Abstract

We present a spectral domain low-coherence interferometry (SD-LCI) method that is effective for applications in on-line surface inspection because it can obtain a surface profile in a single shot. It has an advantage over existing spectral interferometry techniques by using cylindrical lenses as the objective lenses in a Michelson interferometric configuration to enable the measurement of long profiles. Combined with a modern high-speed CCD camera, general-purpose graphics processing unit, and multicore processors computing technology, fast measurement can be achieved. By translating the tested sample during the measurement procedure, real-time surface inspection was implemented, which is proved by the large-scale 3D surface measurement in this paper. ZEMAX software is used to simulate the SD-LCI system and analyze the alignment errors. Two step height surfaces were measured, and the captured interferograms were analyzed using a fast Fourier transform algorithm. Both 2D profile results and 3D surface maps closely align with the calibrated specifications given by the manufacturer.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. De Chiffre, H. Kunzmann, G. Peggs, and D. Lucca, “ Surfaces in precision engineering, microengineering and nanotechnology,” CIRP Ann. 52, 561–577 (2003).
    [Crossref]
  2. R. Maboudian, “Surface processes in MEMS technology,” Surf. Sci. Rep. 30, 207–269 (1998).
    [Crossref]
  3. B. Bowe and V. Toal, “White light interferometric surface profiler,” Opt. Eng. 37, 1796–1799 (1998).
    [Crossref]
  4. T. Li, A. Wang, K. Murphy, and R. Claus, “White-light scanning fiber Michelson interferometer for absolute position-distance measurement,” Opt. Lett. 20, 785–787 (1995).
    [Crossref]
  5. P. Zhu and K. Wang, “Single-shot two-dimensional surface measurement based on spectrally resolved white-light interferometry,” Appl. Opt. 51, 4971–4975 (2012).
    [Crossref]
  6. C. C. Scott, A. Luttge, and K. A. Athanasiou, “Development and validation of vertical scanning interferometry as a novel method for acquiring chondrocyte geometry,” J. Biomed. Mater. Res. A 72, 83–90 (2005).
    [Crossref]
  7. F. Gao, H. Muhamedsalih, and X. Jiang, “Surface and thickness measurement of a transparent film using wavelength scanning interferometry,” Opt. Express 20, 21450–21456 (2012).
    [Crossref]
  8. J. K. Schmit, K. Creath, and J. Wyant, “Surface profilers, multiple wavelength, and white light interferometry,” in Optical Shop Testing, 3rd ed. (Wiley, 2007), pp. 667–755.
  9. M. Hart, D. G. Vass, and M. L. Begbie, “Fast surface profiling by spectral analysis of white-light interferograms with Fourier transform spectroscopy,” Appl. Opt. 37, 1764–1769 (1998).
    [Crossref]
  10. P. Hlubina, “Dispersive white-light spectral interferometry to measure distances and displacements,” Appl. Opt. 212, 65–70 (2002).
  11. K.-N. Joo and S.-W. Kim, “Absolute distance measurement by dispersive interferometry using a femtosecond pulse laser,” Opt. Express 14, 5954–5960 (2006).
    [Crossref]
  12. D. S. Mehta, S. Saito, H. Hinosugi, M. Takeda, and T. Kurokawa, “Spectral interference Mirau microscope with an acousto-optic tunable filter for three-dimensional surface profilometry,” Appl. Opt. 42, 1296–1305 (2003).
    [Crossref]
  13. X. Jiang, K. Wang, F. Gao, and H. Muhamedsalih, “Fast surface measurement using wavelength scanning interferometry with compensation of environmental noise,” Appl. Opt. 49, 2903–2909 (2010).
    [Crossref]
  14. J. Schwider and L. Zhou, “Dispersive interferometric profilometer,” Opt. Lett. 19, 995–997 (1994).
    [Crossref]
  15. J. Calatroni, C. Sáinz, and R. Escalona, “The stationary phase in spectrally resolved white-light interferometry as a refractometry tool,” J. Opt. Pure Appl. Opt. 5, S207–S210 (2003).
    [Crossref]
  16. Y.-S. Ghim and S.-W. Kim, “Spectrally resolved white-light interferometry for 3D inspection of a thin-film layer structure,” Appl. Opt. 48, 799–803 (2009).
    [Crossref]
  17. S. K. Debnath and M. P. Kothiyal, “Improved optical profiling using the spectral phase in spectrally resolved white-light interferometry,” Appl. Opt. 45, 6965–6972 (2006).
    [Crossref]
  18. S. K. Debnath and M. P. Kothiyal, “Optical profiler based on spectrally resolved white light interferometry,” Opt. Eng. 44, 013606 (2005).
    [Crossref]
  19. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72, 156–160 (1982).
    [Crossref]
  20. C. Sainz, J. Calatroni, and G. Tribillon, “Refractometry of liquid samples with spectrally resolved white light interferometry,” Meas. Sci. Technol. 1, 356–361 (1990).
    [Crossref]
  21. S. K. Debnath and M. P. Kothiyal, “Analysis of spectrally resolved white light interferometry by Hilbert transform method,” Proc. SPIE 6292, 62920P (2006).
    [Crossref]
  22. S. K. Debnath, M. P. Kothiyal, and S.-W. Kim, “Evaluation of spectral phase in spectrally resolved white-light interferometry: comparative study of single-frame techniques,” Opt. Laser Technol. 47, 1125–1130 (2009).
    [Crossref]
  23. H. Muhamedsalih, F. Gao, and X. Jiang, “Comparison study of algorithms and accuracy in the wavelength scanning interferometry,” Appl. Opt. 51, 8854–8862 (2012).
    [Crossref]

2012 (3)

2010 (1)

2009 (2)

Y.-S. Ghim and S.-W. Kim, “Spectrally resolved white-light interferometry for 3D inspection of a thin-film layer structure,” Appl. Opt. 48, 799–803 (2009).
[Crossref]

S. K. Debnath, M. P. Kothiyal, and S.-W. Kim, “Evaluation of spectral phase in spectrally resolved white-light interferometry: comparative study of single-frame techniques,” Opt. Laser Technol. 47, 1125–1130 (2009).
[Crossref]

2006 (3)

2005 (2)

S. K. Debnath and M. P. Kothiyal, “Optical profiler based on spectrally resolved white light interferometry,” Opt. Eng. 44, 013606 (2005).
[Crossref]

C. C. Scott, A. Luttge, and K. A. Athanasiou, “Development and validation of vertical scanning interferometry as a novel method for acquiring chondrocyte geometry,” J. Biomed. Mater. Res. A 72, 83–90 (2005).
[Crossref]

2003 (3)

L. De Chiffre, H. Kunzmann, G. Peggs, and D. Lucca, “ Surfaces in precision engineering, microengineering and nanotechnology,” CIRP Ann. 52, 561–577 (2003).
[Crossref]

D. S. Mehta, S. Saito, H. Hinosugi, M. Takeda, and T. Kurokawa, “Spectral interference Mirau microscope with an acousto-optic tunable filter for three-dimensional surface profilometry,” Appl. Opt. 42, 1296–1305 (2003).
[Crossref]

J. Calatroni, C. Sáinz, and R. Escalona, “The stationary phase in spectrally resolved white-light interferometry as a refractometry tool,” J. Opt. Pure Appl. Opt. 5, S207–S210 (2003).
[Crossref]

2002 (1)

P. Hlubina, “Dispersive white-light spectral interferometry to measure distances and displacements,” Appl. Opt. 212, 65–70 (2002).

1998 (3)

R. Maboudian, “Surface processes in MEMS technology,” Surf. Sci. Rep. 30, 207–269 (1998).
[Crossref]

B. Bowe and V. Toal, “White light interferometric surface profiler,” Opt. Eng. 37, 1796–1799 (1998).
[Crossref]

M. Hart, D. G. Vass, and M. L. Begbie, “Fast surface profiling by spectral analysis of white-light interferograms with Fourier transform spectroscopy,” Appl. Opt. 37, 1764–1769 (1998).
[Crossref]

1995 (1)

1994 (1)

1990 (1)

C. Sainz, J. Calatroni, and G. Tribillon, “Refractometry of liquid samples with spectrally resolved white light interferometry,” Meas. Sci. Technol. 1, 356–361 (1990).
[Crossref]

1982 (1)

Athanasiou, K. A.

C. C. Scott, A. Luttge, and K. A. Athanasiou, “Development and validation of vertical scanning interferometry as a novel method for acquiring chondrocyte geometry,” J. Biomed. Mater. Res. A 72, 83–90 (2005).
[Crossref]

Begbie, M. L.

Bowe, B.

B. Bowe and V. Toal, “White light interferometric surface profiler,” Opt. Eng. 37, 1796–1799 (1998).
[Crossref]

Calatroni, J.

J. Calatroni, C. Sáinz, and R. Escalona, “The stationary phase in spectrally resolved white-light interferometry as a refractometry tool,” J. Opt. Pure Appl. Opt. 5, S207–S210 (2003).
[Crossref]

C. Sainz, J. Calatroni, and G. Tribillon, “Refractometry of liquid samples with spectrally resolved white light interferometry,” Meas. Sci. Technol. 1, 356–361 (1990).
[Crossref]

Claus, R.

Creath, K.

J. K. Schmit, K. Creath, and J. Wyant, “Surface profilers, multiple wavelength, and white light interferometry,” in Optical Shop Testing, 3rd ed. (Wiley, 2007), pp. 667–755.

De Chiffre, L.

L. De Chiffre, H. Kunzmann, G. Peggs, and D. Lucca, “ Surfaces in precision engineering, microengineering and nanotechnology,” CIRP Ann. 52, 561–577 (2003).
[Crossref]

Debnath, S. K.

S. K. Debnath, M. P. Kothiyal, and S.-W. Kim, “Evaluation of spectral phase in spectrally resolved white-light interferometry: comparative study of single-frame techniques,” Opt. Laser Technol. 47, 1125–1130 (2009).
[Crossref]

S. K. Debnath and M. P. Kothiyal, “Analysis of spectrally resolved white light interferometry by Hilbert transform method,” Proc. SPIE 6292, 62920P (2006).
[Crossref]

S. K. Debnath and M. P. Kothiyal, “Improved optical profiling using the spectral phase in spectrally resolved white-light interferometry,” Appl. Opt. 45, 6965–6972 (2006).
[Crossref]

S. K. Debnath and M. P. Kothiyal, “Optical profiler based on spectrally resolved white light interferometry,” Opt. Eng. 44, 013606 (2005).
[Crossref]

Escalona, R.

J. Calatroni, C. Sáinz, and R. Escalona, “The stationary phase in spectrally resolved white-light interferometry as a refractometry tool,” J. Opt. Pure Appl. Opt. 5, S207–S210 (2003).
[Crossref]

Gao, F.

Ghim, Y.-S.

Hart, M.

Hinosugi, H.

Hlubina, P.

P. Hlubina, “Dispersive white-light spectral interferometry to measure distances and displacements,” Appl. Opt. 212, 65–70 (2002).

Ina, H.

Jiang, X.

Joo, K.-N.

Kim, S.-W.

Kobayashi, S.

Kothiyal, M. P.

S. K. Debnath, M. P. Kothiyal, and S.-W. Kim, “Evaluation of spectral phase in spectrally resolved white-light interferometry: comparative study of single-frame techniques,” Opt. Laser Technol. 47, 1125–1130 (2009).
[Crossref]

S. K. Debnath and M. P. Kothiyal, “Analysis of spectrally resolved white light interferometry by Hilbert transform method,” Proc. SPIE 6292, 62920P (2006).
[Crossref]

S. K. Debnath and M. P. Kothiyal, “Improved optical profiling using the spectral phase in spectrally resolved white-light interferometry,” Appl. Opt. 45, 6965–6972 (2006).
[Crossref]

S. K. Debnath and M. P. Kothiyal, “Optical profiler based on spectrally resolved white light interferometry,” Opt. Eng. 44, 013606 (2005).
[Crossref]

Kunzmann, H.

L. De Chiffre, H. Kunzmann, G. Peggs, and D. Lucca, “ Surfaces in precision engineering, microengineering and nanotechnology,” CIRP Ann. 52, 561–577 (2003).
[Crossref]

Kurokawa, T.

Li, T.

Lucca, D.

L. De Chiffre, H. Kunzmann, G. Peggs, and D. Lucca, “ Surfaces in precision engineering, microengineering and nanotechnology,” CIRP Ann. 52, 561–577 (2003).
[Crossref]

Luttge, A.

C. C. Scott, A. Luttge, and K. A. Athanasiou, “Development and validation of vertical scanning interferometry as a novel method for acquiring chondrocyte geometry,” J. Biomed. Mater. Res. A 72, 83–90 (2005).
[Crossref]

Maboudian, R.

R. Maboudian, “Surface processes in MEMS technology,” Surf. Sci. Rep. 30, 207–269 (1998).
[Crossref]

Mehta, D. S.

Muhamedsalih, H.

Murphy, K.

Peggs, G.

L. De Chiffre, H. Kunzmann, G. Peggs, and D. Lucca, “ Surfaces in precision engineering, microengineering and nanotechnology,” CIRP Ann. 52, 561–577 (2003).
[Crossref]

Sainz, C.

C. Sainz, J. Calatroni, and G. Tribillon, “Refractometry of liquid samples with spectrally resolved white light interferometry,” Meas. Sci. Technol. 1, 356–361 (1990).
[Crossref]

Sáinz, C.

J. Calatroni, C. Sáinz, and R. Escalona, “The stationary phase in spectrally resolved white-light interferometry as a refractometry tool,” J. Opt. Pure Appl. Opt. 5, S207–S210 (2003).
[Crossref]

Saito, S.

Schmit, J. K.

J. K. Schmit, K. Creath, and J. Wyant, “Surface profilers, multiple wavelength, and white light interferometry,” in Optical Shop Testing, 3rd ed. (Wiley, 2007), pp. 667–755.

Schwider, J.

Scott, C. C.

C. C. Scott, A. Luttge, and K. A. Athanasiou, “Development and validation of vertical scanning interferometry as a novel method for acquiring chondrocyte geometry,” J. Biomed. Mater. Res. A 72, 83–90 (2005).
[Crossref]

Takeda, M.

Toal, V.

B. Bowe and V. Toal, “White light interferometric surface profiler,” Opt. Eng. 37, 1796–1799 (1998).
[Crossref]

Tribillon, G.

C. Sainz, J. Calatroni, and G. Tribillon, “Refractometry of liquid samples with spectrally resolved white light interferometry,” Meas. Sci. Technol. 1, 356–361 (1990).
[Crossref]

Vass, D. G.

Wang, A.

Wang, K.

Wyant, J.

J. K. Schmit, K. Creath, and J. Wyant, “Surface profilers, multiple wavelength, and white light interferometry,” in Optical Shop Testing, 3rd ed. (Wiley, 2007), pp. 667–755.

Zhou, L.

Zhu, P.

Appl. Opt. (8)

P. Zhu and K. Wang, “Single-shot two-dimensional surface measurement based on spectrally resolved white-light interferometry,” Appl. Opt. 51, 4971–4975 (2012).
[Crossref]

M. Hart, D. G. Vass, and M. L. Begbie, “Fast surface profiling by spectral analysis of white-light interferograms with Fourier transform spectroscopy,” Appl. Opt. 37, 1764–1769 (1998).
[Crossref]

P. Hlubina, “Dispersive white-light spectral interferometry to measure distances and displacements,” Appl. Opt. 212, 65–70 (2002).

D. S. Mehta, S. Saito, H. Hinosugi, M. Takeda, and T. Kurokawa, “Spectral interference Mirau microscope with an acousto-optic tunable filter for three-dimensional surface profilometry,” Appl. Opt. 42, 1296–1305 (2003).
[Crossref]

X. Jiang, K. Wang, F. Gao, and H. Muhamedsalih, “Fast surface measurement using wavelength scanning interferometry with compensation of environmental noise,” Appl. Opt. 49, 2903–2909 (2010).
[Crossref]

Y.-S. Ghim and S.-W. Kim, “Spectrally resolved white-light interferometry for 3D inspection of a thin-film layer structure,” Appl. Opt. 48, 799–803 (2009).
[Crossref]

S. K. Debnath and M. P. Kothiyal, “Improved optical profiling using the spectral phase in spectrally resolved white-light interferometry,” Appl. Opt. 45, 6965–6972 (2006).
[Crossref]

H. Muhamedsalih, F. Gao, and X. Jiang, “Comparison study of algorithms and accuracy in the wavelength scanning interferometry,” Appl. Opt. 51, 8854–8862 (2012).
[Crossref]

CIRP Ann. (1)

L. De Chiffre, H. Kunzmann, G. Peggs, and D. Lucca, “ Surfaces in precision engineering, microengineering and nanotechnology,” CIRP Ann. 52, 561–577 (2003).
[Crossref]

J. Biomed. Mater. Res. A (1)

C. C. Scott, A. Luttge, and K. A. Athanasiou, “Development and validation of vertical scanning interferometry as a novel method for acquiring chondrocyte geometry,” J. Biomed. Mater. Res. A 72, 83–90 (2005).
[Crossref]

J. Opt. Pure Appl. Opt. (1)

J. Calatroni, C. Sáinz, and R. Escalona, “The stationary phase in spectrally resolved white-light interferometry as a refractometry tool,” J. Opt. Pure Appl. Opt. 5, S207–S210 (2003).
[Crossref]

J. Opt. Soc. Am. (1)

Meas. Sci. Technol. (1)

C. Sainz, J. Calatroni, and G. Tribillon, “Refractometry of liquid samples with spectrally resolved white light interferometry,” Meas. Sci. Technol. 1, 356–361 (1990).
[Crossref]

Opt. Eng. (2)

S. K. Debnath and M. P. Kothiyal, “Optical profiler based on spectrally resolved white light interferometry,” Opt. Eng. 44, 013606 (2005).
[Crossref]

B. Bowe and V. Toal, “White light interferometric surface profiler,” Opt. Eng. 37, 1796–1799 (1998).
[Crossref]

Opt. Express (2)

Opt. Laser Technol. (1)

S. K. Debnath, M. P. Kothiyal, and S.-W. Kim, “Evaluation of spectral phase in spectrally resolved white-light interferometry: comparative study of single-frame techniques,” Opt. Laser Technol. 47, 1125–1130 (2009).
[Crossref]

Opt. Lett. (2)

Proc. SPIE (1)

S. K. Debnath and M. P. Kothiyal, “Analysis of spectrally resolved white light interferometry by Hilbert transform method,” Proc. SPIE 6292, 62920P (2006).
[Crossref]

Surf. Sci. Rep. (1)

R. Maboudian, “Surface processes in MEMS technology,” Surf. Sci. Rep. 30, 207–269 (1998).
[Crossref]

Other (1)

J. K. Schmit, K. Creath, and J. Wyant, “Surface profilers, multiple wavelength, and white light interferometry,” in Optical Shop Testing, 3rd ed. (Wiley, 2007), pp. 667–755.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Wavelength calibration of the CCD.

Fig. 2.
Fig. 2.

Removing the background before phase is retrieved.

Fig. 3.
Fig. 3.

Phase profile of the white light interferogram: (a) wrapped phase and (b) unwrapped phase.

Fig. 4.
Fig. 4.

Fringe pattern of step height obtained by SD-LCI.

Fig. 5.
Fig. 5.

Schematic diagram of the optical setup.

Fig. 6.
Fig. 6.

3D layout of SD-LCI by Zemax.

Fig. 7.
Fig. 7.

Misalignments: (a) tilt of the cylindrical lens and (b) tilt of the beamsplitter.

Fig. 8.
Fig. 8.

Simulated results regarding tilts: (a) spot diagram and (b) interferograms.

Fig. 9.
Fig. 9.

Measurement result of a 9.759 μm step height sample: (a) captured interferogram, (b) 2D profile result, and (c) 3D surface map.

Fig. 10.
Fig. 10.

Measurement result of a 30 μm step height sample: (a) captured interferogram, (b) 2D profile result, and (c) 3D surface map.

Tables (1)

Tables Icon

Table 1. Relative Errors of Measurement

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

mλ=d(sinθi+sinθm).
λ=Δnαva/fa,
λ=λ0+Cd0d,
I(x,y;σ)=a(x,y;σ)+b(x,y;σ)cos[φ(x,y;σ)],
φ(x,y;σ)=4πλ×h(x,y)+φ0=4πσh(x,y)+φ0,
I(x,y;σ)=a(x,y;σ)+c(x,y;σ)+c*(x,y;σ)
c(x,y;σ)=12b(x,y;σ)exp[iφ(x,y;σ)],
I˜(x,y;f)=A(x,y;f)+C(x,y;f)+C*(x,y;f),
log{12b(x,y;σ)exp[iφ(x,y;σ)]}=log[12b(x,y;σ)]+iφ(x,y;σ).
h=Δφ4π(1/λm1/λn),
er=|hmht|ht×100%,

Metrics