Abstract

We introduce a procedure to calibrate an inexpensive, commercial camera for optical power measurements. This allows the use of the camera as a very sensitive optical power meter that is able to measure powers down to the femtowatt level. A windowing technique, based on the selection of a region of interest from the total sensor area, is used to maintain a good signal-to-noise ratio over a large range of the measured optical powers. The increase of the exposure time of the camera shifts its detection limit to lower powers. Using this calibration procedure and the windowing technique, we measured 25 fW of optical power with a common complementary metal-oxide-semiconductor camera.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Cova, M. Ghioni, A. Lacaita, C. Samori, and F. Zappa, “Avalanche photodiodes and quenching circuits for single-photon detection,” Appl. Opt. 35, 1956–1976 (1996).
    [CrossRef]
  2. J. M. Roth, T. E. Murphy, and C. Xu, “Ultrasensitive and high-dynamic-range two-photon absorption in a GaAs photomultiplier tube,” Opt. Lett. 27, 2076–2078 (2002).
    [CrossRef]
  3. D. Renker, “Geiger-mode avalanche photodiodes, history, properties and problems,” Nucl. Instrum. Methods Phys. Res. A 567, 48–56 (2006).
    [CrossRef]
  4. J. Janesick, J. Pinter, R. Potter, T. Elliot, J. Andrews, J. Tower, J. Cheng, and J. Bishop, “Fundamental performance differences between CMOS and CCD imagers: part III,” Proc. SPIE 7439, 743907 (2009).
    [CrossRef]
  5. L. Blockstein and O. Yadid-Pecht, “Crosstalk quantification, analysis, and trends in CMOS image sensors,” Appl. Opt. 49, 4483–4488 (2010).
    [CrossRef]
  6. J. Joubert, Y. Sabharwal, and D. Sharma, “Digital camera technologies for scientific bio-imaging part 2: sampling and signal,” Microsc. Anal. 26, S4–S8 (2012).
  7. Thorlabs DCC1545M CMOS Camera Operation Manual, http://www.thorlabs.de/thorcat/25000/DCC1545M-Manual.pdf .

2012 (1)

J. Joubert, Y. Sabharwal, and D. Sharma, “Digital camera technologies for scientific bio-imaging part 2: sampling and signal,” Microsc. Anal. 26, S4–S8 (2012).

2010 (1)

2009 (1)

J. Janesick, J. Pinter, R. Potter, T. Elliot, J. Andrews, J. Tower, J. Cheng, and J. Bishop, “Fundamental performance differences between CMOS and CCD imagers: part III,” Proc. SPIE 7439, 743907 (2009).
[CrossRef]

2006 (1)

D. Renker, “Geiger-mode avalanche photodiodes, history, properties and problems,” Nucl. Instrum. Methods Phys. Res. A 567, 48–56 (2006).
[CrossRef]

2002 (1)

1996 (1)

Andrews, J.

J. Janesick, J. Pinter, R. Potter, T. Elliot, J. Andrews, J. Tower, J. Cheng, and J. Bishop, “Fundamental performance differences between CMOS and CCD imagers: part III,” Proc. SPIE 7439, 743907 (2009).
[CrossRef]

Bishop, J.

J. Janesick, J. Pinter, R. Potter, T. Elliot, J. Andrews, J. Tower, J. Cheng, and J. Bishop, “Fundamental performance differences between CMOS and CCD imagers: part III,” Proc. SPIE 7439, 743907 (2009).
[CrossRef]

Blockstein, L.

Cheng, J.

J. Janesick, J. Pinter, R. Potter, T. Elliot, J. Andrews, J. Tower, J. Cheng, and J. Bishop, “Fundamental performance differences between CMOS and CCD imagers: part III,” Proc. SPIE 7439, 743907 (2009).
[CrossRef]

Cova, S.

Elliot, T.

J. Janesick, J. Pinter, R. Potter, T. Elliot, J. Andrews, J. Tower, J. Cheng, and J. Bishop, “Fundamental performance differences between CMOS and CCD imagers: part III,” Proc. SPIE 7439, 743907 (2009).
[CrossRef]

Ghioni, M.

Janesick, J.

J. Janesick, J. Pinter, R. Potter, T. Elliot, J. Andrews, J. Tower, J. Cheng, and J. Bishop, “Fundamental performance differences between CMOS and CCD imagers: part III,” Proc. SPIE 7439, 743907 (2009).
[CrossRef]

Joubert, J.

J. Joubert, Y. Sabharwal, and D. Sharma, “Digital camera technologies for scientific bio-imaging part 2: sampling and signal,” Microsc. Anal. 26, S4–S8 (2012).

Lacaita, A.

Murphy, T. E.

Pinter, J.

J. Janesick, J. Pinter, R. Potter, T. Elliot, J. Andrews, J. Tower, J. Cheng, and J. Bishop, “Fundamental performance differences between CMOS and CCD imagers: part III,” Proc. SPIE 7439, 743907 (2009).
[CrossRef]

Potter, R.

J. Janesick, J. Pinter, R. Potter, T. Elliot, J. Andrews, J. Tower, J. Cheng, and J. Bishop, “Fundamental performance differences between CMOS and CCD imagers: part III,” Proc. SPIE 7439, 743907 (2009).
[CrossRef]

Renker, D.

D. Renker, “Geiger-mode avalanche photodiodes, history, properties and problems,” Nucl. Instrum. Methods Phys. Res. A 567, 48–56 (2006).
[CrossRef]

Roth, J. M.

Sabharwal, Y.

J. Joubert, Y. Sabharwal, and D. Sharma, “Digital camera technologies for scientific bio-imaging part 2: sampling and signal,” Microsc. Anal. 26, S4–S8 (2012).

Samori, C.

Sharma, D.

J. Joubert, Y. Sabharwal, and D. Sharma, “Digital camera technologies for scientific bio-imaging part 2: sampling and signal,” Microsc. Anal. 26, S4–S8 (2012).

Tower, J.

J. Janesick, J. Pinter, R. Potter, T. Elliot, J. Andrews, J. Tower, J. Cheng, and J. Bishop, “Fundamental performance differences between CMOS and CCD imagers: part III,” Proc. SPIE 7439, 743907 (2009).
[CrossRef]

Xu, C.

Yadid-Pecht, O.

Zappa, F.

Appl. Opt. (2)

Microsc. Anal. (1)

J. Joubert, Y. Sabharwal, and D. Sharma, “Digital camera technologies for scientific bio-imaging part 2: sampling and signal,” Microsc. Anal. 26, S4–S8 (2012).

Nucl. Instrum. Methods Phys. Res. A (1)

D. Renker, “Geiger-mode avalanche photodiodes, history, properties and problems,” Nucl. Instrum. Methods Phys. Res. A 567, 48–56 (2006).
[CrossRef]

Opt. Lett. (1)

Proc. SPIE (1)

J. Janesick, J. Pinter, R. Potter, T. Elliot, J. Andrews, J. Tower, J. Cheng, and J. Bishop, “Fundamental performance differences between CMOS and CCD imagers: part III,” Proc. SPIE 7439, 743907 (2009).
[CrossRef]

Other (1)

Thorlabs DCC1545M CMOS Camera Operation Manual, http://www.thorlabs.de/thorcat/25000/DCC1545M-Manual.pdf .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Calibration curves for different exposure times of the camera.

Fig. 2.
Fig. 2.

Beam spot on the camera array used in the calibration, at two different exposure times: (a) 6.09 ms and (b) 17.9 ms.

Fig. 3.
Fig. 3.

Dependence of the calibration factor (a) on the exposure time and (b) on the inverse of the exposure time.

Fig. 4.
Fig. 4.

Beam spot on the camera array for low power measurements. The shown images contain 20×20 pixels, but only windows of 5×5 pixels were used for the actual measurement.

Tables (1)

Tables Icon

Table 1. Results of the Measurement of Very Low Powers Using the Calibrated Camera

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Gav,bg=iNpxGiNpx.
P=K·Gav,
P=K·Gav=K·Gav,
P=Kw·Gav,w,

Metrics