Abstract

We propose the output power measurement of bare-wafer/chip light-emitting diodes (LEDs) using a large-area silicon (Si) photodiode with a simple structure and high accuracy relative to the conventional partial flux measurement using an integrating sphere. To obtain the optical characteristics of the LED chips measured using the two methods, three-dimensional ray-trace simulations are used to perform the measurement deviations owing to the chip position offset or tilt angle. The ray-tracing simulation results demonstrate that the deviation of light remaining in the integrating sphere is approximately 65% for the vertical LED chip and 53% for the flip-chip LED chip if the measurement distance in partial flux method is set to be 5–40 mm. By contrast, the deviation of light hitting the photodiode is only 15% for the vertical LED chip and 23% for the flip-chip LED chip if the large-area Si photodiode is used to measure the output power with the same measurement distance. As a result, the large-area Si photodiode method practically reduces the output power measurement deviations of the bare-wafer/chip LED, so that a high-accuracy measurement can be achieved in the mass production of the bare-wafer/chip LED without the complicated integrating sphere structure.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription