Abstract

The irradiance in microscopic lithography using a digital micro-mirror device (DMD) as a virtual digital mask generator is influenced by diffraction effects that have been exploited to fabricate microstructures. Based on the established model, the theoretical analysis and simulation of DMD diffraction characteristics has been studied. A novel method without masking to fabricate a micro-lens by pixilation of micro-mirrors inside the DMDs used in microscopic lithography has been proposed. It is a method of precise control of photon-induced curing behavior of photoresist by full use of diffraction effects and verification of the feasibility of the fabrication method based on diffraction. The introduced method provides an option for accurate and flexible micro-fabrication of microstructures.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Kamei, “Laser-induced fluorescence detection modules for point-of-care microfluidic biochemical analysis,” Procedia Eng. 25, 709–712 (2011).
    [Crossref]
  2. F. Galeotti, W. Mróz, G. Scavia, and C. Botta, “Microlens arrays for light extraction enhancement in organic light-emitting diodes: a facile approach,” Org. Electron. 14, 212–218 (2013).
    [Crossref]
  3. K. J. Kearney and Z. Ninkov, “Characterization of a digital micromirror device for use as an optical mask in imaging and spectroscopy,” Proc. SPIE 3292, 81–92 (1998).
    [Crossref]
  4. C. Sun, N. Fang, D. M. Wu, and X. Zhang, “Projection micro-stereolithography using digital micro-mirror dynamic mask,” Sens. Actuators A 121, 113–120 (2005).
    [Crossref]
  5. K. Zhong, Y. Gao, F. Li, N. Luo, and W. Zhang, “Fabrication of continuous relief micro-optic elements using real-time maskless lithography technique based on DMD,” Opt. Laser Technol. 56, 367–371 (2014).
    [Crossref]
  6. L. Geppert, “Semiconductor lithography for the next millennium,” IEEE Spectrum 33, 33–38 (1996).
    [Crossref]
  7. L. J. Hornbeck, “From cathode rays to digital micromirrors-A history of electronic projection display technology,” Texas Instruments Tech. J. 15, 7–46 (1998).
  8. P. F. Van Kessel, L. J. Hornbeck, R. E. Meier, and M. R. Douglass, “A MEMS-based projection display,” Proc. IEEE 86, 1687–1704 (1998).
    [Crossref]
  9. V. Bansal and P. Saggau, “Digital micromirror devices: principles and applications in imaging,” Cold Spring Harb. Protocols 2013, 404–411 (2013).
    [Crossref]
  10. Y. X. Ren, M. Li, K. Huang, J. G. Wu, H. F. Gao, Z. Q. Wang, and Y. M. Li, “Experimental generation of Laguerre–Gaussian beam using digital micromirror device,” Appl. Opt. 49, 1838–1844 (2010).
    [Crossref]
  11. V. Lerner, D. Shwa, Y. Drori, and N. Katz, “Shaping Laguerre–Gaussian laser modes with binary gratings using a digital micromirror device,” Opt. Lett. 37, 4826–4828 (2012).
    [Crossref]
  12. L. Gong, Y.-X. Ren, G.-S. Xue, Q.-C. Wang, J.-H. Zhou, M.-C. Zhong, Z.-Q. Wang, and Y.-M. Li, “Generation of nondiffracting Bessel beam using digital micromirror device,” Appl. Opt. 52, 4566–4575 (2013).
    [Crossref]
  13. P. Zhu, O. Fajardo, J. Shum, Y.-P. Zhang Schärer, and R. W. Friedrich, “High-resolution optical control of spatiotemporal neuronal activity patterns in zebrafish using a digital micromirror device,” Nat. Protocols 7, 1410–1425 (2012).
    [Crossref]
  14. A. Bertsch, J. Y. Jézéquel, and J. C. André, “Study of the spatial resolution of a new 3D microfabrication process: the microstereophotolithography using a dynamic mask-generator technique,” J. Photochem. Photobiol., A 107, 275–281 (1997).
    [Crossref]
  15. M. Seo and H. Kim, “Influence of dynamic sub-pixelation on exposure intensity distribution under diffraction effects in spatial light modulation based lithography,” Microelectron. Eng. 98, 125–129 (2012).
    [Crossref]
  16. J. D. Gaskill, Linear Systems, Fourier Transforms, and Optics, Wiley Series in Pure and Applied Optics (Wiley, 1978).

2014 (1)

K. Zhong, Y. Gao, F. Li, N. Luo, and W. Zhang, “Fabrication of continuous relief micro-optic elements using real-time maskless lithography technique based on DMD,” Opt. Laser Technol. 56, 367–371 (2014).
[Crossref]

2013 (3)

F. Galeotti, W. Mróz, G. Scavia, and C. Botta, “Microlens arrays for light extraction enhancement in organic light-emitting diodes: a facile approach,” Org. Electron. 14, 212–218 (2013).
[Crossref]

V. Bansal and P. Saggau, “Digital micromirror devices: principles and applications in imaging,” Cold Spring Harb. Protocols 2013, 404–411 (2013).
[Crossref]

L. Gong, Y.-X. Ren, G.-S. Xue, Q.-C. Wang, J.-H. Zhou, M.-C. Zhong, Z.-Q. Wang, and Y.-M. Li, “Generation of nondiffracting Bessel beam using digital micromirror device,” Appl. Opt. 52, 4566–4575 (2013).
[Crossref]

2012 (3)

P. Zhu, O. Fajardo, J. Shum, Y.-P. Zhang Schärer, and R. W. Friedrich, “High-resolution optical control of spatiotemporal neuronal activity patterns in zebrafish using a digital micromirror device,” Nat. Protocols 7, 1410–1425 (2012).
[Crossref]

V. Lerner, D. Shwa, Y. Drori, and N. Katz, “Shaping Laguerre–Gaussian laser modes with binary gratings using a digital micromirror device,” Opt. Lett. 37, 4826–4828 (2012).
[Crossref]

M. Seo and H. Kim, “Influence of dynamic sub-pixelation on exposure intensity distribution under diffraction effects in spatial light modulation based lithography,” Microelectron. Eng. 98, 125–129 (2012).
[Crossref]

2011 (1)

T. Kamei, “Laser-induced fluorescence detection modules for point-of-care microfluidic biochemical analysis,” Procedia Eng. 25, 709–712 (2011).
[Crossref]

2010 (1)

2005 (1)

C. Sun, N. Fang, D. M. Wu, and X. Zhang, “Projection micro-stereolithography using digital micro-mirror dynamic mask,” Sens. Actuators A 121, 113–120 (2005).
[Crossref]

1998 (3)

K. J. Kearney and Z. Ninkov, “Characterization of a digital micromirror device for use as an optical mask in imaging and spectroscopy,” Proc. SPIE 3292, 81–92 (1998).
[Crossref]

L. J. Hornbeck, “From cathode rays to digital micromirrors-A history of electronic projection display technology,” Texas Instruments Tech. J. 15, 7–46 (1998).

P. F. Van Kessel, L. J. Hornbeck, R. E. Meier, and M. R. Douglass, “A MEMS-based projection display,” Proc. IEEE 86, 1687–1704 (1998).
[Crossref]

1997 (1)

A. Bertsch, J. Y. Jézéquel, and J. C. André, “Study of the spatial resolution of a new 3D microfabrication process: the microstereophotolithography using a dynamic mask-generator technique,” J. Photochem. Photobiol., A 107, 275–281 (1997).
[Crossref]

1996 (1)

L. Geppert, “Semiconductor lithography for the next millennium,” IEEE Spectrum 33, 33–38 (1996).
[Crossref]

André, J. C.

A. Bertsch, J. Y. Jézéquel, and J. C. André, “Study of the spatial resolution of a new 3D microfabrication process: the microstereophotolithography using a dynamic mask-generator technique,” J. Photochem. Photobiol., A 107, 275–281 (1997).
[Crossref]

Bansal, V.

V. Bansal and P. Saggau, “Digital micromirror devices: principles and applications in imaging,” Cold Spring Harb. Protocols 2013, 404–411 (2013).
[Crossref]

Bertsch, A.

A. Bertsch, J. Y. Jézéquel, and J. C. André, “Study of the spatial resolution of a new 3D microfabrication process: the microstereophotolithography using a dynamic mask-generator technique,” J. Photochem. Photobiol., A 107, 275–281 (1997).
[Crossref]

Botta, C.

F. Galeotti, W. Mróz, G. Scavia, and C. Botta, “Microlens arrays for light extraction enhancement in organic light-emitting diodes: a facile approach,” Org. Electron. 14, 212–218 (2013).
[Crossref]

Douglass, M. R.

P. F. Van Kessel, L. J. Hornbeck, R. E. Meier, and M. R. Douglass, “A MEMS-based projection display,” Proc. IEEE 86, 1687–1704 (1998).
[Crossref]

Drori, Y.

Fajardo, O.

P. Zhu, O. Fajardo, J. Shum, Y.-P. Zhang Schärer, and R. W. Friedrich, “High-resolution optical control of spatiotemporal neuronal activity patterns in zebrafish using a digital micromirror device,” Nat. Protocols 7, 1410–1425 (2012).
[Crossref]

Fang, N.

C. Sun, N. Fang, D. M. Wu, and X. Zhang, “Projection micro-stereolithography using digital micro-mirror dynamic mask,” Sens. Actuators A 121, 113–120 (2005).
[Crossref]

Friedrich, R. W.

P. Zhu, O. Fajardo, J. Shum, Y.-P. Zhang Schärer, and R. W. Friedrich, “High-resolution optical control of spatiotemporal neuronal activity patterns in zebrafish using a digital micromirror device,” Nat. Protocols 7, 1410–1425 (2012).
[Crossref]

Galeotti, F.

F. Galeotti, W. Mróz, G. Scavia, and C. Botta, “Microlens arrays for light extraction enhancement in organic light-emitting diodes: a facile approach,” Org. Electron. 14, 212–218 (2013).
[Crossref]

Gao, H. F.

Gao, Y.

K. Zhong, Y. Gao, F. Li, N. Luo, and W. Zhang, “Fabrication of continuous relief micro-optic elements using real-time maskless lithography technique based on DMD,” Opt. Laser Technol. 56, 367–371 (2014).
[Crossref]

Gaskill, J. D.

J. D. Gaskill, Linear Systems, Fourier Transforms, and Optics, Wiley Series in Pure and Applied Optics (Wiley, 1978).

Geppert, L.

L. Geppert, “Semiconductor lithography for the next millennium,” IEEE Spectrum 33, 33–38 (1996).
[Crossref]

Gong, L.

Hornbeck, L. J.

L. J. Hornbeck, “From cathode rays to digital micromirrors-A history of electronic projection display technology,” Texas Instruments Tech. J. 15, 7–46 (1998).

P. F. Van Kessel, L. J. Hornbeck, R. E. Meier, and M. R. Douglass, “A MEMS-based projection display,” Proc. IEEE 86, 1687–1704 (1998).
[Crossref]

Huang, K.

Jézéquel, J. Y.

A. Bertsch, J. Y. Jézéquel, and J. C. André, “Study of the spatial resolution of a new 3D microfabrication process: the microstereophotolithography using a dynamic mask-generator technique,” J. Photochem. Photobiol., A 107, 275–281 (1997).
[Crossref]

Kamei, T.

T. Kamei, “Laser-induced fluorescence detection modules for point-of-care microfluidic biochemical analysis,” Procedia Eng. 25, 709–712 (2011).
[Crossref]

Katz, N.

Kearney, K. J.

K. J. Kearney and Z. Ninkov, “Characterization of a digital micromirror device for use as an optical mask in imaging and spectroscopy,” Proc. SPIE 3292, 81–92 (1998).
[Crossref]

Kim, H.

M. Seo and H. Kim, “Influence of dynamic sub-pixelation on exposure intensity distribution under diffraction effects in spatial light modulation based lithography,” Microelectron. Eng. 98, 125–129 (2012).
[Crossref]

Lerner, V.

Li, F.

K. Zhong, Y. Gao, F. Li, N. Luo, and W. Zhang, “Fabrication of continuous relief micro-optic elements using real-time maskless lithography technique based on DMD,” Opt. Laser Technol. 56, 367–371 (2014).
[Crossref]

Li, M.

Li, Y. M.

Li, Y.-M.

Luo, N.

K. Zhong, Y. Gao, F. Li, N. Luo, and W. Zhang, “Fabrication of continuous relief micro-optic elements using real-time maskless lithography technique based on DMD,” Opt. Laser Technol. 56, 367–371 (2014).
[Crossref]

Meier, R. E.

P. F. Van Kessel, L. J. Hornbeck, R. E. Meier, and M. R. Douglass, “A MEMS-based projection display,” Proc. IEEE 86, 1687–1704 (1998).
[Crossref]

Mróz, W.

F. Galeotti, W. Mróz, G. Scavia, and C. Botta, “Microlens arrays for light extraction enhancement in organic light-emitting diodes: a facile approach,” Org. Electron. 14, 212–218 (2013).
[Crossref]

Ninkov, Z.

K. J. Kearney and Z. Ninkov, “Characterization of a digital micromirror device for use as an optical mask in imaging and spectroscopy,” Proc. SPIE 3292, 81–92 (1998).
[Crossref]

Ren, Y. X.

Ren, Y.-X.

Saggau, P.

V. Bansal and P. Saggau, “Digital micromirror devices: principles and applications in imaging,” Cold Spring Harb. Protocols 2013, 404–411 (2013).
[Crossref]

Scavia, G.

F. Galeotti, W. Mróz, G. Scavia, and C. Botta, “Microlens arrays for light extraction enhancement in organic light-emitting diodes: a facile approach,” Org. Electron. 14, 212–218 (2013).
[Crossref]

Seo, M.

M. Seo and H. Kim, “Influence of dynamic sub-pixelation on exposure intensity distribution under diffraction effects in spatial light modulation based lithography,” Microelectron. Eng. 98, 125–129 (2012).
[Crossref]

Shum, J.

P. Zhu, O. Fajardo, J. Shum, Y.-P. Zhang Schärer, and R. W. Friedrich, “High-resolution optical control of spatiotemporal neuronal activity patterns in zebrafish using a digital micromirror device,” Nat. Protocols 7, 1410–1425 (2012).
[Crossref]

Shwa, D.

Sun, C.

C. Sun, N. Fang, D. M. Wu, and X. Zhang, “Projection micro-stereolithography using digital micro-mirror dynamic mask,” Sens. Actuators A 121, 113–120 (2005).
[Crossref]

Van Kessel, P. F.

P. F. Van Kessel, L. J. Hornbeck, R. E. Meier, and M. R. Douglass, “A MEMS-based projection display,” Proc. IEEE 86, 1687–1704 (1998).
[Crossref]

Wang, Q.-C.

Wang, Z. Q.

Wang, Z.-Q.

Wu, D. M.

C. Sun, N. Fang, D. M. Wu, and X. Zhang, “Projection micro-stereolithography using digital micro-mirror dynamic mask,” Sens. Actuators A 121, 113–120 (2005).
[Crossref]

Wu, J. G.

Xue, G.-S.

Zhang, W.

K. Zhong, Y. Gao, F. Li, N. Luo, and W. Zhang, “Fabrication of continuous relief micro-optic elements using real-time maskless lithography technique based on DMD,” Opt. Laser Technol. 56, 367–371 (2014).
[Crossref]

Zhang, X.

C. Sun, N. Fang, D. M. Wu, and X. Zhang, “Projection micro-stereolithography using digital micro-mirror dynamic mask,” Sens. Actuators A 121, 113–120 (2005).
[Crossref]

Zhang Schärer, Y.-P.

P. Zhu, O. Fajardo, J. Shum, Y.-P. Zhang Schärer, and R. W. Friedrich, “High-resolution optical control of spatiotemporal neuronal activity patterns in zebrafish using a digital micromirror device,” Nat. Protocols 7, 1410–1425 (2012).
[Crossref]

Zhong, K.

K. Zhong, Y. Gao, F. Li, N. Luo, and W. Zhang, “Fabrication of continuous relief micro-optic elements using real-time maskless lithography technique based on DMD,” Opt. Laser Technol. 56, 367–371 (2014).
[Crossref]

Zhong, M.-C.

Zhou, J.-H.

Zhu, P.

P. Zhu, O. Fajardo, J. Shum, Y.-P. Zhang Schärer, and R. W. Friedrich, “High-resolution optical control of spatiotemporal neuronal activity patterns in zebrafish using a digital micromirror device,” Nat. Protocols 7, 1410–1425 (2012).
[Crossref]

Appl. Opt. (2)

Cold Spring Harb. Protocols (1)

V. Bansal and P. Saggau, “Digital micromirror devices: principles and applications in imaging,” Cold Spring Harb. Protocols 2013, 404–411 (2013).
[Crossref]

IEEE Spectrum (1)

L. Geppert, “Semiconductor lithography for the next millennium,” IEEE Spectrum 33, 33–38 (1996).
[Crossref]

J. Photochem. Photobiol., A (1)

A. Bertsch, J. Y. Jézéquel, and J. C. André, “Study of the spatial resolution of a new 3D microfabrication process: the microstereophotolithography using a dynamic mask-generator technique,” J. Photochem. Photobiol., A 107, 275–281 (1997).
[Crossref]

Microelectron. Eng. (1)

M. Seo and H. Kim, “Influence of dynamic sub-pixelation on exposure intensity distribution under diffraction effects in spatial light modulation based lithography,” Microelectron. Eng. 98, 125–129 (2012).
[Crossref]

Nat. Protocols (1)

P. Zhu, O. Fajardo, J. Shum, Y.-P. Zhang Schärer, and R. W. Friedrich, “High-resolution optical control of spatiotemporal neuronal activity patterns in zebrafish using a digital micromirror device,” Nat. Protocols 7, 1410–1425 (2012).
[Crossref]

Opt. Laser Technol. (1)

K. Zhong, Y. Gao, F. Li, N. Luo, and W. Zhang, “Fabrication of continuous relief micro-optic elements using real-time maskless lithography technique based on DMD,” Opt. Laser Technol. 56, 367–371 (2014).
[Crossref]

Opt. Lett. (1)

Org. Electron. (1)

F. Galeotti, W. Mróz, G. Scavia, and C. Botta, “Microlens arrays for light extraction enhancement in organic light-emitting diodes: a facile approach,” Org. Electron. 14, 212–218 (2013).
[Crossref]

Proc. IEEE (1)

P. F. Van Kessel, L. J. Hornbeck, R. E. Meier, and M. R. Douglass, “A MEMS-based projection display,” Proc. IEEE 86, 1687–1704 (1998).
[Crossref]

Proc. SPIE (1)

K. J. Kearney and Z. Ninkov, “Characterization of a digital micromirror device for use as an optical mask in imaging and spectroscopy,” Proc. SPIE 3292, 81–92 (1998).
[Crossref]

Procedia Eng. (1)

T. Kamei, “Laser-induced fluorescence detection modules for point-of-care microfluidic biochemical analysis,” Procedia Eng. 25, 709–712 (2011).
[Crossref]

Sens. Actuators A (1)

C. Sun, N. Fang, D. M. Wu, and X. Zhang, “Projection micro-stereolithography using digital micro-mirror dynamic mask,” Sens. Actuators A 121, 113–120 (2005).
[Crossref]

Texas Instruments Tech. J. (1)

L. J. Hornbeck, “From cathode rays to digital micromirrors-A history of electronic projection display technology,” Texas Instruments Tech. J. 15, 7–46 (1998).

Other (1)

J. D. Gaskill, Linear Systems, Fourier Transforms, and Optics, Wiley Series in Pure and Applied Optics (Wiley, 1978).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic diagrams of transmittance analysis of micro-mirror at the ON state. (a) Flat state of micro-mirrors in a DMD. The xy coordinate system is built up along the diagonal direction. Micro-mirror tilted in y-direction. (b) Rhombus aperture (the dark area) of the tilted mirror. The transmittance part of aperture can be represented by the superposition of two rectangle functions f1(x,y) and f2(x,y). (c) Lateral view of the tilted mirror. N⃗ and n⃗ are the normal direction of untilted and tilted mirrors, respectively. β is the incident angle with respect to the normal of the micro-mirror, which is at the ON state. (d) Position of rhombus aperture convoluted by the comb function (an array of delta functions spaced d units apart along x=y and x=y direction).

Fig. 2.
Fig. 2.

Simulation results of a DMD. (a) Portion of the simulation in the image plane. The distance between peaks is about 13.68 μm, which equals to the pitch between micro-mirrors. (b) Size of one micro-lens. (c) Three-dimensional structure of (b), which is shaped as a micro-lens.

Fig. 3.
Fig. 3.

Experimental setup. The beam with dominant wavelength 365 nm is collimated and illuminated onto the DMD with incident angle of 24°. Lens L2 collects the imprinted laser beam. A telescope formed by lenses L2 and L3 is used to reduce the pattern. A spatial filter is used to control the spatial spectrum passing through the focal plane of L2. The glass slide with photoresist is placed onto the translation stage. The lens group and the CCD form the digital microscopic system.

Fig. 4.
Fig. 4.

Micrographs of a fabricated micro-lens. (a) Micro-lens array collected by the digital microscopic system. (b) Top view of one micro-lens in pseudo-color. (c) Line profile of a micro-lens. (d) SEM graphic for the micro-lens in 45° angle of view (the scale bar is 10 μm). (e) SEM graphic for the micro-lens in 75° angle of view (the scale bar is 5 μm). (f) Distances measurement between the adjacent and the next nearest neighbor micro-mirrors (the scale bar is 10 μm). (g) Measurement of the FWHM and height of a micro-lens (the scale bar is 2 μm).

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

t0(x,y)=f1(x,y)f2(x,y),
f1(x,y)=rect(xbybcosφ),
f2(x,y)=rect(xb+ybcosφ),
t0(x,y)f1(x,y)f2(x,y)exp[i2πyλ(sinβcosφtanφ)],
t(x,y)[rect(xbybcosφ,xb+ybcosφ)exp(i2πyγλ)]*[comb(xyc,x+yc)]rect(xyW,x+yW),
γ=sinβcosφtanφ,c=2d,
T(ξ,η)=F[t(x,y)]n=m={sinc{b2[m+nc(mncγλ)cosφ],b2[m+nc+(mncγλ)cosφ]}×sinc[W2(ξη2nc),W2(ξ+η2mc)]},
T(ξ,η)=n=NNm=MM{sinc[p(nd+γλ2)q(mdγλ2),q(nd+γλ2)+p(mdγλ2)]×sinc[W(ξnd),W(ηmd)]},
I(x,y)=|F[T(ξ,η)]|2|n=NNm=MM{sinc[p(nd+γλ2)q(mdγλ2),q(nd+γλ2)+p(mdγλ2)]×exp(j2πnxd)exp(j2πmyd)}|2.

Metrics