Abstract

We propose the output power measurement of bare-wafer/chip light-emitting diodes (LEDs) using a large-area silicon (Si) photodiode with a simple structure and high accuracy relative to the conventional partial flux measurement using an integrating sphere. To obtain the optical characteristics of the LED chips measured using the two methods, three-dimensional ray-trace simulations are used to perform the measurement deviations owing to the chip position offset or tilt angle. The ray-tracing simulation results demonstrate that the deviation of light remaining in the integrating sphere is approximately 65% for the vertical LED chip and 53% for the flip-chip LED chip if the measurement distance in partial flux method is set to be 5–40 mm. By contrast, the deviation of light hitting the photodiode is only 15% for the vertical LED chip and 23% for the flip-chip LED chip if the large-area Si photodiode is used to measure the output power with the same measurement distance. As a result, the large-area Si photodiode method practically reduces the output power measurement deviations of the bare-wafer/chip LED, so that a high-accuracy measurement can be achieved in the mass production of the bare-wafer/chip LED without the complicated integrating sphere structure.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. International Commission on Illumination, “Measurement of LEDs,” publication no.  (CIE, 1999).
  2. L. Hanssen, “Integrating-sphere system and method for absolute measurement of transmittance, reflectance, and absorptance of specular samples,” Appl. Opt. 40, 3196–3204 (2001).
    [CrossRef]
  3. A. M. Nilsson, A. Jonsson, J. C. Jonsson, and A. Roos, “Method for more accurate transmittance measurements of low-angle scattering samples using an integrating sphere with an entry port beam diffuser,” Appl. Opt. 50, 999–1006 (2011).
    [CrossRef]
  4. H. Wang, Z. Da, L. Liu, and J. Zhao, “Optical transmittance measurement system for coated elements with low transmittance,” Appl. Opt. 51, 2395–2399 (2012).
    [CrossRef]
  5. Z. Liu, S. Liu, K. Wang, and X. Luo, “Measurement and numerical studies of optical properties of YAG:Ce phosphor for white light-emitting diode packaging,” Appl. Opt. 49, 247–257 (2010).
    [CrossRef]
  6. A. Carrasco-Sanz, S. Martin-Lopez, P. Corredera, M. González-Herraez, and M. L. Hernanz, “High-power and high-accuracy integrating sphere radiometer: design, characterization, and calibration,” Appl. Opt. 45, 511–518 (2006).
    [CrossRef]
  7. A. V. Prokhorov, S. N. Mekhontsev, and L. M. Hanssen, “Monte Carlo modeling of an integrating sphere reflectometer,” Appl. Opt. 42, 3832–3842 (2003).
    [CrossRef]
  8. S. Park, D.-H. Lee, and S.-N. Park, “Six-port integrating sphere photometer with uniform spatial response,” Appl. Opt. 50, 2220–2227 (2011).
    [CrossRef]
  9. S. Park, D.-H. Lee, S.-N. Park, and C.-W. Park, “Experimental validation of the six-port design for a highly uniform integrating sphere photometer,” Appl. Opt. 52, 7178–7185 (2013).
    [CrossRef]
  10. Illuminating Engineering Society, Approved Method: Electrical and Photometric Measurements of Solid-State Lighting (Illuminating Engineering Society, 2008), LM-79-08.
  11. L. C. Alves, F. Reis, M. C. Torres, G. B. Almeida, and I. B. Couceiro, “Spatial uniformity of the silicon photodiodes for establishment of spectral responsivity scale,” in Proceedings of the XIX IMEKO World Congress (IMEKO) (2009), pp. 164–167.
  12. G. Eppeldauer, “Chopped radiation measurements with large area Si photodiodes,” J. Res. Natl. Inst. Stand. Technol. 103, 153–162 (1998).
    [CrossRef]
  13. S. J. Lee, “Study of photon extraction efficiency in InGaN light-emitting diodes depending on chip structures and chip-mount schemes,” Opt. Eng. 45, 014601 (2006).
    [CrossRef]
  14. T.-X. Lee, K.-F. Gao, W.-T. Chien, and C.-C. Sun, “Light extraction analysis of GaN-based light-emitting diodes with surface texture and/or patterned substrate,” Opt. Express 15, 6670–6676 (2007).
    [CrossRef]
  15. F. Hu, K.-Y. Qian, and Y. Luo, “Far-field pattern simulation of flip-chip bonded power light-emitting diodes by a Monte Carlo photon-tracing method,” Appl. Opt. 44, 2768–2771 (2005).
    [CrossRef]

2013 (1)

2012 (1)

2011 (2)

2010 (1)

2007 (1)

2006 (2)

A. Carrasco-Sanz, S. Martin-Lopez, P. Corredera, M. González-Herraez, and M. L. Hernanz, “High-power and high-accuracy integrating sphere radiometer: design, characterization, and calibration,” Appl. Opt. 45, 511–518 (2006).
[CrossRef]

S. J. Lee, “Study of photon extraction efficiency in InGaN light-emitting diodes depending on chip structures and chip-mount schemes,” Opt. Eng. 45, 014601 (2006).
[CrossRef]

2005 (1)

2003 (1)

2001 (1)

1998 (1)

G. Eppeldauer, “Chopped radiation measurements with large area Si photodiodes,” J. Res. Natl. Inst. Stand. Technol. 103, 153–162 (1998).
[CrossRef]

Almeida, G. B.

L. C. Alves, F. Reis, M. C. Torres, G. B. Almeida, and I. B. Couceiro, “Spatial uniformity of the silicon photodiodes for establishment of spectral responsivity scale,” in Proceedings of the XIX IMEKO World Congress (IMEKO) (2009), pp. 164–167.

Alves, L. C.

L. C. Alves, F. Reis, M. C. Torres, G. B. Almeida, and I. B. Couceiro, “Spatial uniformity of the silicon photodiodes for establishment of spectral responsivity scale,” in Proceedings of the XIX IMEKO World Congress (IMEKO) (2009), pp. 164–167.

Carrasco-Sanz, A.

Chien, W.-T.

Corredera, P.

Couceiro, I. B.

L. C. Alves, F. Reis, M. C. Torres, G. B. Almeida, and I. B. Couceiro, “Spatial uniformity of the silicon photodiodes for establishment of spectral responsivity scale,” in Proceedings of the XIX IMEKO World Congress (IMEKO) (2009), pp. 164–167.

Da, Z.

Eppeldauer, G.

G. Eppeldauer, “Chopped radiation measurements with large area Si photodiodes,” J. Res. Natl. Inst. Stand. Technol. 103, 153–162 (1998).
[CrossRef]

Gao, K.-F.

González-Herraez, M.

Hanssen, L.

Hanssen, L. M.

Hernanz, M. L.

Hu, F.

Jonsson, A.

Jonsson, J. C.

Lee, D.-H.

Lee, S. J.

S. J. Lee, “Study of photon extraction efficiency in InGaN light-emitting diodes depending on chip structures and chip-mount schemes,” Opt. Eng. 45, 014601 (2006).
[CrossRef]

Lee, T.-X.

Liu, L.

Liu, S.

Liu, Z.

Luo, X.

Luo, Y.

Martin-Lopez, S.

Mekhontsev, S. N.

Nilsson, A. M.

Park, C.-W.

Park, S.

Park, S.-N.

Prokhorov, A. V.

Qian, K.-Y.

Reis, F.

L. C. Alves, F. Reis, M. C. Torres, G. B. Almeida, and I. B. Couceiro, “Spatial uniformity of the silicon photodiodes for establishment of spectral responsivity scale,” in Proceedings of the XIX IMEKO World Congress (IMEKO) (2009), pp. 164–167.

Roos, A.

Sun, C.-C.

Torres, M. C.

L. C. Alves, F. Reis, M. C. Torres, G. B. Almeida, and I. B. Couceiro, “Spatial uniformity of the silicon photodiodes for establishment of spectral responsivity scale,” in Proceedings of the XIX IMEKO World Congress (IMEKO) (2009), pp. 164–167.

Wang, H.

Wang, K.

Zhao, J.

Appl. Opt. (9)

L. Hanssen, “Integrating-sphere system and method for absolute measurement of transmittance, reflectance, and absorptance of specular samples,” Appl. Opt. 40, 3196–3204 (2001).
[CrossRef]

A. V. Prokhorov, S. N. Mekhontsev, and L. M. Hanssen, “Monte Carlo modeling of an integrating sphere reflectometer,” Appl. Opt. 42, 3832–3842 (2003).
[CrossRef]

F. Hu, K.-Y. Qian, and Y. Luo, “Far-field pattern simulation of flip-chip bonded power light-emitting diodes by a Monte Carlo photon-tracing method,” Appl. Opt. 44, 2768–2771 (2005).
[CrossRef]

A. Carrasco-Sanz, S. Martin-Lopez, P. Corredera, M. González-Herraez, and M. L. Hernanz, “High-power and high-accuracy integrating sphere radiometer: design, characterization, and calibration,” Appl. Opt. 45, 511–518 (2006).
[CrossRef]

Z. Liu, S. Liu, K. Wang, and X. Luo, “Measurement and numerical studies of optical properties of YAG:Ce phosphor for white light-emitting diode packaging,” Appl. Opt. 49, 247–257 (2010).
[CrossRef]

A. M. Nilsson, A. Jonsson, J. C. Jonsson, and A. Roos, “Method for more accurate transmittance measurements of low-angle scattering samples using an integrating sphere with an entry port beam diffuser,” Appl. Opt. 50, 999–1006 (2011).
[CrossRef]

S. Park, D.-H. Lee, and S.-N. Park, “Six-port integrating sphere photometer with uniform spatial response,” Appl. Opt. 50, 2220–2227 (2011).
[CrossRef]

H. Wang, Z. Da, L. Liu, and J. Zhao, “Optical transmittance measurement system for coated elements with low transmittance,” Appl. Opt. 51, 2395–2399 (2012).
[CrossRef]

S. Park, D.-H. Lee, S.-N. Park, and C.-W. Park, “Experimental validation of the six-port design for a highly uniform integrating sphere photometer,” Appl. Opt. 52, 7178–7185 (2013).
[CrossRef]

J. Res. Natl. Inst. Stand. Technol. (1)

G. Eppeldauer, “Chopped radiation measurements with large area Si photodiodes,” J. Res. Natl. Inst. Stand. Technol. 103, 153–162 (1998).
[CrossRef]

Opt. Eng. (1)

S. J. Lee, “Study of photon extraction efficiency in InGaN light-emitting diodes depending on chip structures and chip-mount schemes,” Opt. Eng. 45, 014601 (2006).
[CrossRef]

Opt. Express (1)

Other (3)

International Commission on Illumination, “Measurement of LEDs,” publication no.  (CIE, 1999).

Illuminating Engineering Society, Approved Method: Electrical and Photometric Measurements of Solid-State Lighting (Illuminating Engineering Society, 2008), LM-79-08.

L. C. Alves, F. Reis, M. C. Torres, G. B. Almeida, and I. B. Couceiro, “Spatial uniformity of the silicon photodiodes for establishment of spectral responsivity scale,” in Proceedings of the XIX IMEKO World Congress (IMEKO) (2009), pp. 164–167.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

(a) Photograph and (b) schematic diagram of the partial flux measurement of the bare-wafer/chip LED.

Fig. 2.
Fig. 2.

Integrating sphere for partial flux measurement.

Fig. 3.
Fig. 3.

Large-area Si photodiode used in this study.

Fig. 4.
Fig. 4.

Schematic diagrams of the vertical and flip-chip GaN LED chips.

Fig. 5.
Fig. 5.

Measured radiant source models of the vertical and flip-chip GaN LED chips.

Fig. 6.
Fig. 6.

Dependence between the percentage of the light remaining in the integrating sphere and the reflectivity of the inner surface of the integrating sphere.

Fig. 7.
Fig. 7.

Percentage of light remaining in the integrating sphere relative to distance.

Fig. 8.
Fig. 8.

Percentage of light hitting the photodiode relative to distance.

Fig. 9.
Fig. 9.

Percentage of light remaining in the integrating sphere relative to tilt angle.

Fig. 10.
Fig. 10.

Percentage of light hitting the photodiode relative to tilt angle.

Tables (1)

Tables Icon

Table 1. Deviations of Light Measured by Partial Flux Measurement and Large-Area Si Photodiode

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Φ Partial flux ( % ) = Φ Entrance Φ Escape Φ Chip ,
Φ Large area Si ( % ) = Φ Hit Φ Chip ,

Metrics