Abstract

A dual-plane in-line digital holographic method is proposed with a liquid crystal on silicon (LCOS) spatial light modulator (SLM) for recording holograms at two slightly displaced planes. The computer-generated chirp-like complex reflectance is displayed on the LCOS SLM to adapt the object beam at two planes for recording two holograms processed to eliminate the DC term and twin image accurately; no mechanical components or manual operation during data acquisition is required. The proposed approach improves the speed, accuracy, and stability of the experiment. Computer simulation and experiments for both amplitude and phase objects are carried out to validate the proposed method.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. N. Leith and J. Upatnieks, “Wavefront reconstruction with continuous-tone objects,” J. Opt. Soc. Am. 53, 1377–1381 (1963).
    [CrossRef]
  2. E. N. Leith and J. Upatnieks, “Wavefront reconstruction with diffuse illumination and three dimensional objects,” J. Opt. Soc. Am. 54, 1295–1301 (1964).
    [CrossRef]
  3. D. Gabor and W. Goss, “Interference microscope with total wavefront reconstruction,” J. Opt. Soc. Am. 56, 849–856 (1966).
    [CrossRef]
  4. L. Xu, X. Peng, Z. Guo, J. Miao, and A. Asundi, “Imaging analysis of digital holography,” Opt. Express 13, 2444–2452 (2005).
    [CrossRef]
  5. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268–1270 (1997).
    [CrossRef]
  6. C. P. Brophy, “Effect of intensity error correlation on the computed phase of the phase-shifting interferometry,” J. Opt. Soc. Am. A 7, 537–541 (1990).
    [CrossRef]
  7. J. Schwider, R. Burow, K.-E. Elssner, J. Grzanna, R. Spolaczyk, and K. Merkel, “Digital wavefront measuring interferometry: some systematic error sources,” Appl. Opt. 22, 3421–3432 (1983).
    [CrossRef]
  8. C. S. Gao, L. Zhang, H. T. Wang, J. Liao, and Y. Y. Zhu, “Phase-shifting error and its elimination in phase-shifting digital holography,” Opt. Lett. 27, 1687–1689 (2002).
    [CrossRef]
  9. L. Rong, F. Pan, W. Xiao, Y. Li, and F. Wang, “Twin image elimination from two in-line holograms via phase retrieval,” Chin. Opt. Lett. 10, 0609021 (2012).
  10. Y. Zhang and X. Zhang, “Reconstruction of a complex object from two in-line holograms,” Opt. Express 11, 572–578 (2003).
    [CrossRef]
  11. Y. Zhang, G. Pedrini, W. Osten, and H. J. Tiziani, “Reconstruction of in-line digital holograms from two intensity measurements,” Opt. Lett. 29, 1787–1789 (2004).
    [CrossRef]
  12. B. Das and C. Yelleswarapu, “Dual plane in-line digital holographic microscopy,” Opt. Lett. 35, 3426–3428 (2010).
    [CrossRef]
  13. G. Situ, J. P. Ryle, U. Gopinathan, and J. T. Sheridan, “Generalized in-line digital holographic technique based on intensity measurements at two different planes,” Appl. Opt. 47, 711–717 (2008).
    [CrossRef]
  14. H. C. Lee, S. H. Kim, and D.-S. Kim, “Two step on-axis digital holography using dual-channel Mach–Zehnder interferometer and matched filter algorithm,” J. Opt. Soc. Korea 14, 363–367 (2010).
    [CrossRef]
  15. J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts & Company, 2004).
  16. T. Meeser, C. Falldorf, C. V. Kopylow, and R. B. Bergmann, “Reference wave adaptation in digital lensless Fourier holography by means of a spatial light modulator,” Proc. SPIE 8082, 808206 (2011).
    [CrossRef]
  17. J. Gass, A. Dakoff, and M. K. Kim, “Phase imaging without 2π ambiguity by multi-wavelength digital holography,” Opt. Express 28, 1141–1143 (2003).

2012 (1)

L. Rong, F. Pan, W. Xiao, Y. Li, and F. Wang, “Twin image elimination from two in-line holograms via phase retrieval,” Chin. Opt. Lett. 10, 0609021 (2012).

2011 (1)

T. Meeser, C. Falldorf, C. V. Kopylow, and R. B. Bergmann, “Reference wave adaptation in digital lensless Fourier holography by means of a spatial light modulator,” Proc. SPIE 8082, 808206 (2011).
[CrossRef]

2010 (2)

2008 (1)

2005 (1)

2004 (1)

2003 (2)

J. Gass, A. Dakoff, and M. K. Kim, “Phase imaging without 2π ambiguity by multi-wavelength digital holography,” Opt. Express 28, 1141–1143 (2003).

Y. Zhang and X. Zhang, “Reconstruction of a complex object from two in-line holograms,” Opt. Express 11, 572–578 (2003).
[CrossRef]

2002 (1)

1997 (1)

1990 (1)

1983 (1)

1966 (1)

1964 (1)

1963 (1)

Asundi, A.

Bergmann, R. B.

T. Meeser, C. Falldorf, C. V. Kopylow, and R. B. Bergmann, “Reference wave adaptation in digital lensless Fourier holography by means of a spatial light modulator,” Proc. SPIE 8082, 808206 (2011).
[CrossRef]

Brophy, C. P.

Burow, R.

Dakoff, A.

J. Gass, A. Dakoff, and M. K. Kim, “Phase imaging without 2π ambiguity by multi-wavelength digital holography,” Opt. Express 28, 1141–1143 (2003).

Das, B.

Elssner, K.-E.

Falldorf, C.

T. Meeser, C. Falldorf, C. V. Kopylow, and R. B. Bergmann, “Reference wave adaptation in digital lensless Fourier holography by means of a spatial light modulator,” Proc. SPIE 8082, 808206 (2011).
[CrossRef]

Gabor, D.

Gao, C. S.

Gass, J.

J. Gass, A. Dakoff, and M. K. Kim, “Phase imaging without 2π ambiguity by multi-wavelength digital holography,” Opt. Express 28, 1141–1143 (2003).

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts & Company, 2004).

Gopinathan, U.

Goss, W.

Grzanna, J.

Guo, Z.

Kim, D.-S.

Kim, M. K.

J. Gass, A. Dakoff, and M. K. Kim, “Phase imaging without 2π ambiguity by multi-wavelength digital holography,” Opt. Express 28, 1141–1143 (2003).

Kim, S. H.

Kopylow, C. V.

T. Meeser, C. Falldorf, C. V. Kopylow, and R. B. Bergmann, “Reference wave adaptation in digital lensless Fourier holography by means of a spatial light modulator,” Proc. SPIE 8082, 808206 (2011).
[CrossRef]

Lee, H. C.

Leith, E. N.

Li, Y.

L. Rong, F. Pan, W. Xiao, Y. Li, and F. Wang, “Twin image elimination from two in-line holograms via phase retrieval,” Chin. Opt. Lett. 10, 0609021 (2012).

Liao, J.

Meeser, T.

T. Meeser, C. Falldorf, C. V. Kopylow, and R. B. Bergmann, “Reference wave adaptation in digital lensless Fourier holography by means of a spatial light modulator,” Proc. SPIE 8082, 808206 (2011).
[CrossRef]

Merkel, K.

Miao, J.

Osten, W.

Pan, F.

L. Rong, F. Pan, W. Xiao, Y. Li, and F. Wang, “Twin image elimination from two in-line holograms via phase retrieval,” Chin. Opt. Lett. 10, 0609021 (2012).

Pedrini, G.

Peng, X.

Rong, L.

L. Rong, F. Pan, W. Xiao, Y. Li, and F. Wang, “Twin image elimination from two in-line holograms via phase retrieval,” Chin. Opt. Lett. 10, 0609021 (2012).

Ryle, J. P.

Schwider, J.

Sheridan, J. T.

Situ, G.

Spolaczyk, R.

Tiziani, H. J.

Upatnieks, J.

Wang, F.

L. Rong, F. Pan, W. Xiao, Y. Li, and F. Wang, “Twin image elimination from two in-line holograms via phase retrieval,” Chin. Opt. Lett. 10, 0609021 (2012).

Wang, H. T.

Xiao, W.

L. Rong, F. Pan, W. Xiao, Y. Li, and F. Wang, “Twin image elimination from two in-line holograms via phase retrieval,” Chin. Opt. Lett. 10, 0609021 (2012).

Xu, L.

Yamaguchi, I.

Yelleswarapu, C.

Zhang, L.

Zhang, T.

Zhang, X.

Zhang, Y.

Zhu, Y. Y.

Appl. Opt. (2)

Chin. Opt. Lett. (1)

L. Rong, F. Pan, W. Xiao, Y. Li, and F. Wang, “Twin image elimination from two in-line holograms via phase retrieval,” Chin. Opt. Lett. 10, 0609021 (2012).

J. Opt. Soc. Am. (3)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Korea (1)

Opt. Express (3)

Opt. Lett. (4)

Proc. SPIE (1)

T. Meeser, C. Falldorf, C. V. Kopylow, and R. B. Bergmann, “Reference wave adaptation in digital lensless Fourier holography by means of a spatial light modulator,” Proc. SPIE 8082, 808206 (2011).
[CrossRef]

Other (1)

J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts & Company, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Basic scheme for the explanation of the dual-plane in-line DH based on the LCOS SLM.

Fig. 2.
Fig. 2.

Simulation results for the USAF resolution chart, (a) object, (b) hologram at distance of 120.1 mm, (c) hologram at distance of 120.15 mm, and (d) reconstructed result.

Fig. 3.
Fig. 3.

Setup of the dual-plane in-line DH recording system. HWP1 and HWP2, half-wave plates; BS, beam splitter; PBS, polarizing beam splitter; and M, mirror.

Fig. 4.
Fig. 4.

Experimental results of an amplitude object (USAF resolution chart): (a) hologram at plane z+dz1, (b) hologram at plane z+dz2, (c) reconstructed amplitude image, and (d) normalized pixel intensity values in arbitrary units along the direction of the line shown in (c) respectively.

Fig. 5.
Fig. 5.

Experimental results of a complex object (grating): (a) reconstructed phase image of grating by dual-plane in-line DH, (b) phase image by laser-profiler system, (c) 3D view of portion of (a) in the yellow dashed box, and (d) comparison of the curves obtained from the two methods.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

Oi(xi,yi)=exp[jk2z(xi2+yi2)]O0(x0,y0)exp[jk2z(x02+y02)]×exp[jkz(xix0+yiy0)]dx0dy0,
Ri(xi,yi)=exp[jkdzi2z(z+dzi)(xi2+yi2)+jkdzi].
Oi(xi,yi)=Oi(xi,yi)·R(xi,yi),
Q(Oi(xi,yi);z)=12πOi(xi,yi)z(exp(jkri)ri)dxidyiOi(X,Y;z+dzi)=Oi(xi,yi)h(xi,yi,X,Y;z+dzi),
I1(X,Y;z+dz1)=|O1(X,Y;z+dz1)+1|2,
I2(X,Y;z+dz2)=|O2(X,Y;z+dz2)+1|2.
I1(X,Y;z+dz1)O1(X,Y;z+dz1)+O1*(X,Y;z+dz1),
I2(X,Y;z+dz2)O2(X,Y;z+dz2)+O2*(X,Y;z+dz2).
ΔI(X,Y)=O1(X,Y;z+dz1)Q{O2(X,Y;z+dz2);dz}=O1(xi,yi)h(xi,yi,X,Y;z+dz1)O1(xi,yi)h(xi,yi,X,Y;z+dz1)h(xi,yi,X,Y;2dz).
FFT[ΔI(X,Y)]=O1(fxi,fyi)H(fX,fY;z+dz1){1H(fX,fY;2dz)}
O1(xi,yi)=IFFT{FFT[ΔI(X,Y)]H(fX,fY;z+dz1)(1H(fX,fY;2dz))},
H(fX,fY;z+dz1)=exp[jk(z+dz1)(1λ2fX2λ2fY2)1/2],
H(fX,fY;2dz)=exp[2jkdz(1λ2fX2λ2fY2)1/2],

Metrics