Abstract

Imaging dynamic multiphase combusting events is challenging. Conventional techniques can image only a single plane of an event, capturing limited details. Here, we report on a three-dimensional, time-resolved, OH planar laser-induced fluorescence (3D OH PLIF) technique that was developed to measure the relative OH concentration in multiphase combustion flow fields. To the best of our knowledge, this is the first time a 3D OH PLIF technique has been reported in the open literature. The technique involves rapidly scanning a laser sheet across a flow field of interest. The overall experimental system consists of a 5 kHz OH PLIF system, a high-speed detection system (image intensifier and CMOS camera), and a galvanometric scanning mirror. The scanning mirror was synchronized with a 500 Hz triangular sweep pattern generated using Labview. Images were acquired at 5 kHz corresponding to six images per mirror scan, and 1000 scans per second. The six images obtained in a scan were reconstructed into a volumetric representation. The resulting spatial resolution was 500×500×6 voxels mapped to a field of interest covering 30mm×30mm×8mm. The novel 3D OH PLIF system was applied toward imaging droplet combustion of methanol gelled with hydroxypropyl cellulose (HPC) (3 wt. %, 6 wt. %), as well as solid propellant combustion, and impinging jet spray combustion. The resulting 3D dataset shows a comprehensive view of jetting events in gelled droplet combustion that was not observed with high-speed imaging or 2D OH PLIF. Although the scan is noninstantaneous, the temporal and spatial resolution was sufficient to view the dynamic events in the multiphase combustion flow fields of interest. The system is limited by the repetition rate of the pulsed laser and the step response time of the galvanometric mirror; however, the repetition rates are sufficient to resolve events in the order of 100 Hz. Future upgrade includes 40 kHz pulsed UV laser system, which can reduce the scan time to 125 μs, while keeping the high repetition rate of 1000 Hz.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Kychakoff, P. H. Paul, I. van Cruyningen, and R. K. Hanson, “Movies and 3-D images of flowfields using planar laser-induced fluorescence,” Appl. Opt. 26, 2498–2500 (1987).
    [CrossRef]
  2. J. P. Crimaldi, “Planar laser induced fluorescence in aqueous flows,” Exp. Fluids 44, 851–863 (2008).
    [CrossRef]
  3. Y. Solomon, B. Natan, and Y. Cohen, “Combustion of gel fuels based on organic gellants,” Combust. Flame 156, 261–268 (2009).
    [CrossRef]
  4. Y. Solomon, S. J. DeFini, T. L. Pourpoint, and W. E. Anderson, “Gelled monomethyl hydrazine hypergolic droplet investigation,” J. Propul. Power 29, 79–86 (2013).
    [CrossRef]
  5. C. F. Kaminski, J. Hult, and M. Aldén, “High repetition rate planar laser induced fluorescence of OH in a turbulent non-premixed flame,” Appl. Phys. B 68, 757–760 (1999).
    [CrossRef]
  6. I. Boxx, M. Stöhr, C. Carter, and W. Meier, “Sustained multi-kHz flamefront and 3-component velocity-field measurements for the study of turbulent flames,” Appl. Phys. B 95, 23–29 (2009).
    [CrossRef]
  7. S. H. R. Müller, B. Böhm, M. Gleißner, S. Arndt, and A. Dreizler, “Analysis of the temporal flame kernel development in an optically accessible IC engine using high-speed OH-PLIF,” Appl. Phys. B 100, 447–452 (2010).
  8. X. Mercier, M. Orain, and F. Grisch, “Investigation of droplet combustion in strained counterflow diffusion flames using planar laser-induced fluorescence,” Appl. Phys. B 88, 151–160 (2007).
    [CrossRef]
  9. J. Hult, U. Meier, W. Meier, A. Harvey, and C. F. Kaminski, “Experimental analysis of local flame extinction in a turbulent jet diffusion flame by high repetition 2-D laser techniques and multi-scalar measurements,” Proc. Combust. Inst. 30, 701–709 (2005).
    [CrossRef]
  10. W. Paa, D. Mueller, A. Gawlik, and W. Triebel, “Combined multispecies PLIF diagnostics with kHz rate in a technical fuel mixing system relevant for combustion processes,” Proc. SPIE 5880, 58800N (2005).
    [CrossRef]
  11. T. D. Hedman, K. Y. Cho, A. Satija, L. J. Groven, R. P. Lucht, and S. F. Son, “Experimental observation of the flame structure of a bimodal ammonium perchlorate composite propellant using 5 kHz PLIF,” Combust. Flame 159, 427–437 (2012).
    [CrossRef]
  12. T. D. Hedman, L. J. Groven, K. Y. Cho, R. P. Lucht, and S. F. Son, “The diffusion flame structure of an ammonium perchlorate based composite propellant at elevated pressures,” Proc. Combust. Inst. 34, 649–656 (2013).
    [CrossRef]
  13. T. D. Hedman, D. A. Reese, K. Y. Cho, L. J. Groven, R. P. Lucht, and S. F. Son, “An experimental study of the effects of catalysts on an ammonium perchlorate based composite propellant using 5 kHz PLIF,” Combust. Flame 159, 1748–1758 (2012).
    [CrossRef]
  14. D. Veynante, G. Lodato, P. Domingo, L. Vervisch, and E. Hawkes, “Estimation of three-dimensional flame surface densities from planar images in turbulent premixed combustion,” Exp. Fluids 49, 267–278 (2010).
    [CrossRef]
  15. E. R. Hawkes, R. Sankaran, and J. H. Chen, “Estimates of the three-dimensional flame surface density and every term in its transport equation from two-dimensional measurements,” Proc. Combust. Inst. 33, 1447–1454 (2011).
    [CrossRef]
  16. S. Deusch and T. Dracos, “Time resolved 3D passive scalar concentration-field imaging by laser induced fluorescence (LIF) in moving liquids,” Meas. Sci. Technol. 12, 188–200 (2001).
    [CrossRef]
  17. R. K. Hanson, J. M. Seitzman, and P. H. Paul, “Planar laser-fluorescence imaging of combustion gases,” Appl. Phys. B 50, 441–454 (1990).
    [CrossRef]
  18. W. J. A. Dahm, K. B. Southerland, and K. A. Buch, “Direct, high resolution, four-dimensional measurements of the fine scale structure of Sc ≫ 1 molecular mixing in turbulent flows,” Phys. Fluids A 3, 1115–1127 (1991).
    [CrossRef]
  19. E. Van Vliet, S. M. Van Bergen, J. J. Derksen, L. M. Portela, and H. E. A. Van den Akker, “Time-resolved, 3D, laser-induced fluorescence measurements of fine-structure passive scalar mixing in a tubular reactor,” Exp. Fluids 37, 1–21 (2004).
  20. M. B. Long and B. Yip, “Measurement of three-dimensional concentrations in turbulent jets and flames,” Symposium (Int.) Combust. 22, 701–709 (1988).
    [CrossRef]
  21. B. J. Patrie, J. M. Seitzman, and R. K. Hanson, “Instantaneous three-dimensional flow visualization by rapid acquisition of multiple planar flow images,” Opt. Eng. 33, 975–980 (1994).
    [CrossRef]
  22. W. Steven, M. Michael, and T. Brian, “3-D flow visualization of a turbulent boundary layer,” 40th Fluid Dynamics Conference and Exhibit (American Institute of Aeronautics and Astronautics, 2010).
  23. B. S. Thurow and K. P. Lynch, “Development of a high-speed three-dimensional flow visualization technique,” AIAA J. 47, 2857–2865 (2009).
    [CrossRef]
  24. R. Wellander, M. Richter, and M. Aldén, “Time resolved, 3D imaging (4D) of two phase flow at a repetition rate of 1 kHz,” Opt. Express 19, 21508–21514 (2011).
    [CrossRef]
  25. J. Hult, M. Richter, J. Nygren, M. Aldén, A. Hultqvist, M. Christensen, and B. Johansson, “Application of a high-repetition-rate laser diagnostic system for single-cycle-resolved imaging in internal combustion engines,” Appl. Opt. 41, 5002–5014 (2002).
    [CrossRef]
  26. J. Olofsson, M. Richter, M. Alden, and M. Auge, “Development of high temporally and spatially (three-dimensional) resolved formaldehyde measurements in combustion environments,” Rev. Sci. Instrum. 77, 013104 (2006).
    [CrossRef]
  27. B. Natan and S. Rahimi, “The status of gel propellants in year 2000,” Int. J. Energ. Mater. Chem. Propul. 5, 172–194 (2002).
  28. G. A. D. Nachmoni and B. Natan, “Combustion characteristics of gel fuels,” Combust. Sci. Technol. 156, 139–157 (2000).
    [CrossRef]
  29. Y. Solomon and B. Natan, “Experimental investigation of the combustion of organic-gellant-based gel fuel droplets,” Combust. Sci. Technol. 178, 1185–1199 (2006).
    [CrossRef]
  30. R. Arnold and W. E. Anderson, “Droplet burning of JP-8/silica gels,” 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition (American Institute of Aeronautics and Astronautics, 2010).
  31. A. Kunin, B. Natan, and J. B. Greenberg, “Theoretical model of the transient combustion of organic-gellant-based gel fuel droplets,” J. Propul. Power 26, 765–771 (2010).
    [CrossRef]
  32. K. Y. Cho, T. L. Pourpoint, S. F. Son, and R. P. Lucht, “Microexplosion investigation of organic MMH gel droplet with 5 kHz OH PLIF,” J. Propul. Power 29, 1303–1310 (2013).
    [CrossRef]
  33. J. D. Dennis, S. F. Son, and T. L. Pourpoint, “Critical ignition criteria for monomethylhydrazine and red fuming nitric acid in an impinging jet apparatus,” 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit (American Institute of Aeronautics and Astronautics, 2012).
  34. E. Ludlam, “Sliceomatic,” Matlab Central (2001).
  35. R. W. Bilger, S. B. Pope, K. N. C. Bray, and J. F. Driscoll, “Paradigms in turbulent combustion research,” Proc. Combust. Inst. 30, 21–42 (2005).
    [CrossRef]
  36. J. F. Driscoll, “Turbulent premixed combustion: flamelet structure and its effect on turbulent burning velocities,” Prog. Energy Combust. Sci. 34, 91–134 (2008).
    [CrossRef]
  37. C. Meneveau and T. Poinsot, “Stretching and quenching of flamelets in premixed turbulent combustion,” Combust. Flame 86, 311–332 (1991).
    [CrossRef]

2013 (3)

Y. Solomon, S. J. DeFini, T. L. Pourpoint, and W. E. Anderson, “Gelled monomethyl hydrazine hypergolic droplet investigation,” J. Propul. Power 29, 79–86 (2013).
[CrossRef]

T. D. Hedman, L. J. Groven, K. Y. Cho, R. P. Lucht, and S. F. Son, “The diffusion flame structure of an ammonium perchlorate based composite propellant at elevated pressures,” Proc. Combust. Inst. 34, 649–656 (2013).
[CrossRef]

K. Y. Cho, T. L. Pourpoint, S. F. Son, and R. P. Lucht, “Microexplosion investigation of organic MMH gel droplet with 5 kHz OH PLIF,” J. Propul. Power 29, 1303–1310 (2013).
[CrossRef]

2012 (2)

T. D. Hedman, D. A. Reese, K. Y. Cho, L. J. Groven, R. P. Lucht, and S. F. Son, “An experimental study of the effects of catalysts on an ammonium perchlorate based composite propellant using 5 kHz PLIF,” Combust. Flame 159, 1748–1758 (2012).
[CrossRef]

T. D. Hedman, K. Y. Cho, A. Satija, L. J. Groven, R. P. Lucht, and S. F. Son, “Experimental observation of the flame structure of a bimodal ammonium perchlorate composite propellant using 5 kHz PLIF,” Combust. Flame 159, 427–437 (2012).
[CrossRef]

2011 (2)

E. R. Hawkes, R. Sankaran, and J. H. Chen, “Estimates of the three-dimensional flame surface density and every term in its transport equation from two-dimensional measurements,” Proc. Combust. Inst. 33, 1447–1454 (2011).
[CrossRef]

R. Wellander, M. Richter, and M. Aldén, “Time resolved, 3D imaging (4D) of two phase flow at a repetition rate of 1 kHz,” Opt. Express 19, 21508–21514 (2011).
[CrossRef]

2010 (3)

A. Kunin, B. Natan, and J. B. Greenberg, “Theoretical model of the transient combustion of organic-gellant-based gel fuel droplets,” J. Propul. Power 26, 765–771 (2010).
[CrossRef]

D. Veynante, G. Lodato, P. Domingo, L. Vervisch, and E. Hawkes, “Estimation of three-dimensional flame surface densities from planar images in turbulent premixed combustion,” Exp. Fluids 49, 267–278 (2010).
[CrossRef]

S. H. R. Müller, B. Böhm, M. Gleißner, S. Arndt, and A. Dreizler, “Analysis of the temporal flame kernel development in an optically accessible IC engine using high-speed OH-PLIF,” Appl. Phys. B 100, 447–452 (2010).

2009 (3)

Y. Solomon, B. Natan, and Y. Cohen, “Combustion of gel fuels based on organic gellants,” Combust. Flame 156, 261–268 (2009).
[CrossRef]

I. Boxx, M. Stöhr, C. Carter, and W. Meier, “Sustained multi-kHz flamefront and 3-component velocity-field measurements for the study of turbulent flames,” Appl. Phys. B 95, 23–29 (2009).
[CrossRef]

B. S. Thurow and K. P. Lynch, “Development of a high-speed three-dimensional flow visualization technique,” AIAA J. 47, 2857–2865 (2009).
[CrossRef]

2008 (2)

J. F. Driscoll, “Turbulent premixed combustion: flamelet structure and its effect on turbulent burning velocities,” Prog. Energy Combust. Sci. 34, 91–134 (2008).
[CrossRef]

J. P. Crimaldi, “Planar laser induced fluorescence in aqueous flows,” Exp. Fluids 44, 851–863 (2008).
[CrossRef]

2007 (1)

X. Mercier, M. Orain, and F. Grisch, “Investigation of droplet combustion in strained counterflow diffusion flames using planar laser-induced fluorescence,” Appl. Phys. B 88, 151–160 (2007).
[CrossRef]

2006 (2)

Y. Solomon and B. Natan, “Experimental investigation of the combustion of organic-gellant-based gel fuel droplets,” Combust. Sci. Technol. 178, 1185–1199 (2006).
[CrossRef]

J. Olofsson, M. Richter, M. Alden, and M. Auge, “Development of high temporally and spatially (three-dimensional) resolved formaldehyde measurements in combustion environments,” Rev. Sci. Instrum. 77, 013104 (2006).
[CrossRef]

2005 (3)

R. W. Bilger, S. B. Pope, K. N. C. Bray, and J. F. Driscoll, “Paradigms in turbulent combustion research,” Proc. Combust. Inst. 30, 21–42 (2005).
[CrossRef]

J. Hult, U. Meier, W. Meier, A. Harvey, and C. F. Kaminski, “Experimental analysis of local flame extinction in a turbulent jet diffusion flame by high repetition 2-D laser techniques and multi-scalar measurements,” Proc. Combust. Inst. 30, 701–709 (2005).
[CrossRef]

W. Paa, D. Mueller, A. Gawlik, and W. Triebel, “Combined multispecies PLIF diagnostics with kHz rate in a technical fuel mixing system relevant for combustion processes,” Proc. SPIE 5880, 58800N (2005).
[CrossRef]

2004 (1)

E. Van Vliet, S. M. Van Bergen, J. J. Derksen, L. M. Portela, and H. E. A. Van den Akker, “Time-resolved, 3D, laser-induced fluorescence measurements of fine-structure passive scalar mixing in a tubular reactor,” Exp. Fluids 37, 1–21 (2004).

2002 (2)

2001 (1)

S. Deusch and T. Dracos, “Time resolved 3D passive scalar concentration-field imaging by laser induced fluorescence (LIF) in moving liquids,” Meas. Sci. Technol. 12, 188–200 (2001).
[CrossRef]

2000 (1)

G. A. D. Nachmoni and B. Natan, “Combustion characteristics of gel fuels,” Combust. Sci. Technol. 156, 139–157 (2000).
[CrossRef]

1999 (1)

C. F. Kaminski, J. Hult, and M. Aldén, “High repetition rate planar laser induced fluorescence of OH in a turbulent non-premixed flame,” Appl. Phys. B 68, 757–760 (1999).
[CrossRef]

1994 (1)

B. J. Patrie, J. M. Seitzman, and R. K. Hanson, “Instantaneous three-dimensional flow visualization by rapid acquisition of multiple planar flow images,” Opt. Eng. 33, 975–980 (1994).
[CrossRef]

1991 (2)

C. Meneveau and T. Poinsot, “Stretching and quenching of flamelets in premixed turbulent combustion,” Combust. Flame 86, 311–332 (1991).
[CrossRef]

W. J. A. Dahm, K. B. Southerland, and K. A. Buch, “Direct, high resolution, four-dimensional measurements of the fine scale structure of Sc ≫ 1 molecular mixing in turbulent flows,” Phys. Fluids A 3, 1115–1127 (1991).
[CrossRef]

1990 (1)

R. K. Hanson, J. M. Seitzman, and P. H. Paul, “Planar laser-fluorescence imaging of combustion gases,” Appl. Phys. B 50, 441–454 (1990).
[CrossRef]

1988 (1)

M. B. Long and B. Yip, “Measurement of three-dimensional concentrations in turbulent jets and flames,” Symposium (Int.) Combust. 22, 701–709 (1988).
[CrossRef]

1987 (1)

Alden, M.

J. Olofsson, M. Richter, M. Alden, and M. Auge, “Development of high temporally and spatially (three-dimensional) resolved formaldehyde measurements in combustion environments,” Rev. Sci. Instrum. 77, 013104 (2006).
[CrossRef]

Aldén, M.

Anderson, W. E.

Y. Solomon, S. J. DeFini, T. L. Pourpoint, and W. E. Anderson, “Gelled monomethyl hydrazine hypergolic droplet investigation,” J. Propul. Power 29, 79–86 (2013).
[CrossRef]

R. Arnold and W. E. Anderson, “Droplet burning of JP-8/silica gels,” 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition (American Institute of Aeronautics and Astronautics, 2010).

Arndt, S.

S. H. R. Müller, B. Böhm, M. Gleißner, S. Arndt, and A. Dreizler, “Analysis of the temporal flame kernel development in an optically accessible IC engine using high-speed OH-PLIF,” Appl. Phys. B 100, 447–452 (2010).

Arnold, R.

R. Arnold and W. E. Anderson, “Droplet burning of JP-8/silica gels,” 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition (American Institute of Aeronautics and Astronautics, 2010).

Auge, M.

J. Olofsson, M. Richter, M. Alden, and M. Auge, “Development of high temporally and spatially (three-dimensional) resolved formaldehyde measurements in combustion environments,” Rev. Sci. Instrum. 77, 013104 (2006).
[CrossRef]

Bilger, R. W.

R. W. Bilger, S. B. Pope, K. N. C. Bray, and J. F. Driscoll, “Paradigms in turbulent combustion research,” Proc. Combust. Inst. 30, 21–42 (2005).
[CrossRef]

Böhm, B.

S. H. R. Müller, B. Böhm, M. Gleißner, S. Arndt, and A. Dreizler, “Analysis of the temporal flame kernel development in an optically accessible IC engine using high-speed OH-PLIF,” Appl. Phys. B 100, 447–452 (2010).

Boxx, I.

I. Boxx, M. Stöhr, C. Carter, and W. Meier, “Sustained multi-kHz flamefront and 3-component velocity-field measurements for the study of turbulent flames,” Appl. Phys. B 95, 23–29 (2009).
[CrossRef]

Bray, K. N. C.

R. W. Bilger, S. B. Pope, K. N. C. Bray, and J. F. Driscoll, “Paradigms in turbulent combustion research,” Proc. Combust. Inst. 30, 21–42 (2005).
[CrossRef]

Brian, T.

W. Steven, M. Michael, and T. Brian, “3-D flow visualization of a turbulent boundary layer,” 40th Fluid Dynamics Conference and Exhibit (American Institute of Aeronautics and Astronautics, 2010).

Buch, K. A.

W. J. A. Dahm, K. B. Southerland, and K. A. Buch, “Direct, high resolution, four-dimensional measurements of the fine scale structure of Sc ≫ 1 molecular mixing in turbulent flows,” Phys. Fluids A 3, 1115–1127 (1991).
[CrossRef]

Carter, C.

I. Boxx, M. Stöhr, C. Carter, and W. Meier, “Sustained multi-kHz flamefront and 3-component velocity-field measurements for the study of turbulent flames,” Appl. Phys. B 95, 23–29 (2009).
[CrossRef]

Chen, J. H.

E. R. Hawkes, R. Sankaran, and J. H. Chen, “Estimates of the three-dimensional flame surface density and every term in its transport equation from two-dimensional measurements,” Proc. Combust. Inst. 33, 1447–1454 (2011).
[CrossRef]

Cho, K. Y.

T. D. Hedman, L. J. Groven, K. Y. Cho, R. P. Lucht, and S. F. Son, “The diffusion flame structure of an ammonium perchlorate based composite propellant at elevated pressures,” Proc. Combust. Inst. 34, 649–656 (2013).
[CrossRef]

K. Y. Cho, T. L. Pourpoint, S. F. Son, and R. P. Lucht, “Microexplosion investigation of organic MMH gel droplet with 5 kHz OH PLIF,” J. Propul. Power 29, 1303–1310 (2013).
[CrossRef]

T. D. Hedman, K. Y. Cho, A. Satija, L. J. Groven, R. P. Lucht, and S. F. Son, “Experimental observation of the flame structure of a bimodal ammonium perchlorate composite propellant using 5 kHz PLIF,” Combust. Flame 159, 427–437 (2012).
[CrossRef]

T. D. Hedman, D. A. Reese, K. Y. Cho, L. J. Groven, R. P. Lucht, and S. F. Son, “An experimental study of the effects of catalysts on an ammonium perchlorate based composite propellant using 5 kHz PLIF,” Combust. Flame 159, 1748–1758 (2012).
[CrossRef]

Christensen, M.

Cohen, Y.

Y. Solomon, B. Natan, and Y. Cohen, “Combustion of gel fuels based on organic gellants,” Combust. Flame 156, 261–268 (2009).
[CrossRef]

Crimaldi, J. P.

J. P. Crimaldi, “Planar laser induced fluorescence in aqueous flows,” Exp. Fluids 44, 851–863 (2008).
[CrossRef]

Dahm, W. J. A.

W. J. A. Dahm, K. B. Southerland, and K. A. Buch, “Direct, high resolution, four-dimensional measurements of the fine scale structure of Sc ≫ 1 molecular mixing in turbulent flows,” Phys. Fluids A 3, 1115–1127 (1991).
[CrossRef]

DeFini, S. J.

Y. Solomon, S. J. DeFini, T. L. Pourpoint, and W. E. Anderson, “Gelled monomethyl hydrazine hypergolic droplet investigation,” J. Propul. Power 29, 79–86 (2013).
[CrossRef]

Dennis, J. D.

J. D. Dennis, S. F. Son, and T. L. Pourpoint, “Critical ignition criteria for monomethylhydrazine and red fuming nitric acid in an impinging jet apparatus,” 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit (American Institute of Aeronautics and Astronautics, 2012).

Derksen, J. J.

E. Van Vliet, S. M. Van Bergen, J. J. Derksen, L. M. Portela, and H. E. A. Van den Akker, “Time-resolved, 3D, laser-induced fluorescence measurements of fine-structure passive scalar mixing in a tubular reactor,” Exp. Fluids 37, 1–21 (2004).

Deusch, S.

S. Deusch and T. Dracos, “Time resolved 3D passive scalar concentration-field imaging by laser induced fluorescence (LIF) in moving liquids,” Meas. Sci. Technol. 12, 188–200 (2001).
[CrossRef]

Domingo, P.

D. Veynante, G. Lodato, P. Domingo, L. Vervisch, and E. Hawkes, “Estimation of three-dimensional flame surface densities from planar images in turbulent premixed combustion,” Exp. Fluids 49, 267–278 (2010).
[CrossRef]

Dracos, T.

S. Deusch and T. Dracos, “Time resolved 3D passive scalar concentration-field imaging by laser induced fluorescence (LIF) in moving liquids,” Meas. Sci. Technol. 12, 188–200 (2001).
[CrossRef]

Dreizler, A.

S. H. R. Müller, B. Böhm, M. Gleißner, S. Arndt, and A. Dreizler, “Analysis of the temporal flame kernel development in an optically accessible IC engine using high-speed OH-PLIF,” Appl. Phys. B 100, 447–452 (2010).

Driscoll, J. F.

J. F. Driscoll, “Turbulent premixed combustion: flamelet structure and its effect on turbulent burning velocities,” Prog. Energy Combust. Sci. 34, 91–134 (2008).
[CrossRef]

R. W. Bilger, S. B. Pope, K. N. C. Bray, and J. F. Driscoll, “Paradigms in turbulent combustion research,” Proc. Combust. Inst. 30, 21–42 (2005).
[CrossRef]

Gawlik, A.

W. Paa, D. Mueller, A. Gawlik, and W. Triebel, “Combined multispecies PLIF diagnostics with kHz rate in a technical fuel mixing system relevant for combustion processes,” Proc. SPIE 5880, 58800N (2005).
[CrossRef]

Gleißner, M.

S. H. R. Müller, B. Böhm, M. Gleißner, S. Arndt, and A. Dreizler, “Analysis of the temporal flame kernel development in an optically accessible IC engine using high-speed OH-PLIF,” Appl. Phys. B 100, 447–452 (2010).

Greenberg, J. B.

A. Kunin, B. Natan, and J. B. Greenberg, “Theoretical model of the transient combustion of organic-gellant-based gel fuel droplets,” J. Propul. Power 26, 765–771 (2010).
[CrossRef]

Grisch, F.

X. Mercier, M. Orain, and F. Grisch, “Investigation of droplet combustion in strained counterflow diffusion flames using planar laser-induced fluorescence,” Appl. Phys. B 88, 151–160 (2007).
[CrossRef]

Groven, L. J.

T. D. Hedman, L. J. Groven, K. Y. Cho, R. P. Lucht, and S. F. Son, “The diffusion flame structure of an ammonium perchlorate based composite propellant at elevated pressures,” Proc. Combust. Inst. 34, 649–656 (2013).
[CrossRef]

T. D. Hedman, D. A. Reese, K. Y. Cho, L. J. Groven, R. P. Lucht, and S. F. Son, “An experimental study of the effects of catalysts on an ammonium perchlorate based composite propellant using 5 kHz PLIF,” Combust. Flame 159, 1748–1758 (2012).
[CrossRef]

T. D. Hedman, K. Y. Cho, A. Satija, L. J. Groven, R. P. Lucht, and S. F. Son, “Experimental observation of the flame structure of a bimodal ammonium perchlorate composite propellant using 5 kHz PLIF,” Combust. Flame 159, 427–437 (2012).
[CrossRef]

Hanson, R. K.

B. J. Patrie, J. M. Seitzman, and R. K. Hanson, “Instantaneous three-dimensional flow visualization by rapid acquisition of multiple planar flow images,” Opt. Eng. 33, 975–980 (1994).
[CrossRef]

R. K. Hanson, J. M. Seitzman, and P. H. Paul, “Planar laser-fluorescence imaging of combustion gases,” Appl. Phys. B 50, 441–454 (1990).
[CrossRef]

G. Kychakoff, P. H. Paul, I. van Cruyningen, and R. K. Hanson, “Movies and 3-D images of flowfields using planar laser-induced fluorescence,” Appl. Opt. 26, 2498–2500 (1987).
[CrossRef]

Harvey, A.

J. Hult, U. Meier, W. Meier, A. Harvey, and C. F. Kaminski, “Experimental analysis of local flame extinction in a turbulent jet diffusion flame by high repetition 2-D laser techniques and multi-scalar measurements,” Proc. Combust. Inst. 30, 701–709 (2005).
[CrossRef]

Hawkes, E.

D. Veynante, G. Lodato, P. Domingo, L. Vervisch, and E. Hawkes, “Estimation of three-dimensional flame surface densities from planar images in turbulent premixed combustion,” Exp. Fluids 49, 267–278 (2010).
[CrossRef]

Hawkes, E. R.

E. R. Hawkes, R. Sankaran, and J. H. Chen, “Estimates of the three-dimensional flame surface density and every term in its transport equation from two-dimensional measurements,” Proc. Combust. Inst. 33, 1447–1454 (2011).
[CrossRef]

Hedman, T. D.

T. D. Hedman, L. J. Groven, K. Y. Cho, R. P. Lucht, and S. F. Son, “The diffusion flame structure of an ammonium perchlorate based composite propellant at elevated pressures,” Proc. Combust. Inst. 34, 649–656 (2013).
[CrossRef]

T. D. Hedman, K. Y. Cho, A. Satija, L. J. Groven, R. P. Lucht, and S. F. Son, “Experimental observation of the flame structure of a bimodal ammonium perchlorate composite propellant using 5 kHz PLIF,” Combust. Flame 159, 427–437 (2012).
[CrossRef]

T. D. Hedman, D. A. Reese, K. Y. Cho, L. J. Groven, R. P. Lucht, and S. F. Son, “An experimental study of the effects of catalysts on an ammonium perchlorate based composite propellant using 5 kHz PLIF,” Combust. Flame 159, 1748–1758 (2012).
[CrossRef]

Hult, J.

J. Hult, U. Meier, W. Meier, A. Harvey, and C. F. Kaminski, “Experimental analysis of local flame extinction in a turbulent jet diffusion flame by high repetition 2-D laser techniques and multi-scalar measurements,” Proc. Combust. Inst. 30, 701–709 (2005).
[CrossRef]

J. Hult, M. Richter, J. Nygren, M. Aldén, A. Hultqvist, M. Christensen, and B. Johansson, “Application of a high-repetition-rate laser diagnostic system for single-cycle-resolved imaging in internal combustion engines,” Appl. Opt. 41, 5002–5014 (2002).
[CrossRef]

C. F. Kaminski, J. Hult, and M. Aldén, “High repetition rate planar laser induced fluorescence of OH in a turbulent non-premixed flame,” Appl. Phys. B 68, 757–760 (1999).
[CrossRef]

Hultqvist, A.

Johansson, B.

Kaminski, C. F.

J. Hult, U. Meier, W. Meier, A. Harvey, and C. F. Kaminski, “Experimental analysis of local flame extinction in a turbulent jet diffusion flame by high repetition 2-D laser techniques and multi-scalar measurements,” Proc. Combust. Inst. 30, 701–709 (2005).
[CrossRef]

C. F. Kaminski, J. Hult, and M. Aldén, “High repetition rate planar laser induced fluorescence of OH in a turbulent non-premixed flame,” Appl. Phys. B 68, 757–760 (1999).
[CrossRef]

Kunin, A.

A. Kunin, B. Natan, and J. B. Greenberg, “Theoretical model of the transient combustion of organic-gellant-based gel fuel droplets,” J. Propul. Power 26, 765–771 (2010).
[CrossRef]

Kychakoff, G.

Lodato, G.

D. Veynante, G. Lodato, P. Domingo, L. Vervisch, and E. Hawkes, “Estimation of three-dimensional flame surface densities from planar images in turbulent premixed combustion,” Exp. Fluids 49, 267–278 (2010).
[CrossRef]

Long, M. B.

M. B. Long and B. Yip, “Measurement of three-dimensional concentrations in turbulent jets and flames,” Symposium (Int.) Combust. 22, 701–709 (1988).
[CrossRef]

Lucht, R. P.

K. Y. Cho, T. L. Pourpoint, S. F. Son, and R. P. Lucht, “Microexplosion investigation of organic MMH gel droplet with 5 kHz OH PLIF,” J. Propul. Power 29, 1303–1310 (2013).
[CrossRef]

T. D. Hedman, L. J. Groven, K. Y. Cho, R. P. Lucht, and S. F. Son, “The diffusion flame structure of an ammonium perchlorate based composite propellant at elevated pressures,” Proc. Combust. Inst. 34, 649–656 (2013).
[CrossRef]

T. D. Hedman, K. Y. Cho, A. Satija, L. J. Groven, R. P. Lucht, and S. F. Son, “Experimental observation of the flame structure of a bimodal ammonium perchlorate composite propellant using 5 kHz PLIF,” Combust. Flame 159, 427–437 (2012).
[CrossRef]

T. D. Hedman, D. A. Reese, K. Y. Cho, L. J. Groven, R. P. Lucht, and S. F. Son, “An experimental study of the effects of catalysts on an ammonium perchlorate based composite propellant using 5 kHz PLIF,” Combust. Flame 159, 1748–1758 (2012).
[CrossRef]

Ludlam, E.

E. Ludlam, “Sliceomatic,” Matlab Central (2001).

Lynch, K. P.

B. S. Thurow and K. P. Lynch, “Development of a high-speed three-dimensional flow visualization technique,” AIAA J. 47, 2857–2865 (2009).
[CrossRef]

Meier, U.

J. Hult, U. Meier, W. Meier, A. Harvey, and C. F. Kaminski, “Experimental analysis of local flame extinction in a turbulent jet diffusion flame by high repetition 2-D laser techniques and multi-scalar measurements,” Proc. Combust. Inst. 30, 701–709 (2005).
[CrossRef]

Meier, W.

I. Boxx, M. Stöhr, C. Carter, and W. Meier, “Sustained multi-kHz flamefront and 3-component velocity-field measurements for the study of turbulent flames,” Appl. Phys. B 95, 23–29 (2009).
[CrossRef]

J. Hult, U. Meier, W. Meier, A. Harvey, and C. F. Kaminski, “Experimental analysis of local flame extinction in a turbulent jet diffusion flame by high repetition 2-D laser techniques and multi-scalar measurements,” Proc. Combust. Inst. 30, 701–709 (2005).
[CrossRef]

Meneveau, C.

C. Meneveau and T. Poinsot, “Stretching and quenching of flamelets in premixed turbulent combustion,” Combust. Flame 86, 311–332 (1991).
[CrossRef]

Mercier, X.

X. Mercier, M. Orain, and F. Grisch, “Investigation of droplet combustion in strained counterflow diffusion flames using planar laser-induced fluorescence,” Appl. Phys. B 88, 151–160 (2007).
[CrossRef]

Michael, M.

W. Steven, M. Michael, and T. Brian, “3-D flow visualization of a turbulent boundary layer,” 40th Fluid Dynamics Conference and Exhibit (American Institute of Aeronautics and Astronautics, 2010).

Mueller, D.

W. Paa, D. Mueller, A. Gawlik, and W. Triebel, “Combined multispecies PLIF diagnostics with kHz rate in a technical fuel mixing system relevant for combustion processes,” Proc. SPIE 5880, 58800N (2005).
[CrossRef]

Müller, S. H. R.

S. H. R. Müller, B. Böhm, M. Gleißner, S. Arndt, and A. Dreizler, “Analysis of the temporal flame kernel development in an optically accessible IC engine using high-speed OH-PLIF,” Appl. Phys. B 100, 447–452 (2010).

Nachmoni, G. A. D.

G. A. D. Nachmoni and B. Natan, “Combustion characteristics of gel fuels,” Combust. Sci. Technol. 156, 139–157 (2000).
[CrossRef]

Natan, B.

A. Kunin, B. Natan, and J. B. Greenberg, “Theoretical model of the transient combustion of organic-gellant-based gel fuel droplets,” J. Propul. Power 26, 765–771 (2010).
[CrossRef]

Y. Solomon, B. Natan, and Y. Cohen, “Combustion of gel fuels based on organic gellants,” Combust. Flame 156, 261–268 (2009).
[CrossRef]

Y. Solomon and B. Natan, “Experimental investigation of the combustion of organic-gellant-based gel fuel droplets,” Combust. Sci. Technol. 178, 1185–1199 (2006).
[CrossRef]

B. Natan and S. Rahimi, “The status of gel propellants in year 2000,” Int. J. Energ. Mater. Chem. Propul. 5, 172–194 (2002).

G. A. D. Nachmoni and B. Natan, “Combustion characteristics of gel fuels,” Combust. Sci. Technol. 156, 139–157 (2000).
[CrossRef]

Nygren, J.

Olofsson, J.

J. Olofsson, M. Richter, M. Alden, and M. Auge, “Development of high temporally and spatially (three-dimensional) resolved formaldehyde measurements in combustion environments,” Rev. Sci. Instrum. 77, 013104 (2006).
[CrossRef]

Orain, M.

X. Mercier, M. Orain, and F. Grisch, “Investigation of droplet combustion in strained counterflow diffusion flames using planar laser-induced fluorescence,” Appl. Phys. B 88, 151–160 (2007).
[CrossRef]

Paa, W.

W. Paa, D. Mueller, A. Gawlik, and W. Triebel, “Combined multispecies PLIF diagnostics with kHz rate in a technical fuel mixing system relevant for combustion processes,” Proc. SPIE 5880, 58800N (2005).
[CrossRef]

Patrie, B. J.

B. J. Patrie, J. M. Seitzman, and R. K. Hanson, “Instantaneous three-dimensional flow visualization by rapid acquisition of multiple planar flow images,” Opt. Eng. 33, 975–980 (1994).
[CrossRef]

Paul, P. H.

R. K. Hanson, J. M. Seitzman, and P. H. Paul, “Planar laser-fluorescence imaging of combustion gases,” Appl. Phys. B 50, 441–454 (1990).
[CrossRef]

G. Kychakoff, P. H. Paul, I. van Cruyningen, and R. K. Hanson, “Movies and 3-D images of flowfields using planar laser-induced fluorescence,” Appl. Opt. 26, 2498–2500 (1987).
[CrossRef]

Poinsot, T.

C. Meneveau and T. Poinsot, “Stretching and quenching of flamelets in premixed turbulent combustion,” Combust. Flame 86, 311–332 (1991).
[CrossRef]

Pope, S. B.

R. W. Bilger, S. B. Pope, K. N. C. Bray, and J. F. Driscoll, “Paradigms in turbulent combustion research,” Proc. Combust. Inst. 30, 21–42 (2005).
[CrossRef]

Portela, L. M.

E. Van Vliet, S. M. Van Bergen, J. J. Derksen, L. M. Portela, and H. E. A. Van den Akker, “Time-resolved, 3D, laser-induced fluorescence measurements of fine-structure passive scalar mixing in a tubular reactor,” Exp. Fluids 37, 1–21 (2004).

Pourpoint, T. L.

Y. Solomon, S. J. DeFini, T. L. Pourpoint, and W. E. Anderson, “Gelled monomethyl hydrazine hypergolic droplet investigation,” J. Propul. Power 29, 79–86 (2013).
[CrossRef]

K. Y. Cho, T. L. Pourpoint, S. F. Son, and R. P. Lucht, “Microexplosion investigation of organic MMH gel droplet with 5 kHz OH PLIF,” J. Propul. Power 29, 1303–1310 (2013).
[CrossRef]

J. D. Dennis, S. F. Son, and T. L. Pourpoint, “Critical ignition criteria for monomethylhydrazine and red fuming nitric acid in an impinging jet apparatus,” 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit (American Institute of Aeronautics and Astronautics, 2012).

Rahimi, S.

B. Natan and S. Rahimi, “The status of gel propellants in year 2000,” Int. J. Energ. Mater. Chem. Propul. 5, 172–194 (2002).

Reese, D. A.

T. D. Hedman, D. A. Reese, K. Y. Cho, L. J. Groven, R. P. Lucht, and S. F. Son, “An experimental study of the effects of catalysts on an ammonium perchlorate based composite propellant using 5 kHz PLIF,” Combust. Flame 159, 1748–1758 (2012).
[CrossRef]

Richter, M.

Sankaran, R.

E. R. Hawkes, R. Sankaran, and J. H. Chen, “Estimates of the three-dimensional flame surface density and every term in its transport equation from two-dimensional measurements,” Proc. Combust. Inst. 33, 1447–1454 (2011).
[CrossRef]

Satija, A.

T. D. Hedman, K. Y. Cho, A. Satija, L. J. Groven, R. P. Lucht, and S. F. Son, “Experimental observation of the flame structure of a bimodal ammonium perchlorate composite propellant using 5 kHz PLIF,” Combust. Flame 159, 427–437 (2012).
[CrossRef]

Seitzman, J. M.

B. J. Patrie, J. M. Seitzman, and R. K. Hanson, “Instantaneous three-dimensional flow visualization by rapid acquisition of multiple planar flow images,” Opt. Eng. 33, 975–980 (1994).
[CrossRef]

R. K. Hanson, J. M. Seitzman, and P. H. Paul, “Planar laser-fluorescence imaging of combustion gases,” Appl. Phys. B 50, 441–454 (1990).
[CrossRef]

Solomon, Y.

Y. Solomon, S. J. DeFini, T. L. Pourpoint, and W. E. Anderson, “Gelled monomethyl hydrazine hypergolic droplet investigation,” J. Propul. Power 29, 79–86 (2013).
[CrossRef]

Y. Solomon, B. Natan, and Y. Cohen, “Combustion of gel fuels based on organic gellants,” Combust. Flame 156, 261–268 (2009).
[CrossRef]

Y. Solomon and B. Natan, “Experimental investigation of the combustion of organic-gellant-based gel fuel droplets,” Combust. Sci. Technol. 178, 1185–1199 (2006).
[CrossRef]

Son, S. F.

K. Y. Cho, T. L. Pourpoint, S. F. Son, and R. P. Lucht, “Microexplosion investigation of organic MMH gel droplet with 5 kHz OH PLIF,” J. Propul. Power 29, 1303–1310 (2013).
[CrossRef]

T. D. Hedman, L. J. Groven, K. Y. Cho, R. P. Lucht, and S. F. Son, “The diffusion flame structure of an ammonium perchlorate based composite propellant at elevated pressures,” Proc. Combust. Inst. 34, 649–656 (2013).
[CrossRef]

T. D. Hedman, K. Y. Cho, A. Satija, L. J. Groven, R. P. Lucht, and S. F. Son, “Experimental observation of the flame structure of a bimodal ammonium perchlorate composite propellant using 5 kHz PLIF,” Combust. Flame 159, 427–437 (2012).
[CrossRef]

T. D. Hedman, D. A. Reese, K. Y. Cho, L. J. Groven, R. P. Lucht, and S. F. Son, “An experimental study of the effects of catalysts on an ammonium perchlorate based composite propellant using 5 kHz PLIF,” Combust. Flame 159, 1748–1758 (2012).
[CrossRef]

J. D. Dennis, S. F. Son, and T. L. Pourpoint, “Critical ignition criteria for monomethylhydrazine and red fuming nitric acid in an impinging jet apparatus,” 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit (American Institute of Aeronautics and Astronautics, 2012).

Southerland, K. B.

W. J. A. Dahm, K. B. Southerland, and K. A. Buch, “Direct, high resolution, four-dimensional measurements of the fine scale structure of Sc ≫ 1 molecular mixing in turbulent flows,” Phys. Fluids A 3, 1115–1127 (1991).
[CrossRef]

Steven, W.

W. Steven, M. Michael, and T. Brian, “3-D flow visualization of a turbulent boundary layer,” 40th Fluid Dynamics Conference and Exhibit (American Institute of Aeronautics and Astronautics, 2010).

Stöhr, M.

I. Boxx, M. Stöhr, C. Carter, and W. Meier, “Sustained multi-kHz flamefront and 3-component velocity-field measurements for the study of turbulent flames,” Appl. Phys. B 95, 23–29 (2009).
[CrossRef]

Thurow, B. S.

B. S. Thurow and K. P. Lynch, “Development of a high-speed three-dimensional flow visualization technique,” AIAA J. 47, 2857–2865 (2009).
[CrossRef]

Triebel, W.

W. Paa, D. Mueller, A. Gawlik, and W. Triebel, “Combined multispecies PLIF diagnostics with kHz rate in a technical fuel mixing system relevant for combustion processes,” Proc. SPIE 5880, 58800N (2005).
[CrossRef]

Van Bergen, S. M.

E. Van Vliet, S. M. Van Bergen, J. J. Derksen, L. M. Portela, and H. E. A. Van den Akker, “Time-resolved, 3D, laser-induced fluorescence measurements of fine-structure passive scalar mixing in a tubular reactor,” Exp. Fluids 37, 1–21 (2004).

van Cruyningen, I.

Van den Akker, H. E. A.

E. Van Vliet, S. M. Van Bergen, J. J. Derksen, L. M. Portela, and H. E. A. Van den Akker, “Time-resolved, 3D, laser-induced fluorescence measurements of fine-structure passive scalar mixing in a tubular reactor,” Exp. Fluids 37, 1–21 (2004).

Van Vliet, E.

E. Van Vliet, S. M. Van Bergen, J. J. Derksen, L. M. Portela, and H. E. A. Van den Akker, “Time-resolved, 3D, laser-induced fluorescence measurements of fine-structure passive scalar mixing in a tubular reactor,” Exp. Fluids 37, 1–21 (2004).

Vervisch, L.

D. Veynante, G. Lodato, P. Domingo, L. Vervisch, and E. Hawkes, “Estimation of three-dimensional flame surface densities from planar images in turbulent premixed combustion,” Exp. Fluids 49, 267–278 (2010).
[CrossRef]

Veynante, D.

D. Veynante, G. Lodato, P. Domingo, L. Vervisch, and E. Hawkes, “Estimation of three-dimensional flame surface densities from planar images in turbulent premixed combustion,” Exp. Fluids 49, 267–278 (2010).
[CrossRef]

Wellander, R.

Yip, B.

M. B. Long and B. Yip, “Measurement of three-dimensional concentrations in turbulent jets and flames,” Symposium (Int.) Combust. 22, 701–709 (1988).
[CrossRef]

AIAA J. (1)

B. S. Thurow and K. P. Lynch, “Development of a high-speed three-dimensional flow visualization technique,” AIAA J. 47, 2857–2865 (2009).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (5)

C. F. Kaminski, J. Hult, and M. Aldén, “High repetition rate planar laser induced fluorescence of OH in a turbulent non-premixed flame,” Appl. Phys. B 68, 757–760 (1999).
[CrossRef]

I. Boxx, M. Stöhr, C. Carter, and W. Meier, “Sustained multi-kHz flamefront and 3-component velocity-field measurements for the study of turbulent flames,” Appl. Phys. B 95, 23–29 (2009).
[CrossRef]

S. H. R. Müller, B. Böhm, M. Gleißner, S. Arndt, and A. Dreizler, “Analysis of the temporal flame kernel development in an optically accessible IC engine using high-speed OH-PLIF,” Appl. Phys. B 100, 447–452 (2010).

X. Mercier, M. Orain, and F. Grisch, “Investigation of droplet combustion in strained counterflow diffusion flames using planar laser-induced fluorescence,” Appl. Phys. B 88, 151–160 (2007).
[CrossRef]

R. K. Hanson, J. M. Seitzman, and P. H. Paul, “Planar laser-fluorescence imaging of combustion gases,” Appl. Phys. B 50, 441–454 (1990).
[CrossRef]

Combust. Flame (4)

T. D. Hedman, K. Y. Cho, A. Satija, L. J. Groven, R. P. Lucht, and S. F. Son, “Experimental observation of the flame structure of a bimodal ammonium perchlorate composite propellant using 5 kHz PLIF,” Combust. Flame 159, 427–437 (2012).
[CrossRef]

T. D. Hedman, D. A. Reese, K. Y. Cho, L. J. Groven, R. P. Lucht, and S. F. Son, “An experimental study of the effects of catalysts on an ammonium perchlorate based composite propellant using 5 kHz PLIF,” Combust. Flame 159, 1748–1758 (2012).
[CrossRef]

Y. Solomon, B. Natan, and Y. Cohen, “Combustion of gel fuels based on organic gellants,” Combust. Flame 156, 261–268 (2009).
[CrossRef]

C. Meneveau and T. Poinsot, “Stretching and quenching of flamelets in premixed turbulent combustion,” Combust. Flame 86, 311–332 (1991).
[CrossRef]

Combust. Sci. Technol. (2)

G. A. D. Nachmoni and B. Natan, “Combustion characteristics of gel fuels,” Combust. Sci. Technol. 156, 139–157 (2000).
[CrossRef]

Y. Solomon and B. Natan, “Experimental investigation of the combustion of organic-gellant-based gel fuel droplets,” Combust. Sci. Technol. 178, 1185–1199 (2006).
[CrossRef]

Exp. Fluids (3)

J. P. Crimaldi, “Planar laser induced fluorescence in aqueous flows,” Exp. Fluids 44, 851–863 (2008).
[CrossRef]

D. Veynante, G. Lodato, P. Domingo, L. Vervisch, and E. Hawkes, “Estimation of three-dimensional flame surface densities from planar images in turbulent premixed combustion,” Exp. Fluids 49, 267–278 (2010).
[CrossRef]

E. Van Vliet, S. M. Van Bergen, J. J. Derksen, L. M. Portela, and H. E. A. Van den Akker, “Time-resolved, 3D, laser-induced fluorescence measurements of fine-structure passive scalar mixing in a tubular reactor,” Exp. Fluids 37, 1–21 (2004).

Int. J. Energ. Mater. Chem. Propul. (1)

B. Natan and S. Rahimi, “The status of gel propellants in year 2000,” Int. J. Energ. Mater. Chem. Propul. 5, 172–194 (2002).

J. Propul. Power (3)

A. Kunin, B. Natan, and J. B. Greenberg, “Theoretical model of the transient combustion of organic-gellant-based gel fuel droplets,” J. Propul. Power 26, 765–771 (2010).
[CrossRef]

K. Y. Cho, T. L. Pourpoint, S. F. Son, and R. P. Lucht, “Microexplosion investigation of organic MMH gel droplet with 5 kHz OH PLIF,” J. Propul. Power 29, 1303–1310 (2013).
[CrossRef]

Y. Solomon, S. J. DeFini, T. L. Pourpoint, and W. E. Anderson, “Gelled monomethyl hydrazine hypergolic droplet investigation,” J. Propul. Power 29, 79–86 (2013).
[CrossRef]

Meas. Sci. Technol. (1)

S. Deusch and T. Dracos, “Time resolved 3D passive scalar concentration-field imaging by laser induced fluorescence (LIF) in moving liquids,” Meas. Sci. Technol. 12, 188–200 (2001).
[CrossRef]

Opt. Eng. (1)

B. J. Patrie, J. M. Seitzman, and R. K. Hanson, “Instantaneous three-dimensional flow visualization by rapid acquisition of multiple planar flow images,” Opt. Eng. 33, 975–980 (1994).
[CrossRef]

Opt. Express (1)

Phys. Fluids A (1)

W. J. A. Dahm, K. B. Southerland, and K. A. Buch, “Direct, high resolution, four-dimensional measurements of the fine scale structure of Sc ≫ 1 molecular mixing in turbulent flows,” Phys. Fluids A 3, 1115–1127 (1991).
[CrossRef]

Proc. Combust. Inst. (4)

E. R. Hawkes, R. Sankaran, and J. H. Chen, “Estimates of the three-dimensional flame surface density and every term in its transport equation from two-dimensional measurements,” Proc. Combust. Inst. 33, 1447–1454 (2011).
[CrossRef]

T. D. Hedman, L. J. Groven, K. Y. Cho, R. P. Lucht, and S. F. Son, “The diffusion flame structure of an ammonium perchlorate based composite propellant at elevated pressures,” Proc. Combust. Inst. 34, 649–656 (2013).
[CrossRef]

J. Hult, U. Meier, W. Meier, A. Harvey, and C. F. Kaminski, “Experimental analysis of local flame extinction in a turbulent jet diffusion flame by high repetition 2-D laser techniques and multi-scalar measurements,” Proc. Combust. Inst. 30, 701–709 (2005).
[CrossRef]

R. W. Bilger, S. B. Pope, K. N. C. Bray, and J. F. Driscoll, “Paradigms in turbulent combustion research,” Proc. Combust. Inst. 30, 21–42 (2005).
[CrossRef]

Proc. SPIE (1)

W. Paa, D. Mueller, A. Gawlik, and W. Triebel, “Combined multispecies PLIF diagnostics with kHz rate in a technical fuel mixing system relevant for combustion processes,” Proc. SPIE 5880, 58800N (2005).
[CrossRef]

Prog. Energy Combust. Sci. (1)

J. F. Driscoll, “Turbulent premixed combustion: flamelet structure and its effect on turbulent burning velocities,” Prog. Energy Combust. Sci. 34, 91–134 (2008).
[CrossRef]

Rev. Sci. Instrum. (1)

J. Olofsson, M. Richter, M. Alden, and M. Auge, “Development of high temporally and spatially (three-dimensional) resolved formaldehyde measurements in combustion environments,” Rev. Sci. Instrum. 77, 013104 (2006).
[CrossRef]

Symposium (Int.) Combust. (1)

M. B. Long and B. Yip, “Measurement of three-dimensional concentrations in turbulent jets and flames,” Symposium (Int.) Combust. 22, 701–709 (1988).
[CrossRef]

Other (4)

W. Steven, M. Michael, and T. Brian, “3-D flow visualization of a turbulent boundary layer,” 40th Fluid Dynamics Conference and Exhibit (American Institute of Aeronautics and Astronautics, 2010).

R. Arnold and W. E. Anderson, “Droplet burning of JP-8/silica gels,” 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition (American Institute of Aeronautics and Astronautics, 2010).

J. D. Dennis, S. F. Son, and T. L. Pourpoint, “Critical ignition criteria for monomethylhydrazine and red fuming nitric acid in an impinging jet apparatus,” 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit (American Institute of Aeronautics and Astronautics, 2012).

E. Ludlam, “Sliceomatic,” Matlab Central (2001).

Supplementary Material (2)

» Media 1: MOV (3542 KB)     
» Media 2: MOV (10828 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1.

Schematic diagram of the 3D OH PLIF experimental system.

Fig. 2.
Fig. 2.

(a) Camera sync pulse and galvanometric mirror position. Time 0 indicates the instance of trigger. (b) Position of the image plane for each image number.

Fig. 3.
Fig. 3.

(a) Steady combustion of the 3 wt. % HPC methanol gel in 1 atm, 6 slices. (b) Isosurface construction at the iso-value of 330. All color scales in the paper refer to detector counts.

Fig. 4.
Fig. 4.

Screenshot of a video that shows an image at its corresponding position as time progresses (Media 1).

Fig. 5.
Fig. 5.

Screenshot of a GUI that allows the user to visualize and interact with the 3D data (Media 2).

Fig. 6.
Fig. 6.

Flame structure of the 6 wt. % HPC methanol gel between microexplosions. (a) Six images displayed simultaneously. (b) A 3D isosurface at iso-value 330.

Fig. 7.
Fig. 7.

Jetting event with a broken flame front from the 3 wt. % HPC methanol gelled droplet combustion. Discontinuity in the OH signal can be seen. (a) Six slices from the sweep displayed simultaneously. (b) An isosurface with an iso-value of 330.

Fig. 8.
Fig. 8.

Jetting event of the 3 wt. % HPC methanol gelled droplet. The iso-value of 330 is shown in 1 ms intervals. The arrow indicates discontinuity in the OH signal, which signifies the broken flame front.

Fig. 9.
Fig. 9.

Jetting event with a fireball formation from the 6 wt. % HPC methanol gelled droplet combustion. (a) Six slices from the sweep displayed simultaneously. (b) An isosurface with an iso-value of 330.

Fig. 10.
Fig. 10.

Jetting event with a fireball, from the 3 wt. % HPC methanol gelled droplet combustion. Six 3D isosurface plots with an iso-value of 330 are shown at 1 ms intervals. A “fireball” can be seen in slice 4, as indicated by an arrow.

Fig. 11.
Fig. 11.

Jetting toward the direction of sweep (x axis) which results in “tunnel”-like structure. This data is from the 6 wt. % HPC methanol gelled droplet combustion.

Fig. 12.
Fig. 12.

Average jet speed of HPC/MMH gelled droplet combustion over range of pressures, measured from the 2D OH PLIF images. Markers indicate the average speed, while the error bars indicate ±σ of the distribution [32]. The jet speed measurements of HPC/methanol from the 3D OH PLIF data are also shown.

Fig. 13.
Fig. 13.

3D OH PLIF images of the AP/HTPB pellet burning in 1 atm. The pellet consisted of 40 wt. % coarse AP crystals (100–355 μm), 40 wt. % fine AP crystals (20 μm nominal), and 20 wt. % HTPB. The laser sheet propagates from right to left in the images.

Fig. 14.
Fig. 14.

(a) Schematic of the impinging jet spray combustion experiment system with 3D OH PLIF. (b) 3D OH PLIF images of the impinging jet spray combustion in 1 atm. The fuel is 12 wt. % sodium borohydride and 88 wt. % triglyme, and the oxidizer is 94% pure hydrogen peroxide.

Metrics