Abstract

A pure rotational Raman (PRR) lidar based on a second-harmonic generation Nd:YAG laser is built for measuring the atmospheric temperature at altitudes of 5–30 km. A double-grating polychromator is designed to extract the wanted PRR signals and suppress the elastically backscattered light. Measured examples present the overall lidar performance. For the 1-h integrated lidar temperature profiles, the 1σ statistical uncertainty is less than 0.5 K up to 17km, while it does not exceed 2 K at altitudes of 17–26.3 km. Based on 38 nights of high-quality lidar temperature data, the temperature variability is studied. It is found that the variability differs between the nights with inversion layer and those without it. On the nights without inversion layer, the local hour-to-hour temperature variability was mostly less than 1 K at altitudes of 5–17 km. At altitudes of 17–23 km, it grew to 1.2–2.4 K. On the nights with inversion layer, in the middle and upper troposphere, the significant variability was found to occur only at the inversion-layer altitudes. At other tropospheric altitudes off the inversion layer, the variability was generally less than 1 K. The statistical results indicate that the temperature variability mostly was stronger in the presence of inversion layer than in its absence.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Cooney, “Measurement of atmospheric temperature profiles by Raman backscatter,” J. Appl. Meteorol. 11, 108–112 (1972).
    [CrossRef]
  2. A. Behrendt, “Temperature measurement with lidar,” in Lidar Range-Resolved Optical Remote Sensing of the Atmosphere, C. Weitkamp, ed. (Springer, 2005), pp. 273–305.
  3. A. Behrendt and J. Reichardt, “Atmospheric temperature profiling in the presence of clouds with a pure rotational Raman lidar by use of an interference-filter-based polychromator,” Appl. Opt. 39, 1372–1378 (2000).
    [CrossRef]
  4. A. Behrendt, “Fernmessung atmosphärischer Temperaturprofile in Wolken mit Rotations-Raman-Lidar,” doctoral dissertation (University of Hamburg, 2000).
  5. J. Su, M. P. McCormick, Y. Wu, R. B. Lee, L. Lei, Z. Liu, and K. R. Leavor, “Cloud temperature measurement using rotational Raman lidar,” J. Quant. Spectrosc. Radiat. Transfer 125, 45–50 (2013).
    [CrossRef]
  6. G. Vaughan, D. P. Wareing, S. J. Pepler, L. Thomas, and V. Mitev, “Atmospheric temperature measurements made by rotational Raman scattering,” Appl. Opt. 32, 2758–2764 (1993).
    [CrossRef]
  7. A. Behrendt, T. Nakamura, and T. Tsuda, “Combined temperature lidar for measurements in the troposphere, stratosphere, and mesosphere,” Appl. Opt. 43, 2930–2939 (2004).
    [CrossRef]
  8. P. D. Girolamo, R. Marchese, D. N. Whiteman, and B. B. Demoz, “Rotational Raman lidar measurements of atmospheric temperature in the UV,” Geophys. Res. Lett. 31, L01106 (2004).
  9. Y. F. Arshinov, S. M. Bobrovnikov, V. E. Zuev, and V. M. Mitev, “Atmospheric temperature measurements using a pure rotational Raman lidar,” Appl. Opt. 22, 2984–2990 (1983).
    [CrossRef]
  10. A. Ansmann, Y. F. Arshinov, S. Bobrovnikov, I. Mattis, I. Serikov, and U. Wandinger, “Double grating monochromator for a pure rotational Raman-lidar,” Proc. SPIE 3583, 491–497 (1998).
    [CrossRef]
  11. I. Balin, I. Serikov, S. Bobrovnikov, V. Simeonov, B. Calpini, Y. Arshinov, and H. V. D. Bergh, “Simultaneous measurement of atmospheric temperature, humidity, and aerosol extinction and backscatter coefficients by a combined vibrational-pure-rotational Raman lidar,” Appl. Phys. B 79, 775–782 (2004).
    [CrossRef]
  12. M. Radlach, A. Behrendt, and V. Wulfmeyer, “Scaning rotational Raman lidar at 355  nm for the measurement of tropospheric temperature fields,” Atmos. Chem. Phys. 8, 159–169 (2008).
    [CrossRef]
  13. I. Serikov, H. Linne, F. Jansen, and B. Brugmann, “Combined visible and UV pure rotational Raman lidar channel for air temperature profiling,” in Proceedings of the 25th International Laser Radar Conference, St. Petersburg, Russia, 2010, pp. 27–30.
  14. J. Mao, D. Hua, Y. Wang, F. Gao, and L. Wang, “Accurate temperature profiling of the atmospheric boundary layer using an ultraviolet rotational Raman lidar,” Opt. Commun. 282, 3113–3118 (2009).
    [CrossRef]
  15. S. Chen, Z. Qiu, Y. Zhang, H. Chen, and Y. Wang, “A pure rotational Raman lidar using double-grating monochromator for temperature profile detection,” J. Quant. Spectrosc. Radiat. Transfer 112, 304–309 (2011).
    [CrossRef]
  16. P. Achtert, M. Khaplanov, F. Khosrawi, and J. Gumbel, “Pure rotational-Raman channels of the Esrange lidar for temperature and particle extinction measurements in the troposphere and lower stratosphere,” Atmos. Meas. Tech. 6, 91–98 (2013).
    [CrossRef]
  17. A. Behrendt, T. Nakamura, M. Onishi, R. Baumgart, and T. Tsuda, “Combined Raman lidar for the measurement of atmospheric temperature, water vapor, particle extinction coefficient, and particle backscatter coefficient,” Appl. Opt. 41, 7657–7666 (2002).
    [CrossRef]
  18. D. Nedeljkovic, A. Hauchecorne, and M. L. Chanin, “Rotational Raman lidar to measure the atmospheric temperature from the ground to 30  km,” IEEE Trans. Geosci. Remote Sens. 31, 90–101 (1993).
    [CrossRef]
  19. R. B. Lee, “Tropospheric temperature measurements using a rotational Raman lidar,” doctoral dissertation (Hampton University, 2013).
  20. F. Liu and F. Yi, “Spectrally resolved Raman lidar measurements of gaseous and liquid water in the atmosphere,” Appl. Opt. 52, 6884–6895 (2013).
    [CrossRef]
  21. F. Yi, S. Zhang, C. Yu, Y. He, X. Yue, C. Huang, and J. Zhou, “Simultaneous observations of sporadic Fe and Na layers by two closely collocated resonance fluorescence lidars at Wuhan (30.5°N, 114.4°E), China,” J. Geophys. Res. 112, D04304 (2007).
  22. C. M. Penney, R. L. St. Peters, and M. Lapp, “Absolute rotational Raman cross sections for N2, O2, and CO2,” J. Opt. Soc. Am. 64, 712–716 (1974).
    [CrossRef]
  23. A. Cohen, J. A. Cooney, and K. N. Geller, “Atmospheric temperature profiles from lidar measurements of rotational Raman and elastic scattering,” Appl. Opt. 15, 2896–2901 (1976).
    [CrossRef]
  24. U. Wandinger, “Raman lidar,” in Lidar Range-Resolved Optical Remote Sensing of the Atmosphere, C. Weitkamp, ed. (Springer, 2005), pp. 242–271.
  25. D. Hua, M. Uchida, and T. Kobayashi, “Ultraviolet high-spectral-resolution Rayleigh–Mie lidar with a dual-pass Fabry–Perot etalon for measuring atmospheric temperature profiles of the troposphere,” Opt. Lett. 29, 1063–1065 (2004).
    [CrossRef]
  26. R. K. Newsom, D. D. Turner, B. Mielke, M. Clayton, R. Ferrare, and C. Sivaraman, “Simultaneous analog and photon counting detection for Raman lidar,” Appl. Opt. 48, 3903–3914 (2009).
    [CrossRef]

2013 (3)

J. Su, M. P. McCormick, Y. Wu, R. B. Lee, L. Lei, Z. Liu, and K. R. Leavor, “Cloud temperature measurement using rotational Raman lidar,” J. Quant. Spectrosc. Radiat. Transfer 125, 45–50 (2013).
[CrossRef]

P. Achtert, M. Khaplanov, F. Khosrawi, and J. Gumbel, “Pure rotational-Raman channels of the Esrange lidar for temperature and particle extinction measurements in the troposphere and lower stratosphere,” Atmos. Meas. Tech. 6, 91–98 (2013).
[CrossRef]

F. Liu and F. Yi, “Spectrally resolved Raman lidar measurements of gaseous and liquid water in the atmosphere,” Appl. Opt. 52, 6884–6895 (2013).
[CrossRef]

2011 (1)

S. Chen, Z. Qiu, Y. Zhang, H. Chen, and Y. Wang, “A pure rotational Raman lidar using double-grating monochromator for temperature profile detection,” J. Quant. Spectrosc. Radiat. Transfer 112, 304–309 (2011).
[CrossRef]

2009 (2)

J. Mao, D. Hua, Y. Wang, F. Gao, and L. Wang, “Accurate temperature profiling of the atmospheric boundary layer using an ultraviolet rotational Raman lidar,” Opt. Commun. 282, 3113–3118 (2009).
[CrossRef]

R. K. Newsom, D. D. Turner, B. Mielke, M. Clayton, R. Ferrare, and C. Sivaraman, “Simultaneous analog and photon counting detection for Raman lidar,” Appl. Opt. 48, 3903–3914 (2009).
[CrossRef]

2008 (1)

M. Radlach, A. Behrendt, and V. Wulfmeyer, “Scaning rotational Raman lidar at 355  nm for the measurement of tropospheric temperature fields,” Atmos. Chem. Phys. 8, 159–169 (2008).
[CrossRef]

2007 (1)

F. Yi, S. Zhang, C. Yu, Y. He, X. Yue, C. Huang, and J. Zhou, “Simultaneous observations of sporadic Fe and Na layers by two closely collocated resonance fluorescence lidars at Wuhan (30.5°N, 114.4°E), China,” J. Geophys. Res. 112, D04304 (2007).

2004 (4)

P. D. Girolamo, R. Marchese, D. N. Whiteman, and B. B. Demoz, “Rotational Raman lidar measurements of atmospheric temperature in the UV,” Geophys. Res. Lett. 31, L01106 (2004).

I. Balin, I. Serikov, S. Bobrovnikov, V. Simeonov, B. Calpini, Y. Arshinov, and H. V. D. Bergh, “Simultaneous measurement of atmospheric temperature, humidity, and aerosol extinction and backscatter coefficients by a combined vibrational-pure-rotational Raman lidar,” Appl. Phys. B 79, 775–782 (2004).
[CrossRef]

A. Behrendt, T. Nakamura, and T. Tsuda, “Combined temperature lidar for measurements in the troposphere, stratosphere, and mesosphere,” Appl. Opt. 43, 2930–2939 (2004).
[CrossRef]

D. Hua, M. Uchida, and T. Kobayashi, “Ultraviolet high-spectral-resolution Rayleigh–Mie lidar with a dual-pass Fabry–Perot etalon for measuring atmospheric temperature profiles of the troposphere,” Opt. Lett. 29, 1063–1065 (2004).
[CrossRef]

2002 (1)

2000 (1)

1998 (1)

A. Ansmann, Y. F. Arshinov, S. Bobrovnikov, I. Mattis, I. Serikov, and U. Wandinger, “Double grating monochromator for a pure rotational Raman-lidar,” Proc. SPIE 3583, 491–497 (1998).
[CrossRef]

1993 (2)

D. Nedeljkovic, A. Hauchecorne, and M. L. Chanin, “Rotational Raman lidar to measure the atmospheric temperature from the ground to 30  km,” IEEE Trans. Geosci. Remote Sens. 31, 90–101 (1993).
[CrossRef]

G. Vaughan, D. P. Wareing, S. J. Pepler, L. Thomas, and V. Mitev, “Atmospheric temperature measurements made by rotational Raman scattering,” Appl. Opt. 32, 2758–2764 (1993).
[CrossRef]

1983 (1)

1976 (1)

1974 (1)

1972 (1)

J. Cooney, “Measurement of atmospheric temperature profiles by Raman backscatter,” J. Appl. Meteorol. 11, 108–112 (1972).
[CrossRef]

Achtert, P.

P. Achtert, M. Khaplanov, F. Khosrawi, and J. Gumbel, “Pure rotational-Raman channels of the Esrange lidar for temperature and particle extinction measurements in the troposphere and lower stratosphere,” Atmos. Meas. Tech. 6, 91–98 (2013).
[CrossRef]

Ansmann, A.

A. Ansmann, Y. F. Arshinov, S. Bobrovnikov, I. Mattis, I. Serikov, and U. Wandinger, “Double grating monochromator for a pure rotational Raman-lidar,” Proc. SPIE 3583, 491–497 (1998).
[CrossRef]

Arshinov, Y.

I. Balin, I. Serikov, S. Bobrovnikov, V. Simeonov, B. Calpini, Y. Arshinov, and H. V. D. Bergh, “Simultaneous measurement of atmospheric temperature, humidity, and aerosol extinction and backscatter coefficients by a combined vibrational-pure-rotational Raman lidar,” Appl. Phys. B 79, 775–782 (2004).
[CrossRef]

Arshinov, Y. F.

A. Ansmann, Y. F. Arshinov, S. Bobrovnikov, I. Mattis, I. Serikov, and U. Wandinger, “Double grating monochromator for a pure rotational Raman-lidar,” Proc. SPIE 3583, 491–497 (1998).
[CrossRef]

Y. F. Arshinov, S. M. Bobrovnikov, V. E. Zuev, and V. M. Mitev, “Atmospheric temperature measurements using a pure rotational Raman lidar,” Appl. Opt. 22, 2984–2990 (1983).
[CrossRef]

Balin, I.

I. Balin, I. Serikov, S. Bobrovnikov, V. Simeonov, B. Calpini, Y. Arshinov, and H. V. D. Bergh, “Simultaneous measurement of atmospheric temperature, humidity, and aerosol extinction and backscatter coefficients by a combined vibrational-pure-rotational Raman lidar,” Appl. Phys. B 79, 775–782 (2004).
[CrossRef]

Baumgart, R.

Behrendt, A.

M. Radlach, A. Behrendt, and V. Wulfmeyer, “Scaning rotational Raman lidar at 355  nm for the measurement of tropospheric temperature fields,” Atmos. Chem. Phys. 8, 159–169 (2008).
[CrossRef]

A. Behrendt, T. Nakamura, and T. Tsuda, “Combined temperature lidar for measurements in the troposphere, stratosphere, and mesosphere,” Appl. Opt. 43, 2930–2939 (2004).
[CrossRef]

A. Behrendt, T. Nakamura, M. Onishi, R. Baumgart, and T. Tsuda, “Combined Raman lidar for the measurement of atmospheric temperature, water vapor, particle extinction coefficient, and particle backscatter coefficient,” Appl. Opt. 41, 7657–7666 (2002).
[CrossRef]

A. Behrendt and J. Reichardt, “Atmospheric temperature profiling in the presence of clouds with a pure rotational Raman lidar by use of an interference-filter-based polychromator,” Appl. Opt. 39, 1372–1378 (2000).
[CrossRef]

A. Behrendt, “Temperature measurement with lidar,” in Lidar Range-Resolved Optical Remote Sensing of the Atmosphere, C. Weitkamp, ed. (Springer, 2005), pp. 273–305.

A. Behrendt, “Fernmessung atmosphärischer Temperaturprofile in Wolken mit Rotations-Raman-Lidar,” doctoral dissertation (University of Hamburg, 2000).

Bergh, H. V. D.

I. Balin, I. Serikov, S. Bobrovnikov, V. Simeonov, B. Calpini, Y. Arshinov, and H. V. D. Bergh, “Simultaneous measurement of atmospheric temperature, humidity, and aerosol extinction and backscatter coefficients by a combined vibrational-pure-rotational Raman lidar,” Appl. Phys. B 79, 775–782 (2004).
[CrossRef]

Bobrovnikov, S.

I. Balin, I. Serikov, S. Bobrovnikov, V. Simeonov, B. Calpini, Y. Arshinov, and H. V. D. Bergh, “Simultaneous measurement of atmospheric temperature, humidity, and aerosol extinction and backscatter coefficients by a combined vibrational-pure-rotational Raman lidar,” Appl. Phys. B 79, 775–782 (2004).
[CrossRef]

A. Ansmann, Y. F. Arshinov, S. Bobrovnikov, I. Mattis, I. Serikov, and U. Wandinger, “Double grating monochromator for a pure rotational Raman-lidar,” Proc. SPIE 3583, 491–497 (1998).
[CrossRef]

Bobrovnikov, S. M.

Brugmann, B.

I. Serikov, H. Linne, F. Jansen, and B. Brugmann, “Combined visible and UV pure rotational Raman lidar channel for air temperature profiling,” in Proceedings of the 25th International Laser Radar Conference, St. Petersburg, Russia, 2010, pp. 27–30.

Calpini, B.

I. Balin, I. Serikov, S. Bobrovnikov, V. Simeonov, B. Calpini, Y. Arshinov, and H. V. D. Bergh, “Simultaneous measurement of atmospheric temperature, humidity, and aerosol extinction and backscatter coefficients by a combined vibrational-pure-rotational Raman lidar,” Appl. Phys. B 79, 775–782 (2004).
[CrossRef]

Chanin, M. L.

D. Nedeljkovic, A. Hauchecorne, and M. L. Chanin, “Rotational Raman lidar to measure the atmospheric temperature from the ground to 30  km,” IEEE Trans. Geosci. Remote Sens. 31, 90–101 (1993).
[CrossRef]

Chen, H.

S. Chen, Z. Qiu, Y. Zhang, H. Chen, and Y. Wang, “A pure rotational Raman lidar using double-grating monochromator for temperature profile detection,” J. Quant. Spectrosc. Radiat. Transfer 112, 304–309 (2011).
[CrossRef]

Chen, S.

S. Chen, Z. Qiu, Y. Zhang, H. Chen, and Y. Wang, “A pure rotational Raman lidar using double-grating monochromator for temperature profile detection,” J. Quant. Spectrosc. Radiat. Transfer 112, 304–309 (2011).
[CrossRef]

Clayton, M.

Cohen, A.

Cooney, J.

J. Cooney, “Measurement of atmospheric temperature profiles by Raman backscatter,” J. Appl. Meteorol. 11, 108–112 (1972).
[CrossRef]

Cooney, J. A.

Demoz, B. B.

P. D. Girolamo, R. Marchese, D. N. Whiteman, and B. B. Demoz, “Rotational Raman lidar measurements of atmospheric temperature in the UV,” Geophys. Res. Lett. 31, L01106 (2004).

Ferrare, R.

Gao, F.

J. Mao, D. Hua, Y. Wang, F. Gao, and L. Wang, “Accurate temperature profiling of the atmospheric boundary layer using an ultraviolet rotational Raman lidar,” Opt. Commun. 282, 3113–3118 (2009).
[CrossRef]

Geller, K. N.

Girolamo, P. D.

P. D. Girolamo, R. Marchese, D. N. Whiteman, and B. B. Demoz, “Rotational Raman lidar measurements of atmospheric temperature in the UV,” Geophys. Res. Lett. 31, L01106 (2004).

Gumbel, J.

P. Achtert, M. Khaplanov, F. Khosrawi, and J. Gumbel, “Pure rotational-Raman channels of the Esrange lidar for temperature and particle extinction measurements in the troposphere and lower stratosphere,” Atmos. Meas. Tech. 6, 91–98 (2013).
[CrossRef]

Hauchecorne, A.

D. Nedeljkovic, A. Hauchecorne, and M. L. Chanin, “Rotational Raman lidar to measure the atmospheric temperature from the ground to 30  km,” IEEE Trans. Geosci. Remote Sens. 31, 90–101 (1993).
[CrossRef]

He, Y.

F. Yi, S. Zhang, C. Yu, Y. He, X. Yue, C. Huang, and J. Zhou, “Simultaneous observations of sporadic Fe and Na layers by two closely collocated resonance fluorescence lidars at Wuhan (30.5°N, 114.4°E), China,” J. Geophys. Res. 112, D04304 (2007).

Hua, D.

J. Mao, D. Hua, Y. Wang, F. Gao, and L. Wang, “Accurate temperature profiling of the atmospheric boundary layer using an ultraviolet rotational Raman lidar,” Opt. Commun. 282, 3113–3118 (2009).
[CrossRef]

D. Hua, M. Uchida, and T. Kobayashi, “Ultraviolet high-spectral-resolution Rayleigh–Mie lidar with a dual-pass Fabry–Perot etalon for measuring atmospheric temperature profiles of the troposphere,” Opt. Lett. 29, 1063–1065 (2004).
[CrossRef]

Huang, C.

F. Yi, S. Zhang, C. Yu, Y. He, X. Yue, C. Huang, and J. Zhou, “Simultaneous observations of sporadic Fe and Na layers by two closely collocated resonance fluorescence lidars at Wuhan (30.5°N, 114.4°E), China,” J. Geophys. Res. 112, D04304 (2007).

Jansen, F.

I. Serikov, H. Linne, F. Jansen, and B. Brugmann, “Combined visible and UV pure rotational Raman lidar channel for air temperature profiling,” in Proceedings of the 25th International Laser Radar Conference, St. Petersburg, Russia, 2010, pp. 27–30.

Khaplanov, M.

P. Achtert, M. Khaplanov, F. Khosrawi, and J. Gumbel, “Pure rotational-Raman channels of the Esrange lidar for temperature and particle extinction measurements in the troposphere and lower stratosphere,” Atmos. Meas. Tech. 6, 91–98 (2013).
[CrossRef]

Khosrawi, F.

P. Achtert, M. Khaplanov, F. Khosrawi, and J. Gumbel, “Pure rotational-Raman channels of the Esrange lidar for temperature and particle extinction measurements in the troposphere and lower stratosphere,” Atmos. Meas. Tech. 6, 91–98 (2013).
[CrossRef]

Kobayashi, T.

Lapp, M.

Leavor, K. R.

J. Su, M. P. McCormick, Y. Wu, R. B. Lee, L. Lei, Z. Liu, and K. R. Leavor, “Cloud temperature measurement using rotational Raman lidar,” J. Quant. Spectrosc. Radiat. Transfer 125, 45–50 (2013).
[CrossRef]

Lee, R. B.

J. Su, M. P. McCormick, Y. Wu, R. B. Lee, L. Lei, Z. Liu, and K. R. Leavor, “Cloud temperature measurement using rotational Raman lidar,” J. Quant. Spectrosc. Radiat. Transfer 125, 45–50 (2013).
[CrossRef]

R. B. Lee, “Tropospheric temperature measurements using a rotational Raman lidar,” doctoral dissertation (Hampton University, 2013).

Lei, L.

J. Su, M. P. McCormick, Y. Wu, R. B. Lee, L. Lei, Z. Liu, and K. R. Leavor, “Cloud temperature measurement using rotational Raman lidar,” J. Quant. Spectrosc. Radiat. Transfer 125, 45–50 (2013).
[CrossRef]

Linne, H.

I. Serikov, H. Linne, F. Jansen, and B. Brugmann, “Combined visible and UV pure rotational Raman lidar channel for air temperature profiling,” in Proceedings of the 25th International Laser Radar Conference, St. Petersburg, Russia, 2010, pp. 27–30.

Liu, F.

Liu, Z.

J. Su, M. P. McCormick, Y. Wu, R. B. Lee, L. Lei, Z. Liu, and K. R. Leavor, “Cloud temperature measurement using rotational Raman lidar,” J. Quant. Spectrosc. Radiat. Transfer 125, 45–50 (2013).
[CrossRef]

Mao, J.

J. Mao, D. Hua, Y. Wang, F. Gao, and L. Wang, “Accurate temperature profiling of the atmospheric boundary layer using an ultraviolet rotational Raman lidar,” Opt. Commun. 282, 3113–3118 (2009).
[CrossRef]

Marchese, R.

P. D. Girolamo, R. Marchese, D. N. Whiteman, and B. B. Demoz, “Rotational Raman lidar measurements of atmospheric temperature in the UV,” Geophys. Res. Lett. 31, L01106 (2004).

Mattis, I.

A. Ansmann, Y. F. Arshinov, S. Bobrovnikov, I. Mattis, I. Serikov, and U. Wandinger, “Double grating monochromator for a pure rotational Raman-lidar,” Proc. SPIE 3583, 491–497 (1998).
[CrossRef]

McCormick, M. P.

J. Su, M. P. McCormick, Y. Wu, R. B. Lee, L. Lei, Z. Liu, and K. R. Leavor, “Cloud temperature measurement using rotational Raman lidar,” J. Quant. Spectrosc. Radiat. Transfer 125, 45–50 (2013).
[CrossRef]

Mielke, B.

Mitev, V.

Mitev, V. M.

Nakamura, T.

Nedeljkovic, D.

D. Nedeljkovic, A. Hauchecorne, and M. L. Chanin, “Rotational Raman lidar to measure the atmospheric temperature from the ground to 30  km,” IEEE Trans. Geosci. Remote Sens. 31, 90–101 (1993).
[CrossRef]

Newsom, R. K.

Onishi, M.

Penney, C. M.

Pepler, S. J.

Qiu, Z.

S. Chen, Z. Qiu, Y. Zhang, H. Chen, and Y. Wang, “A pure rotational Raman lidar using double-grating monochromator for temperature profile detection,” J. Quant. Spectrosc. Radiat. Transfer 112, 304–309 (2011).
[CrossRef]

Radlach, M.

M. Radlach, A. Behrendt, and V. Wulfmeyer, “Scaning rotational Raman lidar at 355  nm for the measurement of tropospheric temperature fields,” Atmos. Chem. Phys. 8, 159–169 (2008).
[CrossRef]

Reichardt, J.

Serikov, I.

I. Balin, I. Serikov, S. Bobrovnikov, V. Simeonov, B. Calpini, Y. Arshinov, and H. V. D. Bergh, “Simultaneous measurement of atmospheric temperature, humidity, and aerosol extinction and backscatter coefficients by a combined vibrational-pure-rotational Raman lidar,” Appl. Phys. B 79, 775–782 (2004).
[CrossRef]

A. Ansmann, Y. F. Arshinov, S. Bobrovnikov, I. Mattis, I. Serikov, and U. Wandinger, “Double grating monochromator for a pure rotational Raman-lidar,” Proc. SPIE 3583, 491–497 (1998).
[CrossRef]

I. Serikov, H. Linne, F. Jansen, and B. Brugmann, “Combined visible and UV pure rotational Raman lidar channel for air temperature profiling,” in Proceedings of the 25th International Laser Radar Conference, St. Petersburg, Russia, 2010, pp. 27–30.

Simeonov, V.

I. Balin, I. Serikov, S. Bobrovnikov, V. Simeonov, B. Calpini, Y. Arshinov, and H. V. D. Bergh, “Simultaneous measurement of atmospheric temperature, humidity, and aerosol extinction and backscatter coefficients by a combined vibrational-pure-rotational Raman lidar,” Appl. Phys. B 79, 775–782 (2004).
[CrossRef]

Sivaraman, C.

St. Peters, R. L.

Su, J.

J. Su, M. P. McCormick, Y. Wu, R. B. Lee, L. Lei, Z. Liu, and K. R. Leavor, “Cloud temperature measurement using rotational Raman lidar,” J. Quant. Spectrosc. Radiat. Transfer 125, 45–50 (2013).
[CrossRef]

Thomas, L.

Tsuda, T.

Turner, D. D.

Uchida, M.

Vaughan, G.

Wandinger, U.

A. Ansmann, Y. F. Arshinov, S. Bobrovnikov, I. Mattis, I. Serikov, and U. Wandinger, “Double grating monochromator for a pure rotational Raman-lidar,” Proc. SPIE 3583, 491–497 (1998).
[CrossRef]

U. Wandinger, “Raman lidar,” in Lidar Range-Resolved Optical Remote Sensing of the Atmosphere, C. Weitkamp, ed. (Springer, 2005), pp. 242–271.

Wang, L.

J. Mao, D. Hua, Y. Wang, F. Gao, and L. Wang, “Accurate temperature profiling of the atmospheric boundary layer using an ultraviolet rotational Raman lidar,” Opt. Commun. 282, 3113–3118 (2009).
[CrossRef]

Wang, Y.

S. Chen, Z. Qiu, Y. Zhang, H. Chen, and Y. Wang, “A pure rotational Raman lidar using double-grating monochromator for temperature profile detection,” J. Quant. Spectrosc. Radiat. Transfer 112, 304–309 (2011).
[CrossRef]

J. Mao, D. Hua, Y. Wang, F. Gao, and L. Wang, “Accurate temperature profiling of the atmospheric boundary layer using an ultraviolet rotational Raman lidar,” Opt. Commun. 282, 3113–3118 (2009).
[CrossRef]

Wareing, D. P.

Whiteman, D. N.

P. D. Girolamo, R. Marchese, D. N. Whiteman, and B. B. Demoz, “Rotational Raman lidar measurements of atmospheric temperature in the UV,” Geophys. Res. Lett. 31, L01106 (2004).

Wu, Y.

J. Su, M. P. McCormick, Y. Wu, R. B. Lee, L. Lei, Z. Liu, and K. R. Leavor, “Cloud temperature measurement using rotational Raman lidar,” J. Quant. Spectrosc. Radiat. Transfer 125, 45–50 (2013).
[CrossRef]

Wulfmeyer, V.

M. Radlach, A. Behrendt, and V. Wulfmeyer, “Scaning rotational Raman lidar at 355  nm for the measurement of tropospheric temperature fields,” Atmos. Chem. Phys. 8, 159–169 (2008).
[CrossRef]

Yi, F.

F. Liu and F. Yi, “Spectrally resolved Raman lidar measurements of gaseous and liquid water in the atmosphere,” Appl. Opt. 52, 6884–6895 (2013).
[CrossRef]

F. Yi, S. Zhang, C. Yu, Y. He, X. Yue, C. Huang, and J. Zhou, “Simultaneous observations of sporadic Fe and Na layers by two closely collocated resonance fluorescence lidars at Wuhan (30.5°N, 114.4°E), China,” J. Geophys. Res. 112, D04304 (2007).

Yu, C.

F. Yi, S. Zhang, C. Yu, Y. He, X. Yue, C. Huang, and J. Zhou, “Simultaneous observations of sporadic Fe and Na layers by two closely collocated resonance fluorescence lidars at Wuhan (30.5°N, 114.4°E), China,” J. Geophys. Res. 112, D04304 (2007).

Yue, X.

F. Yi, S. Zhang, C. Yu, Y. He, X. Yue, C. Huang, and J. Zhou, “Simultaneous observations of sporadic Fe and Na layers by two closely collocated resonance fluorescence lidars at Wuhan (30.5°N, 114.4°E), China,” J. Geophys. Res. 112, D04304 (2007).

Zhang, S.

F. Yi, S. Zhang, C. Yu, Y. He, X. Yue, C. Huang, and J. Zhou, “Simultaneous observations of sporadic Fe and Na layers by two closely collocated resonance fluorescence lidars at Wuhan (30.5°N, 114.4°E), China,” J. Geophys. Res. 112, D04304 (2007).

Zhang, Y.

S. Chen, Z. Qiu, Y. Zhang, H. Chen, and Y. Wang, “A pure rotational Raman lidar using double-grating monochromator for temperature profile detection,” J. Quant. Spectrosc. Radiat. Transfer 112, 304–309 (2011).
[CrossRef]

Zhou, J.

F. Yi, S. Zhang, C. Yu, Y. He, X. Yue, C. Huang, and J. Zhou, “Simultaneous observations of sporadic Fe and Na layers by two closely collocated resonance fluorescence lidars at Wuhan (30.5°N, 114.4°E), China,” J. Geophys. Res. 112, D04304 (2007).

Zuev, V. E.

Appl. Opt. (8)

A. Cohen, J. A. Cooney, and K. N. Geller, “Atmospheric temperature profiles from lidar measurements of rotational Raman and elastic scattering,” Appl. Opt. 15, 2896–2901 (1976).
[CrossRef]

Y. F. Arshinov, S. M. Bobrovnikov, V. E. Zuev, and V. M. Mitev, “Atmospheric temperature measurements using a pure rotational Raman lidar,” Appl. Opt. 22, 2984–2990 (1983).
[CrossRef]

G. Vaughan, D. P. Wareing, S. J. Pepler, L. Thomas, and V. Mitev, “Atmospheric temperature measurements made by rotational Raman scattering,” Appl. Opt. 32, 2758–2764 (1993).
[CrossRef]

A. Behrendt and J. Reichardt, “Atmospheric temperature profiling in the presence of clouds with a pure rotational Raman lidar by use of an interference-filter-based polychromator,” Appl. Opt. 39, 1372–1378 (2000).
[CrossRef]

A. Behrendt, T. Nakamura, M. Onishi, R. Baumgart, and T. Tsuda, “Combined Raman lidar for the measurement of atmospheric temperature, water vapor, particle extinction coefficient, and particle backscatter coefficient,” Appl. Opt. 41, 7657–7666 (2002).
[CrossRef]

A. Behrendt, T. Nakamura, and T. Tsuda, “Combined temperature lidar for measurements in the troposphere, stratosphere, and mesosphere,” Appl. Opt. 43, 2930–2939 (2004).
[CrossRef]

R. K. Newsom, D. D. Turner, B. Mielke, M. Clayton, R. Ferrare, and C. Sivaraman, “Simultaneous analog and photon counting detection for Raman lidar,” Appl. Opt. 48, 3903–3914 (2009).
[CrossRef]

F. Liu and F. Yi, “Spectrally resolved Raman lidar measurements of gaseous and liquid water in the atmosphere,” Appl. Opt. 52, 6884–6895 (2013).
[CrossRef]

Appl. Phys. B (1)

I. Balin, I. Serikov, S. Bobrovnikov, V. Simeonov, B. Calpini, Y. Arshinov, and H. V. D. Bergh, “Simultaneous measurement of atmospheric temperature, humidity, and aerosol extinction and backscatter coefficients by a combined vibrational-pure-rotational Raman lidar,” Appl. Phys. B 79, 775–782 (2004).
[CrossRef]

Atmos. Chem. Phys. (1)

M. Radlach, A. Behrendt, and V. Wulfmeyer, “Scaning rotational Raman lidar at 355  nm for the measurement of tropospheric temperature fields,” Atmos. Chem. Phys. 8, 159–169 (2008).
[CrossRef]

Atmos. Meas. Tech. (1)

P. Achtert, M. Khaplanov, F. Khosrawi, and J. Gumbel, “Pure rotational-Raman channels of the Esrange lidar for temperature and particle extinction measurements in the troposphere and lower stratosphere,” Atmos. Meas. Tech. 6, 91–98 (2013).
[CrossRef]

Geophys. Res. Lett. (1)

P. D. Girolamo, R. Marchese, D. N. Whiteman, and B. B. Demoz, “Rotational Raman lidar measurements of atmospheric temperature in the UV,” Geophys. Res. Lett. 31, L01106 (2004).

IEEE Trans. Geosci. Remote Sens. (1)

D. Nedeljkovic, A. Hauchecorne, and M. L. Chanin, “Rotational Raman lidar to measure the atmospheric temperature from the ground to 30  km,” IEEE Trans. Geosci. Remote Sens. 31, 90–101 (1993).
[CrossRef]

J. Appl. Meteorol. (1)

J. Cooney, “Measurement of atmospheric temperature profiles by Raman backscatter,” J. Appl. Meteorol. 11, 108–112 (1972).
[CrossRef]

J. Geophys. Res. (1)

F. Yi, S. Zhang, C. Yu, Y. He, X. Yue, C. Huang, and J. Zhou, “Simultaneous observations of sporadic Fe and Na layers by two closely collocated resonance fluorescence lidars at Wuhan (30.5°N, 114.4°E), China,” J. Geophys. Res. 112, D04304 (2007).

J. Opt. Soc. Am. (1)

J. Quant. Spectrosc. Radiat. Transfer (2)

S. Chen, Z. Qiu, Y. Zhang, H. Chen, and Y. Wang, “A pure rotational Raman lidar using double-grating monochromator for temperature profile detection,” J. Quant. Spectrosc. Radiat. Transfer 112, 304–309 (2011).
[CrossRef]

J. Su, M. P. McCormick, Y. Wu, R. B. Lee, L. Lei, Z. Liu, and K. R. Leavor, “Cloud temperature measurement using rotational Raman lidar,” J. Quant. Spectrosc. Radiat. Transfer 125, 45–50 (2013).
[CrossRef]

Opt. Commun. (1)

J. Mao, D. Hua, Y. Wang, F. Gao, and L. Wang, “Accurate temperature profiling of the atmospheric boundary layer using an ultraviolet rotational Raman lidar,” Opt. Commun. 282, 3113–3118 (2009).
[CrossRef]

Opt. Lett. (1)

Proc. SPIE (1)

A. Ansmann, Y. F. Arshinov, S. Bobrovnikov, I. Mattis, I. Serikov, and U. Wandinger, “Double grating monochromator for a pure rotational Raman-lidar,” Proc. SPIE 3583, 491–497 (1998).
[CrossRef]

Other (5)

I. Serikov, H. Linne, F. Jansen, and B. Brugmann, “Combined visible and UV pure rotational Raman lidar channel for air temperature profiling,” in Proceedings of the 25th International Laser Radar Conference, St. Petersburg, Russia, 2010, pp. 27–30.

A. Behrendt, “Fernmessung atmosphärischer Temperaturprofile in Wolken mit Rotations-Raman-Lidar,” doctoral dissertation (University of Hamburg, 2000).

A. Behrendt, “Temperature measurement with lidar,” in Lidar Range-Resolved Optical Remote Sensing of the Atmosphere, C. Weitkamp, ed. (Springer, 2005), pp. 273–305.

R. B. Lee, “Tropospheric temperature measurements using a rotational Raman lidar,” doctoral dissertation (Hampton University, 2013).

U. Wandinger, “Raman lidar,” in Lidar Range-Resolved Optical Remote Sensing of the Atmosphere, C. Weitkamp, ed. (Springer, 2005), pp. 242–271.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1.
Fig. 1.

(a) Theoretically calculated ratios (diamonds) of the photon counts from two PRR channels as a function of temperature and their exponential fits (solid curves) with an argument of a linear function of 1/T. The fitting is made in the temperature range of 190–290 K. Different curve colors denote different filter–bandwidth combinations [with the two FWHM values given in Fig. 1(b)] for the two PRR channels centered at the wavelengths of the wanted N2 rotational Raman lines. The ratio for the two individual N2 PRR lines is also plotted versus temperature (black curve). (b) Algebraic deviation between the input temperature and the retrieved temperature from the fitted result as a function of temperature.

Fig. 2.
Fig. 2.

Same as Fig. 1 but for the calibration (fitting) function [given by Eq. (12)] with an argument of second-order polynomial function of 1/T. Note that the resulting approximation errors are less than 0.07 K.

Fig. 3.
Fig. 3.

Left part: Optical layout of Wuhan University PRR lidar for atmospheric temperature measurement. D, dichroic mirror; RM, reflecting mirror; BP, bandpass filter; L, lens; FMH, fiber mode homogenizer; F, fiber; FA, fiber bundle array; G, grating; PMT, photomultiplier tube. Right part: Arrangement diagrams of fibers on the end faces of the two fiber bundle arrays (FA1 and FA2).

Fig. 4.
Fig. 4.

(a) Schematic diagram for determining the optical axis of the lens. C2–C4 are homemade mechanical components, each having a 1 mm diameter central hole (penetration). C4 has a circular outer edge with the same diameter as the lens (131 mm). C1 is also a homemade mechanical component having the same geometrical shape as that of FA1 and FA2, which is a 50 mm long column with a diameter of 22 mm. Its central axis is marked with a 1 mm hole (no penetration) on the front end face. (b) Schematic diagram for making the grating’s normal direction parallel to the lens optical axis. (c) Schematic diagram for making the FA1 (FA2) central axis coincide with the optical axis of the lens. As seen from the left of Fig. 4(c), this happens when the image of the F2 (F5/F6) light spot is located at the symmetrical position with respect to the central axis symbol (+).

Fig. 5.
Fig. 5.

(a) Positions of the input fiber (green F2 circle) and its imaging spot (green F3 circle) on the end face of the fiber bundle array FA1 (22 mm outer diameter) when the grating G1 operates at the fifth diffraction order of the elastic signal (53°). The input light is the 532.085 nm beam from a Nd:YAG laser. (b) Schematic position and sharpness of the G1-diffracted light (a dispersive stripe shown as green narrow strip) for white light input via fiber F2 when the end face of FA1 is on the focal plane of L1, and meanwhile the green narrow (straight line) is perpendicular to the groove direction of G1. (c) Schematic position and sharpness of the G2-diffracted light (two dispersive stripes shown as green narrow strip, see text) for white light input via four fibers of F4 (F41,F42,F43,F44) when the end face of FA2 (22 mm outer diameter) is on the focal plane of L2, and meanwhile the green narrow strips (two straight lines) are perpendicular to the groove direction of G2. (d) Position and sharpness of the resultant imaging spots (F5 and F6) on the end face of FA2 after the entire DGP adjustment is accomplished (see text). White light is fed into the DGP via the input fiber F2.

Fig. 6.
Fig. 6.

(a) Spectrograph-measured spectrum intensities (diamonds) from the elastic channel (F3) as well as the two PRR channels (F5 and F6) when white light is fed into the DGP via F2. The spectrum intensities (elastic, high- and low-quantum-number channels) are normalized respectively by their maxima. The solid curves represent the Gaussian fits to the spectrum intensity data. The spectral selection parameters are derived from the Gaussian fits, as summarized in Table 2. (b) Normalized PRR spectrum at 200 K, which is from the theoretical calculation by considering the relative volume abundance (N2, 0.78; O2, 0.21). The “max value” denotes the maximum line intensity of N2 multiplied by 0.78.

Fig. 7.
Fig. 7.

Signal ratio (of the two PRR channels) versus accompanying local radiosonde temperature from four different observation nights (different colors) at Wuhan. The lidar data were integrated over 80 min and smoothed with a gliding average of a 900 m window length. The constant calibration was made in an altitude range from 3.8 to 20.6 km. The fit function as well as the 1σ standard deviations of the calibration constants are presented.

Fig. 8.
Fig. 8.

(a) Photon count profiles of the two PRR channels (red and blue curves) measured during 20:02–21:02 LT on August 7, 2013. (b) Sequence of the 1-h lidar temperature profiles (bold line) together with their 1σ statistical uncertainties (thin line) on the night of August 7–8, 2013. The consecutive profiles have an offset of 15 K. The range resolution is 300 m. Note that the two PRR signals were smoothed at altitudes above 20 km with a sliding average of 900 m. The statistical uncertainties of the 1-h integrated temperature profiles are less than 0.5 K up to an altitude of 17.0km. The corresponding values do not exceed 2 K at altitudes of 17.026.3km. For comparison, the radiosonde temperature (blue curves with diamonds) obtained at 20:00 LT on August 7 at Wuhan is also plotted.

Fig. 9.
Fig. 9.

Sequence of the 20-min lidar temperature profiles (bold line) together with their 1σ statistical uncertainties (thin line) derived from the same raw lidar data as that plotted in Fig. 8. The consecutive profiles have an offset of 15 K. The range resolution is 240 m. The statistical uncertainties of the 20-min lidar temperature profiles are less than 0.5 K up to an altitude of 11.5km. The corresponding values do not exceed 2 K at altitudes of 11.521.5km.

Fig. 10.
Fig. 10.

(a) 1-h lidar temperature profiles (black curves) and their average (red curve) on the night of August 6–7, 2013. For comparison, the two radiosonde temperature profiles from Wuhan Weather Station are also plotted (blue curve for 20:00 LT on August 6 and orange for 08:00 LT on August 7). (b) Mean absolute deviation (light blue curve) and maximum absolute deviation (gold curve) of the 1-h lidar temperature profiles from the nightly mean temperature profiles as well as the mean profile (dotted curve) of the 1σ statistical uncertainties for the 1-h lidar temperature measurements. Note that on this summer night, the hour-to-hour temperature variability at altitudes of 519km was very small, with the mean deviation less than 1 K.

Fig. 11.
Fig. 11.

(a) Nightly mean lidar temperature profile (solid curve) on August 6–7, 2013 and the average profile (dot curve) of 15-day (30-release) Wuhan radiosonde temperature data centered on the lidar observation night. (b) Their absolute deviation and the 1σ statistical uncertainty for the 1-night lidar temperature measurement.

Fig. 12.
Fig. 12.

(a) 1-h lidar temperature profiles (black curves) and their average (red curve) on the night of March 5–6, 2013. For comparison, the two radiosonde temperature profiles from Wuhan Weather Station are also plotted (blue curve for 20:00 LT on March 5 and orange for 08:00 LT on March 6). (b) Mean absolute deviation (light blue curve) and maximum absolute deviation (gold curve) of the 1-h lidar temperature profiles from the nightly mean temperature profiles as well as the mean profile (dotted curve) of the 1σ statistical uncertainties for the 1-h lidar temperature measurements. This night was characterized by an inversion layer at altitudes of 10–12 km. Note that the hour-to-hour temperature variability at the inversion-layer altitudes was clearly visible with the mean deviation of 1–1.6 K.

Fig. 13.
Fig. 13.

(a) Sequence of the temperature gradient profiles derived from the 1-h lidar temperature profiles on the night of March 5–6, 2013 [see Fig. 12(a)]. (b) Vertical shear rate for the zonal wind measured by Wuhan radiosondes at 20:00 LT on March 5 and 08:00 LT on March 6, 2013. Note that on this night, the inversion layer occurred inside a shear layer and both the layers moved upward in similar apparent velocities.

Fig. 14.
Fig. 14.

(a) Nightly mean lidar temperature profile (solid curve) on March 5–6, 2013 and the average profile (dot curve) of 15-day (30-release) Wuhan radiosonde temperature data centered on the lidar observation night. (b) Their absolute deviation and the 1 σ statistical uncertainty for the 1-night lidar temperature measurement.

Fig. 15.
Fig. 15.

(a) Mean absolute deviations (solid curves) of the 1-h lidar temperature profiles from their respective nightly mean for 18 observational nights with inversion layer (red) and 20 observational nights without inversion layer (blue). In addition, the mean absolute deviations (dotted curves) of the nightly mean lidar temperature profiles from the corresponding mean of the temperature profiles from 15-day radiosonde measurements centered on lidar observation nights at Wuhan are plotted respectively in terms of the 18 nights with inversion layer (red) and 20 nights without inversion layer (blue). The mean statistical uncertainties of the individual 1-h lidar temperature profiles and individual 1-night lidar temperature profiles are also given respectively in dashed and dashed–dotted curves. (b) Mean zonal (solid) and meridional (dotted) wind shears derived from the Wuhan radiosonde wind measurements for the 18 nights with inversion layer (red) and the 20 nights without inversion layer (blue).

Tables (2)

Tables Icon

Table 1. Main Technical Specifications of Wuhan University PRR Lidar

Tables Icon

Table 2. Spectral Selection Parameters of DGP Derived from Fig. 6

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

Pi(νJ,z)=P0KO(z)z2H(νJ)ni(z)σi(J,T)τ(ν0)τ(νJ),
σi(J,T)=112π415hcBi(2Ii+1)2kTgi(J)X(J)×[ν0+Δνi(J)]4γi2(4πε0)2exp[Ei(J)kT],
Ei(J)=[BiJ(J+1)DiJ2(J+1)2]hc,J=0,1,2,
Δνi(J)={Bi2(2J+3)+Di[3(2J+3)+(2J+3)3],J=0,1,2(Stokes)Bi2(2J1)Di[3(2J1)+(2J1)3],J=2,3,4(anti-Stokes).
X(J)={(J+1)(J+2)2J+3(Stokes)J(J1)2J1(anti-Stokes).
γi2(4πε0)2={0.51×1060(forγN22in unit ofm6)1.27×1060(forγO22in unit ofm6).
Q(T)=Pi(νJ2,z)Pi(νJ1,z)=exp(αT+β),
α=Ei(J1)Ei(J2)k,
β=ln[H(J2)X(J2)]ln[H(J1)X(J1)].
PRR1(z)=P0KO(z)τ(ν0)n(z)z2×[JN2H1(νJN2)ηN2σN2(JN2,T)τ(νJN2)+JO2H1(νJO2)ηO2σO2(JO2,T)τ(νJO2)],
QΣ(T)=PRR2(z)PRR1(z)=[JN2H2(νJN2)ηN2σN2(JN2,T)+JO2H2(νJO2)ηO2σO2(JO2,T)]2[JN2H1(νJN2)ηN2σN2(JN2,T)+JO2H1(νJO2)ηO2σO2(JO2,T)]1,
QΣ(T)=exp(γT2+αT+β),
ΔT=(1QΣQΣT)1(1PRR1+1PRR2)1/2=(1PRR1PRR1T1PRR2PRR2T)1(1PRR1+1PRR2)1/2.

Metrics