Abstract

In developing a daylighting system, the overall system efficiency is crucial. In the daylighting system, whether the light propagates parallel strongly affects the efficiency. In this paper, we simulate a multicurvature lens to collimate rays propagated from different angles. We describe a method based on a freeform microlens array, which increases transmission efficiency. Results show that with the freeform microlens array collimator, the light propagates provide at least 50.26% parallel and the efficiency increases by 24.76%, enhancing the core values of the daylighting system in building illumination.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S.-C. Yeh, “A natural lighting system using a prismatic daylight collector,” Lighting Res. Technol., doi: 10.1177/1477153514523637 (posted online 12Feb.2014).
    [CrossRef]
  2. A. J.-W. Whang, Y.-Y. Chen, and Y.-T. Teng, “Designing uniform illumination systems by surface-tailored lens and configurations of LED arrays,” J. Disp. Technol. 5, 94–103 (2009).
    [CrossRef]
  3. A. J.-W. Whang, P.-C. Li, Y.-Y. Chen, and S.-L. Hsieh, “Guiding light from LED array via tapered light pipe for illumination systems design,” J. Disp. Technol. 5, 104–108 (2009).
    [CrossRef]
  4. S.-C. Yeh, A. J.-W. Whang, H.-C. Hsiao, X.-D. Hu, and Y.-Y. Chen, “Distribution of emerged energy for daylight illuminate on prismatic elements,” J. Sol. Energy Eng. Trans. ASME 133, 021007 (2011).
    [CrossRef]
  5. A. J.-W. Whang, Y.-Y. Chen, S. H. Yang, P. H. Pan, K. H. Chou, Y. C. Lee, and C. N. Chen, “Natural light illumination system,” Appl. Opt. 49, 6789–6801 (2010).
    [CrossRef]
  6. Z. Zhenrong, H. Xiang, and L. Xu, “Freeform surface lens for LED uniform illumination,” Appl. Opt. 48, 6627–6634 (2009).
    [CrossRef]
  7. R. Wu, H. Li, Z. Zheng, and X. Liu, “Freeform lens arrays for off-axis illumination in an optical lithography system,” Appl. Opt. 50, 725–732 (2011).
    [CrossRef]
  8. S. Zhao, K. Wang, F. Chen, Z. Qin, and S. Liu, “Integral freeform illumination lens design of LED based pico-projector,” Appl. Opt. 52, 2985–2993 (2013).
    [CrossRef]
  9. D. Cheng, Y. Wang, H. Hua, and M. M. Talha, “Design of an optical see-through head-mounted display with a low f-number and large field of view using a freeform prism,” Appl. Opt. 48, 2655–2668 (2009).
    [CrossRef]
  10. W. H. Southwell, “Focal-plane pixel-energy redistribution and concentration by use of microlens arrays,” Appl. Opt. 33, 3460–3464 (1994).
    [CrossRef]
  11. G. Lowry and S. Thomas, “Spreadsheet-based calculation tool for direct daylight luminance adaptable for different glazing properties and sky models,” Build. Environ. 45, 1081–1086 (2010).
    [CrossRef]

2013 (1)

2011 (2)

S.-C. Yeh, A. J.-W. Whang, H.-C. Hsiao, X.-D. Hu, and Y.-Y. Chen, “Distribution of emerged energy for daylight illuminate on prismatic elements,” J. Sol. Energy Eng. Trans. ASME 133, 021007 (2011).
[CrossRef]

R. Wu, H. Li, Z. Zheng, and X. Liu, “Freeform lens arrays for off-axis illumination in an optical lithography system,” Appl. Opt. 50, 725–732 (2011).
[CrossRef]

2010 (2)

A. J.-W. Whang, Y.-Y. Chen, S. H. Yang, P. H. Pan, K. H. Chou, Y. C. Lee, and C. N. Chen, “Natural light illumination system,” Appl. Opt. 49, 6789–6801 (2010).
[CrossRef]

G. Lowry and S. Thomas, “Spreadsheet-based calculation tool for direct daylight luminance adaptable for different glazing properties and sky models,” Build. Environ. 45, 1081–1086 (2010).
[CrossRef]

2009 (4)

A. J.-W. Whang, Y.-Y. Chen, and Y.-T. Teng, “Designing uniform illumination systems by surface-tailored lens and configurations of LED arrays,” J. Disp. Technol. 5, 94–103 (2009).
[CrossRef]

A. J.-W. Whang, P.-C. Li, Y.-Y. Chen, and S.-L. Hsieh, “Guiding light from LED array via tapered light pipe for illumination systems design,” J. Disp. Technol. 5, 104–108 (2009).
[CrossRef]

D. Cheng, Y. Wang, H. Hua, and M. M. Talha, “Design of an optical see-through head-mounted display with a low f-number and large field of view using a freeform prism,” Appl. Opt. 48, 2655–2668 (2009).
[CrossRef]

Z. Zhenrong, H. Xiang, and L. Xu, “Freeform surface lens for LED uniform illumination,” Appl. Opt. 48, 6627–6634 (2009).
[CrossRef]

1994 (1)

Chen, C. N.

Chen, F.

Chen, Y.-Y.

S.-C. Yeh, A. J.-W. Whang, H.-C. Hsiao, X.-D. Hu, and Y.-Y. Chen, “Distribution of emerged energy for daylight illuminate on prismatic elements,” J. Sol. Energy Eng. Trans. ASME 133, 021007 (2011).
[CrossRef]

A. J.-W. Whang, Y.-Y. Chen, S. H. Yang, P. H. Pan, K. H. Chou, Y. C. Lee, and C. N. Chen, “Natural light illumination system,” Appl. Opt. 49, 6789–6801 (2010).
[CrossRef]

A. J.-W. Whang, Y.-Y. Chen, and Y.-T. Teng, “Designing uniform illumination systems by surface-tailored lens and configurations of LED arrays,” J. Disp. Technol. 5, 94–103 (2009).
[CrossRef]

A. J.-W. Whang, P.-C. Li, Y.-Y. Chen, and S.-L. Hsieh, “Guiding light from LED array via tapered light pipe for illumination systems design,” J. Disp. Technol. 5, 104–108 (2009).
[CrossRef]

Cheng, D.

Chou, K. H.

Hsiao, H.-C.

S.-C. Yeh, A. J.-W. Whang, H.-C. Hsiao, X.-D. Hu, and Y.-Y. Chen, “Distribution of emerged energy for daylight illuminate on prismatic elements,” J. Sol. Energy Eng. Trans. ASME 133, 021007 (2011).
[CrossRef]

Hsieh, S.-L.

A. J.-W. Whang, P.-C. Li, Y.-Y. Chen, and S.-L. Hsieh, “Guiding light from LED array via tapered light pipe for illumination systems design,” J. Disp. Technol. 5, 104–108 (2009).
[CrossRef]

Hu, X.-D.

S.-C. Yeh, A. J.-W. Whang, H.-C. Hsiao, X.-D. Hu, and Y.-Y. Chen, “Distribution of emerged energy for daylight illuminate on prismatic elements,” J. Sol. Energy Eng. Trans. ASME 133, 021007 (2011).
[CrossRef]

Hua, H.

Lee, Y. C.

Li, H.

Li, P.-C.

A. J.-W. Whang, P.-C. Li, Y.-Y. Chen, and S.-L. Hsieh, “Guiding light from LED array via tapered light pipe for illumination systems design,” J. Disp. Technol. 5, 104–108 (2009).
[CrossRef]

Liu, S.

Liu, X.

Lowry, G.

G. Lowry and S. Thomas, “Spreadsheet-based calculation tool for direct daylight luminance adaptable for different glazing properties and sky models,” Build. Environ. 45, 1081–1086 (2010).
[CrossRef]

Pan, P. H.

Qin, Z.

Southwell, W. H.

Talha, M. M.

Teng, Y.-T.

A. J.-W. Whang, Y.-Y. Chen, and Y.-T. Teng, “Designing uniform illumination systems by surface-tailored lens and configurations of LED arrays,” J. Disp. Technol. 5, 94–103 (2009).
[CrossRef]

Thomas, S.

G. Lowry and S. Thomas, “Spreadsheet-based calculation tool for direct daylight luminance adaptable for different glazing properties and sky models,” Build. Environ. 45, 1081–1086 (2010).
[CrossRef]

Wang, K.

Wang, Y.

Whang, A. J.-W.

S.-C. Yeh, A. J.-W. Whang, H.-C. Hsiao, X.-D. Hu, and Y.-Y. Chen, “Distribution of emerged energy for daylight illuminate on prismatic elements,” J. Sol. Energy Eng. Trans. ASME 133, 021007 (2011).
[CrossRef]

A. J.-W. Whang, Y.-Y. Chen, S. H. Yang, P. H. Pan, K. H. Chou, Y. C. Lee, and C. N. Chen, “Natural light illumination system,” Appl. Opt. 49, 6789–6801 (2010).
[CrossRef]

A. J.-W. Whang, Y.-Y. Chen, and Y.-T. Teng, “Designing uniform illumination systems by surface-tailored lens and configurations of LED arrays,” J. Disp. Technol. 5, 94–103 (2009).
[CrossRef]

A. J.-W. Whang, P.-C. Li, Y.-Y. Chen, and S.-L. Hsieh, “Guiding light from LED array via tapered light pipe for illumination systems design,” J. Disp. Technol. 5, 104–108 (2009).
[CrossRef]

Wu, R.

Xiang, H.

Xu, L.

Yang, S. H.

Yeh, S.-C.

S.-C. Yeh, A. J.-W. Whang, H.-C. Hsiao, X.-D. Hu, and Y.-Y. Chen, “Distribution of emerged energy for daylight illuminate on prismatic elements,” J. Sol. Energy Eng. Trans. ASME 133, 021007 (2011).
[CrossRef]

S.-C. Yeh, “A natural lighting system using a prismatic daylight collector,” Lighting Res. Technol., doi: 10.1177/1477153514523637 (posted online 12Feb.2014).
[CrossRef]

Zhao, S.

Zheng, Z.

Zhenrong, Z.

Appl. Opt. (6)

Build. Environ. (1)

G. Lowry and S. Thomas, “Spreadsheet-based calculation tool for direct daylight luminance adaptable for different glazing properties and sky models,” Build. Environ. 45, 1081–1086 (2010).
[CrossRef]

J. Disp. Technol. (2)

A. J.-W. Whang, Y.-Y. Chen, and Y.-T. Teng, “Designing uniform illumination systems by surface-tailored lens and configurations of LED arrays,” J. Disp. Technol. 5, 94–103 (2009).
[CrossRef]

A. J.-W. Whang, P.-C. Li, Y.-Y. Chen, and S.-L. Hsieh, “Guiding light from LED array via tapered light pipe for illumination systems design,” J. Disp. Technol. 5, 104–108 (2009).
[CrossRef]

J. Sol. Energy Eng. Trans. ASME (1)

S.-C. Yeh, A. J.-W. Whang, H.-C. Hsiao, X.-D. Hu, and Y.-Y. Chen, “Distribution of emerged energy for daylight illuminate on prismatic elements,” J. Sol. Energy Eng. Trans. ASME 133, 021007 (2011).
[CrossRef]

Other (1)

S.-C. Yeh, “A natural lighting system using a prismatic daylight collector,” Lighting Res. Technol., doi: 10.1177/1477153514523637 (posted online 12Feb.2014).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (22)

Fig. 1.
Fig. 1.

Diagram of the NLIS.

Fig. 2.
Fig. 2.

Schematic of the NLIS.

Fig. 3.
Fig. 3.

Structure of collecting subsystem.

Fig. 4.
Fig. 4.

Refraction in the LightBrick.

Fig. 5.
Fig. 5.

Candela distribution of the output.

Fig. 6.
Fig. 6.

Structure of virtual surfaces and freeform lens.

Fig. 7.
Fig. 7.

Mesh mapping.

Fig. 8.
Fig. 8.

Initial distribution diagram of beam angle in the first virtual surface. The numbers represent the beam angle of the highest energy in the mesh, while the arrows represent the beam direction. The orange meshes are the original LightBrick parallel light. The white meshes represent discrete light with energy less than 0.01 W, a negligible amount. The next section will use the data of this distribution diagram to design the freeform lens of each mesh.

Fig. 9.
Fig. 9.

Distribution diagram of beam angle in the first layer of the first virtual surface.

Fig. 10.
Fig. 10.

Distribution diagram of beam angle in the second layer of the first virtual surface.

Fig. 11.
Fig. 11.

Diagram of the refraction of the light beam tracked to the second virtual surface.

Fig. 12.
Fig. 12.

Distribution diagram of the first layer of each microlens in the second virtual surface.

Fig. 13.
Fig. 13.

Distribution diagram of the second layer of each microlens in the second virtual surface.

Fig. 14.
Fig. 14.

Mesh distribution diagram of Lens 3.

Fig. 15.
Fig. 15.

(a) Light tracing and illumination of original. (b) Light tracing and illumination of installed microlens.

Fig. 16.
Fig. 16.

Candela distribution: (a) original and (b) installed microlens.

Fig. 17.
Fig. 17.

(a) Illumination and light tracing of original. (b) Illumination and light tracing of Lens 3 microlens array.

Fig. 18.
Fig. 18.

Light collimator model.

Fig. 19.
Fig. 19.

3D prototype of light collimator.

Fig. 20.
Fig. 20.

(a)Light collimator applied to a LightBrick; output of original. (b)Light collimator applied to a LightBrick; output with the light collimator installed.

Fig. 21.
Fig. 21.

Emitted light from the LightBrick of the SunModule through different paths.

Fig. 22.
Fig. 22.

(a) Light collimator applied to a SunModule; output of original. (b) Light collimator applied to a SunModule; output with the light collimator installed.

Tables (3)

Tables Icon

Table 1. Parameters of the Light Collimator

Tables Icon

Table 2. Comparison with the Light Angle of Each Freeform Lens

Tables Icon

Table 3. Comparison of the Number of Light Beams with the Installation of the Light Collimator in the NLIS

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

nLenssinθc=nAirsin90°,θc=42.034°.
ABC=sin1ABBC|AB||BC|.
{θ2=ABC+θ1nLenssinθ1=nAirsinθ2.
θ1=tan1nAirsin(ABC)nLensnAircos(ABC).
θ1=tan1nAirAB·BC|AB||BC|nLensnAircos(sin1AB·BC|AB||BC|).
C=AT×100%.
E=FOO×100%.
Efficiency=Output lumenInput lumen×100%.
C=AT×100%=586769=76.46%.
C=AT×100%=15332042=75.07%.
E=FOO×100%=4.48%3.52%3.52%=27.27%.
E=FOO×100%=24.76%.

Metrics