Bragg gratings in rectangular microfiber for temperature independent refractive index sensing,” Opt. Lett. 37, 2649–2651 (2012).
    [CrossRef]
  6. C. Liao, L. Xu, C. Wang, D. N. Wang, Y. Wang, Q. Wang, K. Yang, Z. Li, X. Zhong, J. Zhou, and Y. Liu, “Tunable phase-shifted fiber Bragg grating based on femtosecond laser fabricated in-grating bubble,” Opt. Lett. 38, 4473–4476 (2013).
    [CrossRef]
  7. T. Wei, Y. K. Han, Y. J. Li, H. L. Tsai, and H. Xiao, “Temperature-insensitive miniaturized fiber inline Fabry–Perot interferometer for highly sensitive refractive index measurement,” Opt. Express 16, 5764–5769 (2008).
    [CrossRef]
  8. Z. L. Ran, Y. J. Rao, J. Zhang, Z. W. Liu, and B. Xu, “A miniature fiber-optic refractive-index sensor based on laser-machined Fabry–Perot interferometer tip,” J. Lightwave Technol. 27, 5426–5429 (2009).
    [CrossRef]
  9. L. V. Nguyen, M. Vasiliev, and K. Alameh, “Three-wave fiber Fabry–Perot interferometer for simultaneous measurement of temperature and water salinity of seawater,” IEEE Photon. Technol. Lett. 23, 450–452 (2011).
    [CrossRef]
  10. C. R. Liao, T. Y. Hu, and D. N. Wang, “Optical fiber Fabry–Perot interferometer cavity fabricated by femtosecond laser micromachining and fusion splicing for refractive index sensing,” Opt. Express 20, 22813–22818 (2012).
    [CrossRef]
  11. Y. Wang, M. W. Yang, D. N. Wang, S. J. Liu, and P. X. Lu, “Fiber in-line Mach–Zehnder interferometer fabricated by femtosecond laser micromachining for refractive index measurement with high sensitivity,” J. Opt. Soc. Am. B 27, 370–373 (2010).
    [CrossRef]
  12. J. Yang, L. Jiang, S. Wang, B. Li, M. Wang, H. Xiao, Y. Lu, and H. Tsai, “High sensitivity of taper-based Mach–Zehnder interferometer embedded in a thinned optical fiber for refractive index sensing,” Appl. Opt. 50, 5503–5507 (2011).
    [CrossRef]
  13. D. Wu, T. Zhu, M. Deng, D. W. Duan, L. L. Shi, J. Yao, and Y. J. Rao, “Refractive index sensing based on Mach–Zehnder interferometer formed by three cascaded single-mode fiber tapers,” Appl. Opt. 50, 1548–1553 (2011).
    [CrossRef]
  14. Y. J. Rao, M. Deng, D. W. Duan, X. C. Yang, T. Zhu, and G. H. Cheng, “Micro Fabry–Perot interferometers in silica fibers machined by femtosecond laser,” Opt. Express 15, 14123–14128 (2007).
    [CrossRef]
  15. T. Wei, Y. K. Han, H. L. Tsai, and H. Xiao, “Miniaturized fiber inline Fabry–Perot interferometer fabricated with a femtosecond laser,” Opt. Lett. 33, 536–538 (2008).
    [CrossRef]
  16. Y. Liu, S. L. Qu, and Y. Li, “Liquid refractive index sensor with three-cascaded microchannels in single-mode fiber fabricated by femtosecond laser-induced water breakdown,” Appl. Phys. B 110, 585–589 (2013).
    [CrossRef]
  17. Y. Liu, S. L. Qu, and Y. Li, “Single microchannel high-temperature fiber sensor by femtosecond laser-induced water breakdown,” Opt. Lett. 38, 335–337 (2013).
    [CrossRef]
  18. M. White and X. D. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16, 1020–1028 (2008).
    [CrossRef]

2013

2012

2011

2010

2009

2008

2007

Alameh, K.

L. V. Nguyen, M. Vasiliev, and K. Alameh, “Three-wave fiber Fabry–Perot interferometer for simultaneous measurement of temperature and water salinity of seawater,” IEEE Photon. Technol. Lett. 23, 450–452 (2011).
[CrossRef]

Cheng, G. H.

Deng, M.

Duan, D. W.

Fan, X. D.

Fan, Y.

Fang, X.

Gao, S.

Guan, B. O.

Han, Y. K.

Hu, T. Y.

Jiang, L.

Jin, L.

Li, B.

Li, J.

Li, Y.

Y. Liu, S. L. Qu, and Y. Li, “Liquid refractive index sensor with three-cascaded microchannels in single-mode fiber fabricated by femtosecond laser-induced water breakdown,” Appl. Phys. B 110, 585–589 (2013).
[CrossRef]

Y. Liu, S. L. Qu, and Y. Li, “Single microchannel high-temperature fiber sensor by femtosecond laser-induced water breakdown,” Opt. Lett. 38, 335–337 (2013).
[CrossRef]

Li, Y. J.

Li, Z.

Liao, C.

Liao, C. R.

Liu, S. J.

Liu, Y.

Liu, Z. W.

Lu, P. X.

Lu, Y.

Martinez-Rios, A.

A. Martinez-Rios, D. Monzon-Hernandez, and I. Torres-Gomez, “Highly sensitive cladding-etched arc-induced long-period fiber gratings for refractive index sensing,” Opt. Commun. 283, 958–962 (2010).
[CrossRef]

Monzon-Hernandez, D.

A. Martinez-Rios, D. Monzon-Hernandez, and I. Torres-Gomez, “Highly sensitive cladding-etched arc-induced long-period fiber gratings for refractive index sensing,” Opt. Commun. 283, 958–962 (2010).
[CrossRef]

Nguyen, L. V.

L. V. Nguyen, M. Vasiliev, and K. Alameh, “Three-wave fiber Fabry–Perot interferometer for simultaneous measurement of temperature and water salinity of seawater,” IEEE Photon. Technol. Lett. 23, 450–452 (2011).
[CrossRef]

Qu, S. L.

Y. Liu, S. L. Qu, and Y. Li, “Liquid refractive index sensor with three-cascaded microchannels in single-mode fiber fabricated by femtosecond laser-induced water breakdown,” Appl. Phys. B 110, 585–589 (2013).
[CrossRef]

Y. Liu, S. L. Qu, and Y. Li, “Single microchannel high-temperature fiber sensor by femtosecond laser-induced water breakdown,” Opt. Lett. 38, 335–337 (2013).
[CrossRef]

Ran, Y.

Ran, Z. L.

Rao, Y. J.

Shi, L.

Shi, L. L.

Sun, L. P.

Tan, Y. N.

Torres-Gomez, I.

A. Martinez-Rios, D. Monzon-Hernandez, and I. Torres-Gomez, “Highly sensitive cladding-etched arc-induced long-period fiber gratings for refractive index sensing,” Opt. Commun. 283, 958–962 (2010).
[CrossRef]

Tsai, H.

Tsai, H. L.

Vasiliev, M.

L. V. Nguyen, M. Vasiliev, and K. Alameh, “Three-wave fiber Fabry–Perot interferometer for simultaneous measurement of temperature and water salinity of seawater,” IEEE Photon. Technol. Lett. 23, 450–452 (2011).
[CrossRef]

Wang, C.

Wang, D. N.

Wang, M.

Wang, Q.

Wang, S.

Wang, Y.

Wei, T.

White, M.

Wu, D.

Xiao, H.

Xu, B.

Xu, L.

Yang, J.

Yang, K.

Yang, M. W.

Yang, X. C.

Yao, J.

Zhang, J.

Zhong, X.

Zhou, J.

Zhu, T.

Appl. Opt.

Appl. Phys. B

Y. Liu, S. L. Qu, and Y. Li, “Liquid refractive index sensor with three-cascaded microchannels in single-mode fiber fabricated by femtosecond laser-induced water breakdown,” Appl. Phys. B 110, 585–589 (2013).
[CrossRef]

IEEE Photon. Technol. Lett.

L. V. Nguyen, M. Vasiliev, and K. Alameh, “Three-wave fiber Fabry–Perot interferometer for simultaneous measurement of temperature and water salinity of seawater,” IEEE Photon. Technol. Lett. 23, 450–452 (2011).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

Opt. Commun.

A. Martinez-Rios, D. Monzon-Hernandez, and I. Torres-Gomez, “Highly sensitive cladding-etched arc-induced long-period fiber gratings for refractive index sensing,” Opt. Commun. 283, 958–962 (2010).
[CrossRef]

Opt. Express

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Setup for fabricating FPI cavity in SMF by using femtosecond laser-induced water breakdown. (b) Side view of the initial focus position of femtosecond laser. (c) Front view of the initial focus position of femtosecond laser. (d) Scanning track of the laser focus for fabricating FPI cavity in SMF.

Fig. 2.
Fig. 2.

(a) Top view of the FPI cavity A. Size of the FPI cavity A is 12μm×40μm. (b) Top view of the FPI cavity B. Size of the FPI cavity B is 32μm×40μm. (c) Top view of the FPI cavity C. Size of the FPI cavity C is 60μm×50μm. (d) Front view of the FPI cavity A. (e) Front view of the FPI cavity B. (f) Front view of the FPI cavity C. (g) Reflection spectra of three FPI cavities in SMFs.

Fig. 3.
Fig. 3.

(a) Diagram for smoothing the inter-surface of the FPI cavity in SMF by using arc discharge. (b) Top view of the FPI cavity C after annealing. (c) Front view of the FPI cavity C after annealing. (d) Measured reflection spectrum of the FPI cavity C after annealing.

Fig. 4.
Fig. 4.

(a) Change of the reflection spectrum of the FPI cavity C with the increase of liquid RI. In every liquid with different RI, the reflection spectrum of the FPI cavity C was measured for three times. (b) Relationship between the mean wavelength shift of the interference peak and liquid RI.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

DL=3σampl-noise2+σspect-res2/S.
σampl-noise=FWHM4.5(SNR0.25).

Metrics