Abstract

Minimizing subsurface damage (SSD) is in high demand for optics during grinding, lapping, and polishing. A fixed-abrasive diamond pellet (FADP) has been validated as a potential tool in fast lapping and polishing of hard optical materials. This study inspects and measures the SSD of fused silica developed in lapping and microlapping by FADPs tool through a taper polishing method, assisted with profile measurement and microexamination. A series of experiments is conducted to reveal the influence of lapping parameters on SSD depth and surface roughness, including diamond size, lapping pressure, and velocity, as well as rubber type. Results indicate that SSD depth and surface roughness are mostly sensitive to diamond size but are generally independent of lapping pressure and velocity. Softer rubber can reduce SSD depth and improve surface roughness. The ratio of SSD depth to surface roughness (peak to valley: Rt) is confirmed to be 7.4±1.3, which can predict the SSD depth of fused silica lapped by FADPs with a rapid roughness measurement.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Subsurface damages of fused silica developed during deterministic small tool polishing

Haobo Cheng, Zhichao Dong, Xu Ye, and Hon-Yuen Tam
Opt. Express 22(15) 18588-18603 (2014)

Subsurface damage distribution in the lapping process

Zhuo Wang, Yulie Wu, Yifan Dai, and Shengyi Li
Appl. Opt. 47(10) 1417-1426 (2008)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (6)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription